goooboooogn
O 5470 19850 128-155

128

On Program Transformation with Tupling Technique

by
Akihiko Koga (T BeHE)
Systems Development Laboratory

Hitachi, Ltd.

Abstract: In this paper, we construct a theory for an automatic program
transformation with tupling technique. We introduce a purely applicative
programming language and formalize a problem to find a tuple for
transformation of a recursive program written in the language. We discuss the
transformation scheme with the tupling given as the solution to the problem and
show that the execution efficiency will be improved by the new scheme. Under a

certain constraint, we describe the method to find a tuple for a given program.

l. Introduction

For .the productivity and reliability of software and easiness of the
maintenance, we should write a clear and easily understandable program. Such
programming manner, however often implies the inefficiency of the program. To
overcome the contradictory situation, several ‘program transformation approaches
[1,2,3,5,6,7,8] have been proposed as a high-level optimization me‘thod. In this
paper, we discuss the program transformation with the tupling technique [1,2,3,4,

6,81.

- With the tupling technique, in order to eliminate the duplicated computation
done by a given recursive program, we introduce an auxiliary function that
computes the values of a function for several arguments simultaneously. The

following example will make clear the fundamental idea of the tupling technique.

P: Fib(n)«if n<| then | else Fib{n-1)+Fib(n-2)

The recursive program above computes the Fibonacci number for a given

integer n. The Figure below expresses how Fib is called during the execution of

Fib(5) in ordinary computation.

Fib(5)
Fib(4) S Fib(3)
- - " * \
, I' A \ \ ‘l / \ \
" Fib(3) Fib(2)) Fib(2) Fib(l) }

- -~

SN

" Fib(2) Fib(1) ¢ Fib(1) Fib(0) 1 Fib() Fib(0) -’

4
‘‘‘‘‘‘‘‘

4
’ ’
¢ ’
7 [4
¢
[

+ Fib(l) Fib(0) -

-
- -
TN - e~

Figure 1.

In the figure above, arrows represent function calls. For example, arrows are
drawn from Fib(5), one to Fib(4) and the other to Fib(3). This corresponds to the
fact that in the computation of Fib(5), the function Fib is called for 4 and 3.

Observing the figure, we can find that, say, Fib(3) is computed in the right branch

of Fib(5) while it is also computed in the left branch of Fib (5). Because of this
phenomenon, the computation of Fib(n) requires exponential time in n. Now we
introduce an auxiliary function Aux(n) that computes Fib(n) and Fib(n-1)

simultaneously to eliminate the redundancy.
(1) Aux(n)<Fib(n),Fib(n-1)>

Here, <a,b> represents the pair (tuple) of a and b. By the simple symbolic

manipulation, Aux(n) is transformed as follows:

Aux(n) € < Fib(n),Fib(n-1) > (definition)
Aux(n) =<if ngl then | else Fib(n-1)+Fib(n-2), Fib(n-1) ?
(Fib(n) in the first element of Aux(n) is expanded. This operation
is called unfolding.)
= if n¢] then < L,Fib(n-1)>else< Fib(n-1)+Fib(n-2),Fib(n-1) >
(the property of if-construct: §(if p then a else b) =

if p then 4(a) else ¥ (b))
(2) = if n¢] then <, >else <u+v,u) where <u,v> = <Fib(n-1),Fib(n-2) >

Here, the expression ‘e where <Upyeeepup=e 2 means that to evaluate e] we use the
values of uj's which are results of the evaluation of e. Since we obtain the
equation Aux(n-1)=<Fib(n-1),Fib(n-2)> from (1), the equation (2) is further

transformed.

Aux(n) = if n€l then <],] >else <u+v,u> where <u,v>=Aux(n-1)

131

If we regard this equation as the definition of Aux, we obtain the following

program.

P2: i Fib(n)€ u where <u,v> = Aux(n)

Aux(n)« if ngl then<!,l>else<u+v,u> where <u,v>=Aux{(n-1)

With the program P2, the computation of Fib(n) is done in linear time in n. The
computation of Aux(5) is pictures in Fig 2. Observing the figure, we can find the

duplication of the computation has been removed.

Aux(5) = < Fib(5), Fib(4) >
{ S~
Auf(a) = < Fib(4), Fib(3) >
Aux(3) = < Fib(3), Fjb(2) >
J P B
Aux(2) = < Fif(Z), Fib(1) >
Aux(l) = < Fib(l), Fib(0) >
Figure 2.

