goooboooogn
O 5470 19850 196-229

190

Non-Strict Partial Computation with a Dataflow Machine

Satoshi ONO, Naohisa TAKAHASHI and Makoto AMAMIYA

Musashino Electrical Communication Laboratory
Nippon Telegraph and Telephone Public Corporation

3-9-11 Midoricho Musashino-shi Tokyo 180 Japan

Abstract

This paper proposes a new partial computation method for
functional programming languages, named the projected function
method. This method makes it possible to execute general partial
computation without the pre-binding capability. Pre-binding is
essential to the partial computation of non-strict functions in the
conventional method, but is quite difficult to implement in dataflow
machines.

This paper also presentes a new concept named a Dependency
Property Set (DPS). The DPS indicates the dependency relation
between parameters of functions and result values. This concept
plays an important role in the projected function method. An
algorithm to compute DPSs based on data flow analysis is also shown.

The projected function method has an excellent conformity with
the dataflow computation model. Therefore, this method offers
promises for realizing highly-parallel and highly-effective

functional programming machines.

Index terms: Functional programming, tabulation, dataflow analysis,

dependency analysis, reduction, normalization

~J

Introduction 19

1. Introduction

Partial computation is customizing a general program into a
more efficient program based upon its operating environment [1].
This concept is useful for pattern matching, syntax analysis,
compiler generation and so on [l1]. Functional programming languages
[2] have clean mathematical semantics, and are especially suitable
for automated partial computation., A partial computation algorithm
has been discussed for the class of recursive progfam schemata [3],
and attempts have been made to develop partial computation programs
for LISP language [4,5].

In contrast to the theoretical or interpreter based approach,
machine architecture that can execute partial computation directly
has not yet been proposed. The authors have proposed a new dataflow
computation model named Generation Bridging Operator (GBO) model,
and have provided detailed discussions on one category of the GBO
model named the Dynamic-Coloring Static-Bridging (DCSB) model [6].
Although the DCSB model has a parallel partial computation
capability, this model is limited only to the partial computation of
strict functions [6].

This paper presents a new partial computation method named the
Projected Function method. The method makes it possible to execute
general partial computation only with the restricted computational
power of the DCSB model.

The most important concept in this method is the notion of the
Dependency Property Set (DPS). The DPS indicates the dependency
Yelation between parameters of functions and result values. An
algorithm to compute DPSs based on the data flow analysis method [7]

is also presented.

198

Dependency Property Set

2. Dependency Property Set

2.1 Functional Programming Language
This sub-section introduces the functional programming language
used in this paper. This language is similar to Valid [8], and is
the same as the language used by Ono et al.[6].
The factorial function can be defined as follows:
fact = “[[n] if n==0 then 1 else n * fact(n-1) fi]
The above expression is an example of a function definition.

The identifier "fact" 1is a function name, and "n" is a formal

parameter. The right-side of the equation (i.e. "*[[n] if ...
fi]") 1is referred to as a function, and "if ... fi" is a function‘

body. The name "n" is a formal parameter. If more than one formal
parameter exists, they should be separated by a comma, and enclosed
by a square bracket such as "{pl,p2,...,pn]".

Computation is the combination of function applications and.

simplifications. A function application replaces the function name

with its body, and substitutes actual parameters for formal
parameters. Some functions are primitive and defined as axioms.
Replacing a primitive function application with its resultant value,
is called a simplification. 1In the following, infix operators such
as "+", "x" "==" gg well as "if-then-else-fi" are assumed to be
primitive,

For example, computation of fact(3) are shown.

fact (3) “[[n] if n==0 then 1 else n * fact(n-1) fi](3)

= (if 3==0 then 1 else 3 * fact(3-1) fi)
= (3 * fact(2))

= (3 * (2 * (fact(1))))

= (3 * (2 * (1 * (1))))

=6

193
Dependency Property Set

A value definition equates its left-side identifier (or a value
name) to its right-side expression., A Dblock expression is a
sequence of expressions enclosed by "{" and "}". The value of the
block expressibn is determined by a return expression in the block
expression. The order of the expressions in a block expression has
no meaning. Thérefore, in the following example, all expressions

have the same meaning :

{ y=x-1 ; z=y**2 + 2*y + 3 ; return z } (2.1)
{ z=(x-1)**2 + 2% (x-1) + 3 ; return z } ’ (2.2)
{ z=y**2 + 2*y + 3 ; y=x-1 ; return z } ©(2.3)

where the expression (2.2) can be obtained by substituting "y" in
the expression (2.1) with "x-1", and the expression (2.3) can be
obtained by transposing the first and second value definitions 1in
the expression (2.1).

Function names and value names are generically called
variables. Identifiers defined in the block expression are named

bound variables as are the formal parameters in the function body.

The scope of the value/function definitions placed in a block
expression is limited to within the block expression. This language
adopts the static binding rule, Namely, a free variable in a block
expression is bound to the formal parameter of the lexically closest
surrounding function definition or to the}function/value definition

of the lexically closest surrounding block expression [8].

2.2 Computation Rules

A computation rule determines the evaluation order when actual

parameters of a function application themselves contain other
function applications. The Parallel-Innermost Computation (PIC)
rule, and the Parallel-Outermost Computation (POC) rule are

especially important for parallel computation.