The key step of the program transformation with the tupling technique is the
introduction of the auxiliary function Aux(n). The reason that Aux(n) can be
rewritten as the recursive function which refers only to Aux(n-1) is due to the fact
that the elements of Aux(n-1), i.e., Fib(n) and Fib(n-1) can be represented by the
elements of Aux(n-l),i.e.,Fib(n-1) and Fib(n-2).

Aux(n) < Fib(n), Fib(n-1) >

Aux(n-1) = < Fib(n-1), Fib(n-2)>

In order to automate the program transformation with tupling technique, we should

13%

discuss what tuple should be introduced as an auxiliary function and how efficient
the transformed program would become. In Section 2, we introduce a programming
language and postulate the problem to find a tuple for a program written in the
language. In Section 3, we describe the transform‘ation scheme and in Section 4,
we discuss the relation between a given program and its tuples, and describe the

method to find a tuple for the program.

2. Programming Language and Formalization of the Problem

In this section, we introduce a programming language and formalize the
problem to find é tuple for a program written in the language. First, we suppose
that the following sets and symbols are given.

F: a set of function symbols to be defined.
H: a set of known function symbols. Each element of H is associated with a
non-negative integer called arity.
V: a set of variable symbols
X: an element of V
D: the domain of X
Wev define H* to be the simi-group generated from the functions of the form DsD
in H. i.e.,
(i) ideH*, where id: D> D and id(x)=x for any x€D.
(ii) if aeHanda:D»D thena€H*
(iii) if P 6 € H*, then P = Ax.p@(x)eH*
(iv) if o€ H* and @ has its inverse @ -1, then @ -leH*
In the sequel, we use Greek lower letters for the elements of H* and Roman lower

letters for the elements of H.

A recursion system E on the above sets is the system of the equations of the

following form:
f1(X) e ty

(2.1) .

fa(X)e tph
with top function £ € {f],...,fn] CF

The set of the function symbols {fl,...,fn} is denoted by F(E). tj's are terms
generated as follows:
(i) eachelementof Visa term
(i1) if a€H is a known function symbol with the arity m and t'},...,t';, are
terms, then a(t'},...,t'm) is also a term.
(iii) if o€ H* and fj; € F(E) then f;(@ (X)) is a term.
(vi) if t'j,t'2 and t'3 are terms then
if t') then t'; else t'3
is a term.
(v) if t'} and t'y are terms and uj,...,uy, are variables, then
t'| where <uj,...,upn> =1t's

is a term.

Note: (1) Although the function defined by the above system is always unary, we
can manipulate a function with multiple arguments by regarding X as a vector.

(2) Symbols in F cannot nest in the right hand-side of the equations because of the
generation rule (iii). Therefore we cannot manipulate, say, McCarthy's 91 function

in our system.

Example 1.

The following recursion system defines the function which returns a list of

Fibonacci numbers.

Flist(n) € if n<0 then NIL else cons(Fib(n),Flist{n-1))
(2.2) | Fib(n)«if nsl then | else Fib(n-1)+Fib(n-2)

with top function Flist

U

The transformation starts with the introduction of an auxiliary function Aux(X)¢
<8I T (X));00e BT (X)) into the original system (2.1). Here, gi€{f],-..,fnjand; €
H* (12i< m). To transform the system (2.1) with this auxiliary function, we require
that Aux(X) satisfies the following two conditions:
(A) £(X) can be represented by the element of Aux(X), i.e., by g|@(X)),...,
gm(d‘m‘(x)).
(B) there are some f), ..., Px € H* such that each element of Aux(X) can be
represented by Aux(P(X)), ..., Aux(P(X)).
In the rest of this section, we prepare some concepts to express these two
conditions rigorously.

For a given recursion system E, we associate a function D:F(E) 3 P(F(E) x H*)
as follows and call it the dependency of the system E (For a set A, P(A) is the
poWer set of A).

for fi,ijF(E),

<fj,6> €D(E) iff the subterm fj(O'(X)) appears in the term tj, where t; is the right-

hand side of f;j(X) in the system E.
We sometimes denote the dependency as <D,f> in order to emphasize the top
function of the system.
Example 2.
For the system (2.2) given in Example |, we associate D as follows:
F(E)= { Flist, Fib }

D(Flist)= { < Flistpn.n-1>, < Fib,id >)

135

D(Fib)=KFibn.n-1, <Fib, n.n-2 >}
a
The relation D(g)= f(gl,ﬂ'p, «1<8m@m>} means that the value of g(X) can be
computed from the value of g)(@(X)) , ..., gm (G (X).
Definition
Let A,B¢ H*,deH* and RC F x H*.
R =det{<gaadl<g,mer]

RA =4ef UR
A EA

AB =qos {P+T| peA,TeB]
AK 4o A(A(...A)...) for k0
e ———
k times o
Let D},D2:F(E) » P(F(E) x H*) be two dependencies. Then the composition
D*D2:F(E) » P(F(E) x H*) is defined by

D*D2(g) =gef U Dy(h) for geF(E)
<h,e>€D7(g)

DK =4es D (D (... D)...) for k> 0

[——_g

k times a
DX is the dependency of the system which is obtained by k-time expansion of all
the equations in the original recursion system of D. In the sequel, we suppose
that a dependency D has the following property.
for any k > 0 and for any g F(E), <g,id> ¢ DK(g)
We denote the elements of H* used in D by Op(D). That is,
Op(D) =4etlereH* 13g,heF(E), <h,a7¢D(g)}
Finally, we suppose the following condition on D.
(C) there is a subset G C H* such that G is a group with respect to the
composition and Op(D) C G.

This assumption is necessary to make the following definition of closure adequate.

136

The assumption, of course, put a restriction on our system. One of the solution to
assure (C) is to modify the generation rule (iii) of term into (iii)' below, though we
do not suppose this modification in the sequel. |
(iii) for T€H* such that its inverse exits,and fjéF(E), £;@1X)) is a term.
Let D,f be a dependency and G be a group such that Op(Dl)g G. The pa’i;(R,A),
R ¢ F(E) x G, A ©G is a closure of<D,f> iff R and A satisfy the following three
conditions:
() Riw, [Alcw , [dgAk For any k>0
(i) <f,ideR or D(E)CR
(iii) for any <g,07€R,<g»eRA or D(glrcRA
In particular, if A is a singleton set {d}, <R,A> is called linear closure and is

denoted as R, .

Let <R,A> be a closure of<D,f>
R = {<81’°l> 9 sesy <gm’°?n>} ’
A :fall, veey O]
Then, R represents the auxiliary function Aux(X) to be introduced. That is Aux is
defined by the following equation:
Aux(X)*<g|(T (X)), «eey g (T (X)) 2
The conditions (A) and (B) correspond to the conditions (ii) and (iii) of the definition

of the closure respectively.

3. Demonstration of Transformation with a Linear Closure

In this section, we describe the transformation procedure with a linear closure

through the following recursion system. It is easy to extend the procedure to the

137

general case including the case of a non-linear closure.

[£1(X)¢ if pj(X) then aj(X) else 1,

fh(X)e if pp(X) then ap(X) else tq

(with top function f]
where aj,pi€H, F(El):ffl, ey fnl » and tj is a term which does not contain if-
construct nor where-construct. We suppose that a linear closure ¢R,®is found for
the dependency<D,f;>of the system El.
R = {<81,P1, +es B oPm>)
For simplicity, we assume that R-contains<{), id>and <g|,p>=<f},id> We introduce
the auxiliary function Aux(X):
Aux(X) =<g{P1(X)) , «eey B{Fr (XN >
Since<g|,PP=¢f|,id), £;(X) can be represented as:
f1(X)¢ u; where<uy, ..., up? =Aux(X)
Next, we transform the definition of Aux(X) as follows:
Aux(X)¢<cy, ..., cy? where<uj, ..., uw=Aux@(X)),
where c; is the term defined as follows:
(1) Case<gj,p;> € Rd:
Let j be the integer such that<gi,&)':<gj,9j.q},
Then ¢j = uj.
(2) Case<g;,pp ¢ Rat:
We assume that g; = fj;- Thenc; is
if pj;(Pi(X)) then a; (P;(X)) else o
where t'ij is the term which is made from tj, as follows:
if a subterm i @(X)) appears in the term tj;» then by the condition (iii)
of closure 3<gs, P> € R,<fy,0P>=<&s,p-A> Then, the subterm f}@(X)) in tj; is
replaced by us.

As the result we obtain the system E2 below.