209
Dependency Property Set

The PIC rule first selects all actual parameters for
evaluation, and then, a function is applied to those parameters.
The POC rule first applies a function to unevaluated actual
parameters. These parameters are evaluated at the time their values
are actually required for expression eValuation.

Hereafter, in an analogy to the case for sequential

computation, the PIC rule 1is called call-by-value, while the POC

rule is labeled call-bv-name.

2.3 Definition of Dependency Property Set
Sections 2.3 and 2.4 provide the definitions of the DPS and
related concepts required in the following discussions. In this
paper, primitive functions are always assumed to be monotonous [9],
and call-by-name is assumed unless explicitly specified as

otherwise.

(1) Requisite parameter
Given a function "f" which takes parameters "x1", "x2", ...,
"xn", a parameter "x1" is said to be a regquisite parameter of "f",
if and only if both of the following conditions are satisfied:
(a) The function "f" is not a totally undefined function.
Namely, "f" returns a defined value for some "x1", "x2",
ceer"xn",
(b) If "x1" is undefined, "f" is always undefined for any "x2",

eeey "Xn",

(2) Strict function

A function "f" is said to be strict if and only if all of its
parameters are requisite parameters.

For example, primitive arithmetic functions ‘such as "4

(addition), "-" (subtraction), "==" (equality) etc. are strict

3 201
 pependency Property Set

functions, whereas an "if-then-else-fi" function, a parallel-or
(that returns a "true" when one of the parameters is "true" even if

some parameters are undefined) are non-strict functions.

(3) Sufficient parameter set

Given a function "f" which takes parameters "x1", "x2", ...,
"xn". A parameter set { x1, ..., xm } (m < n) of "f" is said to be
sufficient if and only if the function "f" returns a defined value
for some "x1", ..., "xm", even if the rest of parameters "xm+l" ...,
"xn" are undefined.

As can be easily shown, the union of sufficient parameter sets
is " also a sufficient parameter set, and the requisite parameter of

"f" is always included in any sufficient parameter set of "f".

(4) Minimally sufficient parameter set

Given a function "f" which takes parameters "x1", "x2", ...,
"xn", a sufficient parameter set S = { x1, ..., #m } (m < n) is said
to be minimal, if and only if there exists a case suchv that, for
some "x1", ..., "xm" where the function "f" returns a defined value,
then "f" always becomes undefined when one or more of the parameters

in "S" pbecome undefined.

(5) Dependency property set (basic idea)

A dependency property set (DPS) of a function "f" is a set

which contains all minimally sufficient parameter sets of "f" as
elements. (This definition is extended in the next sub-section.)
For example, suppose that
add_3 = “[[x,y,2] x+y+z] .
Then, all parameters are requisite parameters and a sufficient
Parameter set 1is uniquely determined as {x,y,z}. Thus, the DPS of

this function is { ({x,y,z} }. In general, the DPS of strict

202
Dependency Property Set

functions <consists of only one element that 1is a set of whole
parameters. The DPS of constant functions is { {} }, and the DPS'of
totally undefined functions is { }.

Consider the non-strict function

if_func = “[[x,y,2z] if x then y eise z £i] .
In this case, only "k" is a requisite parameter. In addition,
{x,v}, {x,z}, {x,v,2} are sufficient parameter sets, whereas {x,y},
{x,z} are minimal. Therefore, the DPS of "if_func" is { {x,y},
{x,z} }.

The intersection of all elements in the DPS of "f" is a set of
requisite parameters of "f". 1In addition, if a formal parameter "x"
of "f" is not contained in the union of all elements in the DPS of
"f", the parameter does not affect the result of "f".

For example, suppose

f = "[[x,y,z] if x>0 then x else f(x+y,y,x+z) fi]
The DPS of "f" is { {x}, {x,y} } (The algorithm to compute the DPS
will be discussed in Section 4). The intersection of all elements
in the DPS is {x}, and the union is {x,v}. Therefore, "x" 1is a

requisite parameter of "f" whereas "z" is never used in "f",

2.4 The DPSs in Functional Programming

(1) Dependency property set (general)
In the functional programming language described(in Section
2.1, the concept of the DPS should be generalized.
[Example 2-1] |
{ £="[[x,y] if x>0 then f(x-1,y+l) else g(x,y) fil;
g="[[x,y] if x==0 then y else f(-x,-y) fi] }
The DPS of "f" depends upon the DPS of "g" as well as the DPS of n"gn

itself. Following notation is used to describe the DPS of "g(x,y)":

pependency Property Set

(g {{x}} {{y}})

where "g" is a function name, and ({{x}}, {{y}} are DPSs
corresponding to the DPSs of the first and second parameters for
ng", respectively. Therefore, the DPS of "f" can be written as:
{ {x,(f {{x}} {{yIDHH}, {x,(g {{x}} {{y}D)} }
The DPS can also be defined for expressions.
[Example 2-2]
exp={x=p+q9g; y=%x * x; returny }
Then, the DPS of "x" is { {p,q} }. The DPS of a block expression is
the DPS of its return value. Therefore, the DPS of "exp" is equal
to the DPS of "y", and is equal to { {p,q} }.
Formally, the syntax of DPSs can be described as follows:

[Definition 2-1] The syntax of DPSs

DPS = { MSPS-seq }

MSPS-seq = MSPS | MSPS, MSPS-seq

MSPS = { P-seq }

P-seq =P | P, P-seq

P = value-name | function-application-form

(function-name parameter-DPS-list)
DPS | DPS parameter-DPS-1list

function-application-form
parameter-DPS-list

value-name = variable
function-name = variable
variable = IDENTIFIER

where the statement "a = x" means that "a" is defined as "x", and

the statement "a = x | y" means that "a" is defined as "x" or "y".

(2) Tagged DPS (TDPS)
The DPS is an attribute of functions and values. To explicitly
declare such relations, tagged DPSs are used.
[Definition 2-2] The syntax of TDPSs
TDPS = (function-name (formal-parameter-list) DPS) |
(value-name "EMPTY" . DPS)
formal-parameter-list formal-parameter |

formal-parameter formal-parameter- llSt
variable

formal-parameter

204
Dependency Property Set

For example, the DPS of "f" in Example 2-1 is described using ga
TDPS as follows:
(£ (xy) { {x,(f {{x}} {{yIH}, {x, (g {{x}} {{yI1H} })
Similarly, the TDPS of "x" in Example 2-2 1is
(x EMPTY { {p,q} })

The leftmost field of a TDPS is called the name of the TDPS.

(3) Dependency environment
To analyze the dependency of variables, it is desirable to
gather all the TDPSs visible in a given scope. For this purpose, a

set of TDPSs named a dependency environment (DE) is introduced.

[Definition 2-3] The syntax of dependency environments is

{ TDPS-seq }
TDPS | TDPS, TDPS-seq

DE
TDPS-seq

For example, the DE of a block in Example 2-1 is

f (£ (xy) { {x,(f£ {{x}} {{yIh)}, {x,(g {{x}} {{yI1)} }),
(9 ((xy) { {x,v}, {x,(£ {{x}} {{yIH)} }) } (2.4)
Similarly, the DE of a block in Example 2-2 is
{ (x EMPTY { {p,q} }),
(y EMPTY { {x} 1})} (2.5)

(4) Normal form of DPSs
The concept of free variables is extended to DEs. A variable

"n" of a TDPS "d" is said to be free in the DE "E" if and only if

(a) "n" does not appear in any name of the TDPSs in "E", and
(b) if "d" is a TDPS of a function, "n" does not appear in the

formal parameter list of "d".

For example, "p" and "q" in the DE (2.5) shown above are free,

whereas "x" is not free,

A TDPS "d" is said to be in a normal form in a DE "E", if and

only if

205
pependency Property Set
(a) if "d" is a TDPS of a function, the DPS of "d" contains only
formal parameters of "d" and free variables in "E".
(b) if "d" is a TDPS of a value, the DPS of "d" contains only

free variables in "E".

A DPS is said to be in the normal form in a DE "E", if and only
if its TDPS is in the normal form in "E". A DE is said to be in the
normal form, if and only if it consists of only normal-form TDPSs.

The normal forms of DEs (2.4) and (2.5) are shown below.
[Normal form of DE (2.4)]

{ (f (xy) {{xv}}), (g (xy) { {x,¥} 1)}

[Normal form of DE (2.5)]

{ (x EMPTY { {p,q} }), (y EMPTY { {p,a} }) }

The algorithm for normalizing DPSs are described in Sections 4.

3. Projected Function Method

3.1 General Partial Computation

The computation described in Section 2.1 requires that all

actual parameters be known (or bound) even though it permits some

actual parameters to remain unevaluated. Thus, it is called total

computation [1l]. 1In contrast, partial computation can proceed even
though some parameters remain unknown *). Such unknown parameters
can be bound after or during the partial computation.

A partial computation algorithm for functional programming
languages (recursive progtam schemata) has been discusséd by Ershov

[3]. The term tabulation in his paper contains both the operations

295
Projected Function.Method

specific to partial computations and a general optimization
technique known as tabulation [10]. In addition, when Ershov's
approach is used, it becomes rather complicated discussing the
limitations of a dataflow machine's computational power. Therefore,
to avoid ambiguity and to clarify present discussion, the authors
will present their own view on partial computation concepts in

functional programming.

Partial computation consists of partial applications,

pre-binding applications and partial simplifications.

(1) Partial application
Partial application stands for the application of a function to
known parameters and the computation of a function that takes the
value of the rest of the parameters (i.e. unknown parameters).
This can be achieved by currying [11] known parameters from the
function, and then applying these parameters.
For example, suppose that
f = f[[x,y] (x+1) *x + y]
If "x" is known to be 2, then a partial applicatidn is possible.
The result is as follows:
f£x = “[[x] "[ly] (x+l)*x +y 1].
)

£x(2)
= “[[x] “[ly] (x+1)*x + yl1(2)

"Iyl (2+1)*2 + yl

Take care to distinguish between "unknown" and "undefined"
variables. Unknown variables can be made known at any time by
binding values to these variables. On the contrary, undefined is a
special state of the known variables. Therefore, the undefined

variables remain undefined throughout the entire computation.

207

projected Function Method

= "[ly]l 6 + y]
The function "fx" is obtained by currying a known parameter "x" from

ngn Then, an actual parameter value 2 is applied to "fx", and the

result "[[y] 6 + yl is computed.

(2) Pre-binding application

The result of'partial applications is a function that takes
only unknown parameters. Pre-binding applications are essentially
the same as fuﬁction applications. The difference 1is that all
actual parameters are unknown in pre-binding applications.