138

£1(X)¢ u; where<uy, ..., upp=Aux(X)
E2: | Aux(X)<c|, ..., c,> where<uy, ...,'um7=Aux©((X)),
with top function £
Example 3.fFic(n)¢ if (n is prime) then | else Fic(n-1)+Fic(n-2)
(3.0 (w"“\ top function Fic
¢R,&is a linear closure of this system where R and are given by:
R = { <Fic,id)<Fic,)n.n-1> 1
A =An.n-l
Now we define the auxiliary function:
Aux_(n)€< Fic(n), Fié(n-l) >
and transform the system (3.1) into
Fic(n)* uj where <uj, u2>= Aux(n)
(3.2) { Aux(n)€ < if (n is prime) then | else uj+up, u;> where uj,uy =Aux(n-1)

with top function Fic

Now we describe the evaluation rule of‘ where-clause in detail.
e) where <Uj,...,un>= €7
is evaluated as follows:
First, e) is evaluated. If some of uj, kifm are required for the evaluation of
e|, then the evaluation of e starts. During the evaluation of e, the
‘elements of e which are not required for the evaluation of e| are not
evaluated. This rule applies recursively. |

Example 4. With the system (3.2), the evaluation of Fic(6) proceeds as follows:

Fic(6)

Aux(6) = Fic(6), Fic(5)

Aux(5) = F;c(5), Fic(4) The elementsof Aux to be evaluated are
{. 4 o 0w ’.

Aux(4) = Fic(#), Fic(3) written in boldface.

S

+ v ¥
;%tix(BF = Fic(3), Fic(2)

s
es asre
s -

Aux(2) = Fic(2), Fic(l)

139

That is,

|. To evaluate Fic(6), the evaluation of uj is required. So, Aux(6) is called and its
first element is evaluated.

2. To evaluate the first element of Aux(6), since 6 is not prime, both of uj and up
are required. So, Aux(5) is called and its first and second element are evaluated.

3. To evaluate the first element of Aux(5), since 5 is prime, none of ujs is required.
On the other hand, to evaluate the second element of Aux(5), the uj is required. As
the result, Aux(4)is called and its first element is evaluated.

4. So on.

Under the evaluation rule, the following proposition holds.
For any deD, if f|(d) terminates with the system El, then f|(d) of the system
E2 also terminates with the same value.
The proof is included in the appendix A for the system of Fic in Example 4. The
efficiency of the transformed system is expressed as follows:
We first define a function depth: F(EI) x D » N.
depth(fj,d)=def { | if pi(d) holds
{ l+max{ depth(f;F(d)) | £;(07(d)) appears in ti} otherwise
depth(f},d) represent the depth of the computation tree when f|(d) is evaluated
with the system El. Then,
The number of recursive calls to Aux when f|(d) is evaluated with the system
E2 is less or equal to m*depth(f},d).

The proof is also given in the appendix A.

Note: The situation such as written below does not occur when we transform the

system El to E2 because of the constraint (C) written in the last section.

140

(3.3) [CFUZ
c2=uj
If such a situation occurs, the system E2 defines a function which never terminates

~for any deD. There may be several methods to prohibit the situation like (3.3). In

this paper, we adopt the condition (C) for the simplicity.

3. Some Properties of Closures

In this section, we discuss the relation between a dependency and its linear
closures, and describe some method to find a closure for a given dependency. The
next theorem states a necessary condition for the existence of a linear closure.
Theorem 1.

Let <D,f> be a dependency. If
k .
1 U DHDI

i=0
500 (as k1®)

k
then no linear closure exists for <D,f>.
[Proof]

Let <RAbe a linear closure of<D,f> and M=|R{. From Lemma | below, we

obtain
k = Mk
UDMf)Cc URa! forany k>0
=0~ i=0

Therefore,
k Mk Mk

U DI € IU Ratltg & 1 Ra T 1<M(Mk+1).

i=0 i=0 i=0

This means that if a linear closure of <D,f> exists, | Uj.o DNf)l increases at

most in linear order of k.

13

14]

Lemma l.

Let <R#) be a linear closure of<D,f>and M=IR]. Then,
for any k>0 and any <g,Ty¢€ DK(f),3m <Mk such that <g,6> €ERoM
[Proof]

It can be easily proven by the induction on k.

Example 5.

No linear closure exists for the following system (The system computes the
number of the combination of n and m).
Comb(n,m) ¢ if (0<m<n) then Comb(n-1,m)+Comb(n-1,m-1) else |
{ with top function Comb
F(E) ={Comb}
D(Comb)z{(Comb, A<n,my<n-1,m>», <Comb,)m,m>.<n-l,m-l>>]
Indeed we can easily show
D{(Comb)= {(Comb,;\(n,m).(n—i,m-j»l O¢j¢i for any i>O-}
and | U;%, Di(comb) | increases in the order of k2. Therefore, by Theorem 1, there
is no linear closure for < D,Comb>.
a
In the rest of this section, we describe some methods to find a closure for a given
dependency. First, we state a method to eliminate an inessential factor from a
dependency.
Theorem 2
Let G be a group such that Op(D) C G and suppose G is represented by a direct
product Gg x G' for a finite subgroup Gg € G and G'€ G. Then, we define the
projection p:G » G'as follows:
if € G is represented as §"=0;7 Tz for §,€ Gg and G2€G'