For example, suppose that "f2" is the function defined above,

~and "u" is an unknown variable. Then,

£2(u) = “[lyl 6 + yl(u)
=6 +u
(3) Partial simplification

Partial simplification is the simplification of expressions
containing unknown variables, Partial simplifiéation has
significance for non-strict primitive functions. As an example,
suppose .

expr = (if x>0 then x else y fi) + x
and x is'known to be 2. Then,

(if 2>0 then 2 else y fi) + 2

expr

(if true then 2 else y fi) + 2
In this case, the non-strict function if-then-else-fi can be
partially simplified. The result is

2 + 2

expr

= 4

3.2 = Tabulation Technique in Partial Computation

Tabulation (in context of total computation) is a well-known

203

Projected Function Method

technique to improve the computational efficiency [10]. Tabulation
means to keep track of function applications, and to store a return
value with the function name and its actual parameters. When the
same function application is encountered, the return value can be
immediately obtained from the table instead of having to recompute
the function application.

The approach presented in this paper adopts a currying
operation, and generates functions that take only known parameters.
Therefore, tabulation techniques for total computation [10,12] can
be easily applied by storing the resultS'ofhpartial applications in
tables or lists.

For example, suppose

ack = "[[x,y] if x==0 then y+l else
if y==0 then ack(x-1,1)
else ack(x-1,ack(x,y-1)) fi £fi]

Then, "ack(0,y)" named "inc" can be computed as follows:

ackx = “[[x] "[[y] if x==0 then y+l else
if y==0 then ack(x-1,1)
else ack(x-1,ack(x,y-1)) fi £i]]
inc = ackx(0)
= “[ly] y+1]

Similarly, “aCk(l,y)" named "add" can be computed as follows:

add ackx (1)

“[[y] if y==0 then ack(0,1)
else ack(0,ack(l,y-1)) fi]

“[[y] if y==0 then ackx(0) (1)
else ackx(0) (ackx (1) (y-1)) £fi]

“[[y] if y==0 then inc(1l)
else inc(add(y-1)) £fi]

203
projected Function Method

In the above example, the results of "ackx(0)" and "ackx(l)"
arev stored in the table (may be constructed using hashing), and the
computation process of these results can be shared among other
computation of the "ack" function.

General partial computation in functional programming is
achieved by the method described in Section 3.1 in accordance with

such tabulation techniques for total computation.

3.3 Projection of Functions
(1) Projection of a function

A projection of a function “fﬁ by a parameter set "u" is a
partial computation of "f", specifying "u" as unknown parameters and
the rest of parameters as undefined.

For examples, suppose that a function "f" is defined as

£ = "[lx,y,2] e(x,y,2)]
where "e(x,y,z)" is an arbitrafy expression of "x", "y"™ and "z".
Then, a projection of "f" by {x} named "fx" is defined as

fx = "[ly,z] "[[x] e(x,y,2)]1](w,w)
where "w" (please read it "omega" in this paper) stands for an
undefined value.

Similarly, a projection of "f" by a parameter set {x,y} named
"fxyﬁ is defined as

fxy = “[lz] "[lx,y] e(x,y,2)]1] (W)

If function applications with undefined parameters appear in
the body, these functions must also be projected by the parameter
Set excluding these undefined parameters. For example, suppose

f = “[[x,y] if x>0 then x else f(x+y,y) fi] (3.1)
Then, a projection of "f" by "{x}" named "fx" is

fx

“[lyl “[[x] if x>0 then x else f(x+y,y) fi] (w)

~[[x] if x>0 then x else f(x+w,w) £i]

Projected Function Method

Since the primitive function "+" is strict, the function obtained by
projecting "+" by the first parameter is a totally undefined
function. Thus,

fx = "[[x] if x>0 then x else f(w,w) fi]
Then, a projection of "f" by {} named "fw" should be computed.

fw = “[[x,y] "I[[] if x>0 then x else f(x+y,y) fi](w,w)

“[[] if w>0 then w else f(w+w,w) £fi]

"L wol

where "W" stands for a totally undefined function. Therefore,

"

fx = "[[x] if x>0 then x else w fi] (3.2)

(2) Projection of a DPS

Given a function "f" which has the DPS "s", assume that a
function = "fa" is obtained by projecting "f" by a parameter set "a".
Then, the DPS of "fa" named "sa" can be computed from "s" and "a" as
follows: ‘

(a) If the DPS "s" is the null set, then, so is "sa".

(b) For the case where "s" has elements "ei" (i=l,..,n) (n>0),

"sa" is the set of "ei" (i=l,..,n) which satisfies the condition

ei ¢ a (i=1,..,n).

Since "sa" can be computed using only "s" and "a", "sa" is
called a projection of "s" by "a".

For example, suppose "f" is the fuhction defined in Expression
(3.1). Then, the DPS of "f" named "s" is { {x},{x,y} }. The
projection of "s" by {x} is { {x} }. This matches the DPS of "fxﬁ
defined in Expression (3.2). Similarly, the projection of "s" by
"y" is the null set, indicating that the projection of "f" by "y"
(named "fy") is a totally undefined function. This can be confirmed
as follows:

fy = "[[x] "[ly] if x>0 then x else f(x+y,y) fill (w)

oo
U
-

projected Function Method

“[ly] if w>0 then w else f(wty,y) fil]

"Iyl WOl

3.4 Restricted Class of Partial Computation
There exists a computation model which has é restricted partial
computational power. For example, the DCSB model has the following
limitations:
(1) Its computation is based on call-by-value.
(2) It cannot perform pre-binding applications.