then p@)=a-,

14<

Further we define Dp:F(E) » P(F(E) x G') as:
Dp(g)= kh,p€)> | <h,meD(g)}
If <R',AD is a closure of <Dp,f>, then <R'Gf, AY is a closure of<D, f>.
[Proof |
The proof of the conditions (i) and (ii) of closure is omitted.
The condition (iii):
Suppose that <g,07€R'Gg. Then,
J<g,o €R', I0€GR, T=0C,-0;
Case <g,5»R'A
<8GWER'AT, ¢ R'(AGR)=(R.Gr)A
Case Dplglic R'A
D(gla= D(g)%-G,C (Dp(g)GE)Ti - T
= Dp@)%)G &
c (R'A)GE
= (R'Gp)A
0
By this theorem, to find a closure of D, we first find a closure for Dp which is
made from D by eliminating some finite group factor and then make the product of

the closure and the finite group.
Example 6 The Towers of Hanoi

hanoi(n,a,b,c) ¢ if n<0 then ™
(4.1) else hanoi(n-1 ,a,c,b)llmove(a,c)llhanoi(n-l,b,a,c)
with top function hanoi
where ™ is a null string, sjllsy is the concatenation of s; and s, and move(a,c)

returns the string "move a disk from " {lall" to" [] c.

143

D(hanoi)z{ < hanoi, Xn,a,b,c>« n-1,a,c,b>>, <hanoi, Am,a,b,c>,<n—l,b,a,<:)>}
If we let
G= {A{n,a,b,c>.<n+i,x,y,z> | <x,y,z> is a permutation of<a,b,c> , i€Z }
GF:{A(ﬂ,a,b,C>-<n,x,x~,E> | x,y,z isa permutation of<a,b,c>}
G'= {Mn,a,b,cr<n+ia,be> | i€z }
then Op(D) € G and G=Gp x G'. In this case, we obtain
Dp(hanoi) :{< hanoi,)x(n,a,b,c).<n-‘i,va,b,c >}
and we can easily find a closure <R',& yof < Dp,hanoi 2.
R'={¢hanoi, id >}
o =A<n,a,b,c> .< n-l,a,b,c>
Therefore we obtain a linear closure <R'GF,0(7for <D, hanoi ».
g

The closure obtained by the method of theorem 2 is not always optimal. Indeed,
for the system of hanoi, we will show in Appendix C that a better linear closure (
the cardinality of R is less than that of R found in Example 6) exits.

Next we describe a method to construct a closure from a given dependency
under certain conditions. In the following theorem, we make an assumption that
the elements of Op(D) commute one another. The author has not found an

effective method to construct a closure when Op(D) does not commute.

Theorem 3.

Let <D,f> be a dependency and G be a group such that Op(D)< G. If a finite
subset A of G satisfies the following four conditions, a closure of the form <R,A?
exits for < D,f >.

(i) Each element of Op(D) is generated by the elements of A.
(i) id¢€Al for any i> 0.

(iii) the elements of A commute one another.

144

(iv) for each triple <g,h,ppsuch that g,h e F(E), and <h, preD(g),
we can associate an element B(g,h,P) of A so that the following
condition may hold.
for any gg,...,gk € F(E) and any £, ..., € G such that
g0=8k and <gj, Pi> € D(gj_p fori (1<igk)
(P e 1) Plg0sgls PN worplgk 1i8Ks PRI U 2, Al
G .
Since there are only finite number of triple <g,h,p>such that <h,f>eD($ and A is a
finite set, we can check whether B exits or not by trying all the combinations.
On the construction of R, B has the following meaning:
If <g,p>eR-RA, then for any- <h@eD(g), <h, p)eRA must hold. We construct

R so that <hg-P€R 8(g,h,0) CRA.