(3) It has only restricted power on partial simplifications.

Limitation (1) can be overcome by introducing a lazy-evaluation
‘mechanism [2] into the dataflow model [13]. Limitations (2) and
(3), however, are more substantial, and are difficult to overcome.
The origin of these limitations is in the dataflow model itself. 1In
the dataflow model, computation is controled by tokens that carry
data. Normally, such data are the resultant values of previous
computation. In a lazy-evaluation context, data are either
evalﬁated values or recipes that are to be evaluated [2]. 1In any
event, tokens must reach a node to initiate computation in that
node. Nevertheless, unknown values correspond to thg state where a
token has not yet reached a node. Therefore, computation 1is not
possible for unknown values.

The limitations (2) and (3) become a serious problem when
functions to be computed are non-strict. For example, suppose

f = "[[x,y] if x > 0 then x else y fi];

e = f(x,u) + x
and "x" is known to be 2. Then,

e = f(2,u) + 2

“[Ix] “[[y] if x > 0 then x else y £fi]](2)(u) + 2

R172

Projected Function Method

= "[[y] if 2 > 0 then 2 else y fi](u) + 2
If general partial simplification is possible, the above expression
can be simplified as follows:
e = "[lyl 2](u) + 2
However, such simplification cannot be executed with the DCSB Model
[6].
If pre-binding applications are allowed, the expression "e" can
be further reduced as follows:
e =2 + 2
= 4
As shown above, the limitations of the DCSB model significantly
confine the partial computation process of programs. |
In total computation, call-by-value is widely used, even though
it has only a restricted power in contrast to call-by-name. This is
because call-by-value exhibits superior execution speed and ease of
implementation.k, Since pre-binding applications are more general in
concept than call-by-name applications, it seems reasonable to
consider the sub-class of partial computation which excludes
pre-binding applications. The following sub-section will present a

discussion of the partial computation method under this constraint.

3.5 Projected Function Method
for Restricted Partial Computation
Given a function "f" which has the DPS "s", consider the case
where "f" is partially computed by the parameter set "a". The

projected function method is then defined as the following

computation process:
(1) Compute the projection of "s" by “a",kand name it "sa".
(2) If "sa" is null, then, go to Step (5).

(3) Compute a projection of "f" by "a", and name it "fa".

213

Projected Function Method

(4) Totally apply actual values of "a" to "fa". If a defined
value 1is returned, the value 1is the result of the partial
computation. If an undefined value is explicitly returned, then
go to Step (5). |

(5) 1£ "a" contains at least one requisite parameters of "f",
then go to Step (6). Else terminate partial computation of this
function application.

(6) Partially apply actual values of "a" to "f",

(7) If the result of Step (6) contains function applications
with unknown parameters, partially apply these functions using

this method.

For example, consider the example discussed in Section 3.4.

f

“[[x,y] if x > 0 then x else y fi];

e f(x,u) + x

where "x" is known to be 2.

- The DPS of "f" is { {x},{x,y} }, and the projection by {x} 1is

{ {x} }. Since it is not null, the expression is computed as

follows:

Step (1)

Step (2)

to

a projection of "f" by {x} named "fx" is computed.

fx

“[ly] “[[x] if x > 0 then x else y fil] (w)

“[[x] if x > 0 then x else w fi]

"fx" is totally applied to a known parameter.

e fx(2) + 2

“[[x] if x > 0 then x else w £il(2) + 2

(if 2 > 0 then 2 else w £i) + 2

2 + 2
= 4
As shown above, the projected function method makes it possible

execute partial computation without pre-binding applications, at

214

Projected Function Method

the sacrifice of computational complexity. This method can also be
applied to non-strict primitives such as "if-then-else-fi",
The key idea of this method is the concept of the DPS. The

next section is devoted for discussing DPSs.

4. Data Flow Analysis for DPSs

4.1 Overview of Data Flow Analysis for DPSs

Figure 4-1 shows the outline of our approach to data flow
analysis for obtaiﬁing DPSs. The goal of the data flow analysis is
to obtain a normal form of DPSs for all functions, which consists of
the following two sub-goals. The first 1is to transform each
function into an initial DPS which is obtained through the data flow
analysis only in the function body. The second is to obtain the
normal form of DPSs by reducing the reSults of the first sub-goal
with the DE where function definitions are placed. The second
sub-goal is achieved through a stepwise reduction of DPSs, called

the DPS normalization procedure,

Data Flow Analysis for DPSs
Source Program

| -
I
v Flattening

DPS —==—rerme e e > DTSS

I

| | DPS Reduction
I \%

I DPS$

|

Normalization | !} DPS Reduction

| \%

I .

| .

| .

| | DPS Reduction
\Y \Y%

Normal Form of DPS (—-=——————————- Converged DPSS$

S$-Elimination

Fig. 4-1 Outline of Data Flow Analysis for DPS

In the DPS normalization procedure, three data structures,
namely, DPSS$, TDPS$ and DES$ are introduced corresponding to DPS,
TDPS and DE defined in Section 2.4, respectively. DPS$, which Ais
called a flat form of DPS, 1is the same as DPS except that all
function application forms in DPS are replaced with the symbol "$".
After the introduction of DPS$, it is easy to develop TDPS$ and
DES from the definitions of TDPS and DE, i.e. TDPSS and DES are the
same as TDPS and DE, respectively, except that DPS in TDPS is
replaced with DPSS, and TDPS in DE is replaced with TDPSS. Using the
above three data structures, the DPS normalization procedure can be

described as follows.