The Proof of Theorem 3

We show the procedure to construct R of Theorem 3. The procedure is

' composed of four steps.
STEP I: We' construct the tree T(D,f) from D and f according the following
algorithm. Each node of T(D,f) is labeled by the element of F(E).
ALGORITHM EXPAND

Input D, f;

Output TD,f);

BEGIN

Create a root node s and label it f;

Vi= {s} ;

WHILE not empty(V) DO

vi=get(V); /* choose an element of V and assign it to the variable v */

Vi=V- {v};

145

FOR all g € F(E) such that 3t .<§.T7€D(label(v)) DO
Create a new node V', label it g and create an edge (v » v");
IE v' has no ancestor labeled by g THEN V:=V U { v'} END IF;
END FOR
END WHILE
END
Note that the tree T(D,f) is uniquely determined.
Example 7
Let
F(E)= {F, G, H }
A= fa,b} We suppose that a and b commute each other.
D(F)={<F,a2>, <G,a-lb>}
D(G)={<H,a?, <G,a-b>}
D(H)= {<F,a? >}

D can be represented by the graph below.

a2 [a]

In the graph, from, say g, two arrows are drawn, one labeled a to h and the other

146

labeled a<b to itself. This means D(G)={<H,a>, <G,a-b >}. The values of Bwhich

satisfies the condition (iv) of Theorem 3 are writtenin[J.

B(FF,a)=a B(F,G,a-lb)=b B(G,H,a)=a
B(G,G,ab)=a p(H,F,a2)=a

Applying the algorithm EXPAND to D and f, we obtain the following tree T(D,f).

label(v1)=F
label(v2)=F
label(v3)=G
label(v#)=G

label(v5)=H

label(v6)=F

STEP 2: We define a function
C : Node(T(D,1)) » P(G)
according to the following algorithm ASSOCIATE.
ALGORITHM ASSOCIATE
Input D, T(D,f), ; /* is given by the condition (iv) of Theorem 3 */
Output C;
BEGIN
FOR all v Node(T(D,f)) DO C(v):=empty.set END FOR;
Vi={s]; /* sis the root node of.T(D,f) */
Cv):={id }

WHILE not empty(V) DO

147

vi=get(V);
Vi=V- { v} ;
FOR all v' such that (v » v')€Edge(T(D,f)) DO
FOR all PeG such that <label(v'), peD(label(v)) DO
FOR alle€C(v) DO
C(v):=C(v") U {p-6-B(label(v),label(v'), £)-1
END FOR
END FOR
END FOR
END WHILE

END

We can easily prove the following proposition about C.
Proposition I.
Let (v »v')€Edge(T(D,f)), label(v)=g, label(v')=h. Then,

for any 0€C(v), any <h,p>€D(g), p-oplg,h,p)leCv)

Example 8
We obtainn the following C, applying the algorithm ASSOCIATE to the tree

T(D,f) in Example 7.

Clvl)= {id 3 C(v2)= {a }
C(v3)= {a-!} Cv4)= { a-lb }
C(v5)= {a-1} C(vé)= { id]

STEP 3: We define é function
B : Node(T(D,f)) 3 P(G)

by

90

145

m(v)
Bv) = C(v)(UAJ) for v Node(T(D,f)).
i=0
where m(v) is defined as follows:
Let h be the label (function symbol) of v and let v, ..., v, be the descendants of
v labeled h (if no such descendant, n is 0). By the condition (iv) of Theorem 3
and the way of construction of C, there is an integer m20 such that C(Vj) c
CvXU {y:\a Al) foranyj,l1<j< n. we define m(v) to be the smallest
one among such numbers.
'l'hé following proposition can be easily proven.
Proposition 2.
(1) Let s be the root node of T(D,f). Then ideC(s) C B(s)

(2) For any node v, B(v)-B(WA < C(v).

Example 9.

B is constructed as follows for the tree T(D,f) given in Example 7.
B(v1)= {id, a, b}
B(v2)= f{a}
B(v3)= {a‘l, id, a-lb}
B(v4)= {a'l-b]
B(v5)= {a-!}
B(vé)= {id |
For instance, the node vl has the descendants v2 nad v6 of the same label F. The
smallest integer mz 0 which satisfies C(v2) U C(v6) ¢ U C{vl) (U E:\o Al is 1.
Indeed, v
C(v2) U C(v6) = {aj ufiidt = {id,al
Clv1) (Usko AD) = {id}{ id, a, b} = {id, a,b)

B(vj) can be computed for other node vj's similarly.

2\

STEP4: Finally we construct R from B.