First, the normal form of each DPS is assumed to be DPS$, and
the normal form of DE is also assumed to be DES. Next, all DPSS in
DES are modified with an operation called DPS reduction which
replaces each parameter in DPS with DPS$ if TDPSS of the parameter

is in DE$. The DPS reductions for all DPS$ provide new DPS$ and DES

E)
r... 3
(=)

Data Flow Analysis for DPSs

which become the refined assumptions for normal forms of DPS and DE.
Then, all DPS$ are again modified through DPS reduction wusing DPSS$
and DES obtained by the preceding DPS reduction, Such a
modification continues until all DPS$ converge, i.e. all DPS$ do
not change by the DPS reduction. Finaly, normal forms of DPSs are

obtained by an operation called $S-elimination which removes

Minimally Sufficient Parameter Sets (MSPSs) containing the symbol

"s" from DPSS.

The algorithm of the data flow analysis for obtaining DPSs is
descfibed from the bottom up in the following sub-sections in
detail, i.e. the DPS reduction, the DPS normalization procedure and
the algorithm for transforming a source program to a normal DPS form
are described 1in Section 4.2, 4.3 and 4.4, respectively.
Furthermore, examples of the DPS computation described in Section 5

will facilitate an understanding of the algorithm.

4.2 Primitive Operators for the DPS Reduction
In this sub-section, some primitive operators for DPSs are
introduced to make it possible to define an algorithm for obtaining

DPSs in the following sub-sections.

(1) Primitive set operators

Operators + and * for DPSs provide a union and a Cartesian
product for two DPSs, respectively. For example,
{{x,y},{x},{x,2},{2}}
{{x,y,2},{x,y},{x,2},{x}}.

{{x,y},{x}} + {{x,2z},{2},{x}}
and {{x,y},{x}} * {{x,2},{2},{x}}

(2) Composite set operators

R17

Data Flow Analysis for DPSs

To facilitate an understanding a union and a Cartesian product

in a set of DPSs, operators >~ and T\ are defined as follows.

DPSi = DPS1 + > DPSj (for n > 1)

(for i=1 to n) (for j= 2 to n) ‘

= DPS1 (for n = 1)

J\ ppsi =DpSl * T\ DPSj (for n > 1)
(for i=1 to n) (for j= 2 to n)

= DPS1 (for n = 1)

(3) DPS reduction operators

In the DPS normalization procedure, DPSs are iteratively
reduced by DPé reduction, i.e. parameters in each DPS are replaced
with the DPSS$ of the parameters in DE$. Since a DPS of a function
"fn" js a set which «contains all MSPS of "f", the result of DPS
reduétion is equal to the union of the results which are obtained by
replacing parameters in each MSPS of the DPS with DPS$ of the
parameters in DES. Such a replacement is <called MSPS reduction.
Therefore, using an operator for MSPS reduction, named "reduce-m",
an operator\for DPS reduction , named "reduce", can be defined as
follows:
reduce (DPS, DES) = >? reduce-m(MSPS, DES)

(for all MSPS in DPS)

On the other hand, since a MSPS of "f" is a set of minimal
parameters with which "f" returné a defined value, the result of
'MSPS reduction is a Cartesian product of the results which are
obtained by replacing each parameter in the MSPS with DPS$ of the
parameter in DES$. Such a replacement is called parameter reduction.
Consequently, wusing an operator for parameter reduction, named
"reduce-p", "reduce-m" can be defined as follows.

reduce-m(MSPS, DES) = JAN reduce-p(parameter, DES)
(for all parameter in MSPS)

When a parameter in MSPS is "P", the operation reduce-p(P,DES)

218

Data Flow Analysis for DPSs

is informally defined according to the attribute of "P" as follows.

reduce-p(P, DES$)
= {case
{P is a formal parameter} -> {{P}};

{P is a variable name other than a formal parameter
and there exists no TDPSS of P in DES} -> {{P}l};

{P is a variable name other than a formal parameter
but there exists a TDPS$ of P, refered to as "T",
in DES} -> { return DPSS$ in "T" };

{P is function-application-form, which refers to
function "f" and there exists no TDPSS$ of "f"
in DES$} => {{P}};

{P is function-application-form with a function
name "f" and parameter-DPS-list (dl d2 ... dn).
In addition, there exists a TDPSS of "f",
referred to as "T", in DES,
where T = (f (x1 x2 ... xn) D$)}
->
{begin
{A 1list of DPS$ for actual parameters,
named "AS", is obtained by the
following operations.
AS=(al a2 ... an) and
ai=reduce (di,DES) for i=1 to n}
{All formal parameters in DPS$ of "T" are
replaced with "A$", i.e. each xi in D$§
is replaced with ai for all i =1 to n}
end}
end}

4.3 Algorithm for the DPS Normalization

It is necessary to replace variable names, which are defined in
a block expression, with their DPSs in order to reduce a DPS to its
normal form in the block. An algorithm for such a replacement is
trivial if no DPS in a block expression contains
function-application-forms. However, it requires rather complicated
data flow analysis, if function:names are mutually referenced in two
function definitions in a block expression or are cyclically
'referred in some function definitions in a block expression. 1In
this sub-section, an iterative procedure for reducing DPSs to normal

forms in block expressions is provided.