R = U{<label‘(vl),¢)l aeB(v))
veNode(T(D,f))

Then, <R,A> is a closure for <D,f> . Indeed the condition (i) of closure is
obvious. The condition (ii) is derived from (1) of the proposition 2.
The condition (iii); Let <h,tT>€R-RA. By the definition of R, there is a node v of
T(D,f) such that
(4.2) label(v)=h and Te B(v)
Since <h,T)€R-RA, we obtain
(4.3) TeB(v)-B(V)A.
Now, we prove that for any <g,e>€D(h), <g,OeRA.
By the way to construct B, if v is a leaf node, then we can choose another one
which satisfies (4.2). So, we assume from the first, v is not a leaf node. By the
way to construct T(D,f), v has a child v' of the label g. By (4.3) and (2) of the
proposition 2, we obtain
TeC(v).
By the proposition 1,
a-Tp(h,g,a)l € C(v)
Since p(h,g,T)€ A, 0-TeC(v')A. Therefore,
o-TeC(v)AC B(v)A
Since label(v')=g, we obtain < g, -TD€RA.
Thus, theorem 5 is proven.
Example 10
From the B found in Example 9, we obtain

R={<F,id> ,<F,a> ,<F,b> <G,a-1>,<G,id), <G,a-l-b>,<H, a-!>]

22

150

5. Conclusion and Problem

For a given recursion system, we formalized the problem of finding a tuple as
the problem of finding a closure for the dependency of the system. We have shown
the transformation procedure and the improvement of the efficiency when a linear
closure is found for a given system. Under a certain condition, we described a

method to find a closure for a given dependency.

The method described in this paper does not successfully transform the following
system into a linear system.

Fnl(X) ¢ if p(X) then a(X) else c(Fnl(a(b(X))), Fn2(b(X)))
(5.1) { Fn2(X) <« Fnl(a(X))

with top function Fnl

D(Fn={¢Fnl,a:b>, <Fn2,b>}

D(Fn2)={<Fnl,a>}
For any j»0, no linear closure exists for the dependency <Dj ,Fnl>. However, if we
expand Fn2 in the first equation of (5.1) using the second one, we obtain the
following system (5.2) which can be easily rewritten into linear one.

Fni(X) ¢ if p(X) then a(X) else c(Fnl(a(b(X))), Fnl(a(b(X))))

(5.2) { with top function Fnl
To compute D+*D for a dependency D corresponds to the expansion of all the’
equations in the original system. The operation does not reflect the expansion of

only a part of equations.

Acknowledgment

The author would like to express his deep appreciate to Professor Taiichi Yuasa

23

151

and Professor Reiji Nakajima of Research Institute for Mathematical Sciences
Kyoto University for tlfiéir useful advice. Through the discussion with Mr. Takashi
Sakuragawa, a student there, the author could obtain a good insight to this problem.
Finally, the author would like to thank Mr. Tatsuya Hagino, a student of Edinburgh

University, for his kindness to prepare necessary papers from Edinburgh University.
References

l. Burstall,R.M., Darlington,J.: A Transformation System for Developing
Recursive Programs. JACM 24, |, pp44-67 (1977)

2. Cohen,N.H.: Eliminating Redundant Recursive Calls. ACM Trans. Prog. Lang.
Syst. 4. 1, pp256-299 (1983)

3. Feather,M.S.: A System for Assisting Program Transformation. ACM Trans.
Lang. Syst. 4. 1, ppl-20 (1982)

4. Friedman,D.P., Wise,D,S,: Functional Combination. Computer Languages.
Vol. 3. pp31-35 (1978)

5. Pettorossi,A.: Improving Memory Utilization in Transforming Programs.
Lecture Notes in Computer Science No. 64, pp4l6-425.
Berlin-Heidelberg New York: Springer (1978)

6. Pettorossi,A.: Transformation of Programs and Use of "Tupling Strategy".
Proc. of Informatica '77 Conference, Bled, Yugoslavia, 3-103, ppl-6 (1977)

7. Pettorossi,A., Burstall,R.M.: Deriving Very Efficient Algorithm for Evaluation
Linear Recurrence Relations Using the Program Transformation Technique.
Acta Informatica 18, ppl81-206 (1982)

8. Wand,M.: Continuation-based Program Transformation Strategies. JACM 27,

1, ppl64-180

24

152

Appendix A
We prove the equivalence of the system (3.1) and (3.2) in Section 3, and compare
the efficiencies. To distinct two Fic's in the system (3.1) and (3.2), we rename the
latter Fic2.
Proposition Al
Let n€ Z. If Fic(n) of (3.1) terminates, then Fic2(n) of (3.2) also terminates and
the number of the recursive calls to Aux is less than or equal to 2*depth(Fic,n)
[Proof]
For n€ Z, we define a set Q(n) of sequences of elements of Z x {1, 2} as follows:
(1) <n,l>€Q(n)
(2) Suppose thét [<Qry> s veey <qKsrk>] € QN)
(i) Case rg=2
[4Qprp » «=r€qeork > 5 <qk-1,121€Q(n)
(ii) Case ri=1
| if qi is not prime,
[<qp,r> 5 eees<qy-1, j>1€Qln) for j=1, 2
The relation [<qp,rp>, ..., <Qrir>l € Q(n) means that in the evaluation of Fic2(n)
of the system (3.2), the rith element of Aux(qy) is evaluated.
Foris= [<qp,r>y wees <quork>] € Qn), we define
length(s) =des k
We can easily verify the following properties of Q(n).

Properties of Q(n)

(0 1 [<qpr>, ey <qeork>]1€Q(n) then qp=n and ri=l.
(2) The length of the element of Q(n) is bounded if and only if Fic2(n)

terminates. Particularly, if M=max(length(s)), then during the evaluation of

seQ(n)

Fic2(n) the number of recursive calls to Aux is less than or equal to M.

(3) Let [<qpr[>y «eey <qksk>]€ QM) and Tips weer iy

25

155

be gj's whose r-part are I. Then m2k/2.
By (1) and (3) of the properties of Q(n), and by the following lemma Al, if Fic(n) of
(3.1) terminates, the length of the elements of Q(n) is bounded. Therefore, by (2) of

the properties of Q(n), Fic2(n) terminates.

Lemma Al

Let[<qp,rp , -y <qkrk>] € Qln) and dips -+ di,, D€ the sequence such that rij=1
forj, 1<j<m. Then, to evaluate Fic(qij), Fic(qij+l)is called (1< j< m).
[Proof]

Omitted

Proposition A2

If Fic2(n) terminates, Fic(n)=Fic2(n).
[Proof]
By the next lemma A2 and the fact <n,l> € Q(n), the first element of Aux(n) is

equal to Fic(n-1+1)=Fic(n).

Lemma A2.

If [<qprp>y «e» <qrork> 1€ Q(n) , then during the evaluation of Fic2(n) of the
system (3.2), the rith element of Aux(qy) is evaluated to Fic(qy-ri+1).
[Proof]
This lemma can be proven by the induction on k.

d

Therefore, the equivalence of (3.1) and (3.2) is proven. More generally, to prove the
equivalence of system El and E2, we construct Q(d) for d € D as a set of the
sequence of the elements of D x { ly 2y eeey m] and express the evaluation of the

elements of Aux(X).

26

154

Appendix B

We construct a better linear closure for hanoi than the one found in Example 7.
Theorem B
Let <D,f>be a dependency and suppose that there is <f,PeD(f). If
3 IDIEI=IDI+(D)]
<Dj(f)P'i)P>. is a linear closure for <D,f .
[Proot]
It is easily shown that Di+1(f)=D1.D(f) for any i20. Therefore, we obtain
Di+l(f)=Di-D(f)= U Di(g)e 2 Di(f)p.
%.¢7€DWM .
On the other hand, since | Di+}{f) 1 = | DI(f)pl,
Di+l(f) = DIDP .
NoQ we prove that <Dj(f)p“5,p> is a linear closure for<D, f> . The
conditions (i) and (i) of closure obviously hald. To prove the condition (iii),
suppose that <g,@€Di(f) p-i. Then,
< 8,qply € Dilf)
Therefore, D(g)G-pl < Di+l(f) = Dik)p ..
Therefore, D(g)T < (Dj(f)p‘j)f’.
ad
If we check the cardinalities of i'th hold of D for the system of hanoi (4.1) for i=
1,2,3, ..., we obtain
| D(hanoi) | = 2,- I D2(hanoi) [= 3, | D3(hanoi) | = 3, ...
By theorem B, <R,a> is a linear closure for the system, where
& = Mn,a,b,cr.<n-l,a,c,b>,
R = DZ(hanoi)& -2
= {‘4 hanoi, id>, <hanoi,3<n,a,b,c> .<n,b,c,a>>,
< hanoi, Xn,a,b,c> .< n,c,a,b»} .

The cardinality of R found here is 3 and so R is simpler than the one found in

27

155

Example 6. Indeed, if we define Aux as
Aux(n,a,b,c) ¢ < hanoi(n,a,b,c), hanoi(n,b,c,a), hanoiln,c,a,b) 2,
the system (4.1) is transformed into the following system.
(hanoi(n,a,b,c) ¢ u where <u,v,w> = Aux(n,a,b,c)
Aux(n,a,b,c) ¢« if n<0 then <M v nn 5
else <u il move(a,c) Il w,
$ w [l move(b,a) Il v,
v |l move(c,b) Ilu >

where <u, v, w> = Aux(n-l,a,c,b)

\ with top function hanoi

15