218

Data Flow Analysis for DPSs

An operation N(ENV) transforms a DE "ENV" into a new DE "NENV"
which is in a normal form, i.e. all DPSs in "NENV" contain only
formal parameters and free variables in "ENV"., Therefore, if "ENV"
contains DPSs for all functions defined in a scope, "NENV" contains
all of the DPSs which are transformed into normal forms in the
scope. The operator N is an iterative procedure which consists of

four phases as shown in Fig. 4-2.

A%
Flattening

| (mmmmmmmm e

PHASE 1

l
DPS Reduction |
] | Not Converge.
\% l
Convergence Check --
|
| All DPS$ converge.
v
$-Elimination
|
v
Normalized DE

PHASE 2

PHASE 3

PHASE 4

Fig. 4-2 DPS Normalization Procedure

Functions of the four phases in the procedure are described as

follows.
[Algorithm of DPS Normalization Operator N]

PHASE 1 -- Initialize Iteration : Flattening --
All DPSs in the input DE "ENV" are transformed into DPSSs, called
the flat form, i.e. all function-application-forms in each DPS
are replaced with the symbol "$". 1In addition, TDPS$S and DES

"ENVS" are constructed using DPS$. Then, PHASE 2 is activated.

PHASE 2 -- DPS Reduction --

PRV
Data Flow Analysis for DPSs

Each DPS in "ENV" is reduced using "ENV$", resulting in a
TDPSS. The TDPSSs for all DPSs constitute a new DES named
"NENVS$". The reduction proceeds as follows:

(1) A TDPS "t" is chosen from "ENV" for the DPS reduction, where
the name of "t" and the DPS in "t" are referred to as "n" and
"qr, réspectively.

(2) A,new DPS$ "nd$" for "n" is obtained by DPS reduction, 1i.e.
nds=reduce (d,ENVS) . 7

(3) The TDPSS with the name "n" is chosen from "ENVS" and is
referred to as "t$", A DPSS of "t$", named "d$", is also chosen.
(4) "ts" is set to be in the "CONVERGE" status if nds$=ds.

Otherwise, it is set to be in the "TEMPORARY" status.
When all DPSs in "ENV" are reduced, PHASE 3 is activated.

PHASE 3 -- Check End of Iteration : Convergence Check --
If all TDPSS in "NEVNS" converge, 1i.e. if no TDPSS in
"NENVS" is in "TEMPORARY" status, the iteration is terminated and
PHASE 4 is activated. Otherwise, PHASE 2 is activated to further

reduce DPSs, using "NENVS$" as a new "ENVS".

PHASE 4 -- $-Elimination --
An MSPS in each TDPSS$ in "NENVS" is eliminated if the MSPS
contains the symbol "s". The results of the elimination

constitute a normal form of "ENV".

4.4 Algorithm for Obtaining Normalized DPSs
In this sub-section, an algorithm for obtaining normalized DPSs
is described by means of set-operators for DPSs and a DPS
normalization operator introduced in the previous sub-sections.

According to an attribute of an input expression defined in Valid

)
pata Flow Analysis for DPSs R21

gyntax [8] , an operator, named D, transforms the expression in a
program into the normal form of the expression's DPS. The algorithm

of the operator D is informally defined as follows.'>

p(e) =
{ case
free-variable~name -> {{e}l};

local-defined-variable-name -> D(value-definition of e);

strict-primitive-function-application -> JAN D(ei);
(for all operand
expressions ei in e)

if-then-else-£fi ->
D(predicate—expression) * D(then-part-expression)
+ D(predicate-expression) * D(else-part-expression);

value-definition -> D(defined-expression);
function-definition -> D(defined-function-body) ;

non-primitive-function-application
-> {{(function-name D(argl) D(arg2) ... D(arg-n))}};

block-expression ->

{begin
{ Transform the return expression of this block-expression

to the value definition with a unique name.
Suppose the name is "&r". _
{ As the results that the operator D is applied to
each variable definition in the block, a DE "ENV"
in the block expression is created. }
{ The "ENV" is transformed into its normal form "NENV"
by NENV=N(ENV). }
{ A DPS in the TDPS with the value~name "&r" is returned. }
end}
end}

The algorithm for obtaining normalized DPSs described in this
Section has been implemented using TAO-Lisp [14] under VAX/VMS. The
Program consists of about 600 lines, and the execution results of

the program for several examples are shown in the next section.

Examples of the DPS Computation

5. Examples of the DPS Computation

This section provides examples of DPS computation wusing the
algorithm presented in Section 4. Examples are ordered in

complexity.

5.1 Simple Expressions
The first example 1is a block expression without function
definitions.
[Program 1]
{ a=x*y; b=x+z;’x=g*h; y=x*g; z=r+s; return a }
Processed Block ::
{ a=x*y; b=x+z; x=g*h; y=x*g; z=r+s; return a }
Dependency Property Set of the Block ::
{ {g,h} }
Thus, the result of this block expression is defined by the

free variables "g" and "h", although "r" and "s" are also free.

5.2 Function Application
[Program 2]
f="[[k,u] if u==0 then 0 else f(k+1l,u-1) fi]
Notice that this program is equivalent to
f="[[k,u] if u>0 then 0 else w fi] .
Processed Block ::
if u==0 then 0 else f(k+l,u-1) fi
Dependency Propérty Set of the Block ::
{ {u}, {u, (£ {{k}} {{ul})} }
Initial DPSs of functions in the surrounding block
FUNC f(k,u) : Initial DPS = { {u}, {u,(f {{k}} {{u}})} }

<< Iterative Procedure >>

RRS
gxamples of the DPS Computation

STEP : 0 TEMPORARY status : {f}

FUNC £(k,u) : DPS = { {u} }

STEP : 1 CONVERGE status : {f}

FUNC f(k,u) : DPS { {ul }
-—- End of Iteration ---
pependency Property Set of the Block ::
FUNC f(k,u) : DPS = { {u} }
Therefore, the result of "f" in Program 2 is determined by

the second parameter only.

5.3 Mutual Recursion

[Program 3]

{ £="[[x,y] if x>0 then f(x-1,y+l) else g(x,y) fil;
g="[[x,y] if x==0 then y else f(-x,-y) £fi] }

This program is equivalent to f="[Ix,y]lx+y].
Processed Block
if x>0 then f(x-1,y+l) else g(x,y) fi
Dependency Property Set of the Block ::
{ {x, (£ {{x}} {{yID)}, {x,(g {{x}} {{yiD} }
Processed Block ’
if x==0 then y else f(-x,-y) fi
Dependency Property Set of the Block ::
{ {x,y}, {x, (£ {{x}} {{yI} }
Initial DPSs of functions in the surrounding block
FUNC f(x,y) : Initial DPS = { {x,(f {{x}} {{y}})
{x,(g {{x}} {{y}})
FUNC g(x,y) : Initial DPS = { {x,y}, {x,(f {{x}}

b
b}
{{y}h} }

Initial DPSs are assumed to be $.
<< Iterative Procedure >>
STEP : 0 TEMPORARY status : {f,g}

FUNC f(x,y) : DPS = { {$,x} }

224

Examples of the DPS Computation

FUNC g(x,y) : DPS = { {$,x}, {x,y} }

STEP : 1 TEMPORARY status : {f}

X3

DPS = { {S$,x}, {x,y} }

{9}
FUNC g(x,y) : DPS = { {$,x}, {x,v} }

FUNC f(x,y)

CONVERGE status

STEP : 2 CONVERGE status : {f,g}
FUNC f(x,y) : DPS = { {$,x}, {x,v} }
{$,x}, {x,y} 1}

1
~—

FUNC g(x,y) : DPS

--- End of Iteration ---

Dependency Property Set of the Block ::
{ {x,v}}
{ {x,y}}

FUNC f(x,y) : DPS

FUNC g(x,y) : DPS

Program 3 is an example in which the conventional maximal fixed
point solution approach [7] yields an incorrect solution. The
computation based on this approach is shown.

Initial DPSs are assumed to be null.

<< Iterative Procedure >>

STEP : 0 TEMPORARY status : {f,g}
FUNC f(x,y) : DPS = { {x} }
FUNC g(x,y) : DPS = { {x}, {x,y} }

STEP : 1 TEMPORARY status : {f}

FUNC f(x,y) : DPS { {x}, {x,y} }

CONVERGE status : {g}

FUNC g(x,y) : DPS { {x}, {x,v} }
STEP : 2 CONVERGE status : {f,qg}
{ {x}, {Xry} }

{ {x}, {x,y}}

FUNC f(x,y) : DPS

FUNC g(x,y) : DPS
--- End of Iteration ---

Dependency Property Set of the Block ::

223
gxamples of the DPS Computation

]

{ {x}, {x,¥} }
{ {x}, {x,y} }

Since "x+y" cannot be evaluatedfwithout "y", it is incorrect to

FUNC f(x,y) : DPS

1]

FUNC g(x,y) : DPS
include a parameter set {x} in the DPS of "f",

5.4 Nested Function Applications
[Program 4]
{ £ = "[[k,u] if u==0 then 0 else f(k,f(u,k-1)) fi }
processed Block
if u==0 then 0 else f(k,f(u,k-1)) fi
Dependency Property Set of the Block
{ {u}, {u, (£ {{k}} {{ (£ {{u}} {{k}}) }})} }
Initial DPSs of functions in the surrounding block
FUNC f(k,u) : Initial DPS
= { {u}, {u, (£ {{k}} {{ (£ {{u}} {{k}}) }})} }
<< Iterative Procedure >>
STEP : O TEMPORARY status : {f}
{ {u} }

FUNC f(k,u) : DPS

STEP ¢ 1 TEMPORARY status : {f}

n

FUNC f£(k,u) : DPS { {u}, {k,ul }

STEP : 2 CONVERGE status : {f}

]

FUNC f(k,u) : DPS { {u}, {k,u} }
--- End of Iteration ---
Dependency Property Set of the Block ::

FUNC f(k,u) : DPS = { {u}, {k,u} }

5.5 Nested Block Expressions
[Program 5]

{ £="[I[x,y]
{ g ="[la,b] a+a]; k = g(x,y)+x; return k+x }] }

R26
Examples of the DPS Computation

Processed Block ::

{ g = "[la,b] a+al; k = g(x,y)+x; return k+x }

Processed Block ::
at+a
Dependency Property Set of the Block ::
{ {a} }
Initial DPSs of functions in the surrounding block
FUNC g(a,b) : Initial DPS = { {a} }
<< Iterative Procedure >>

STEP : 0 TEMPORARY status : {g}

FUNC g(a,b) : DPS = { {a} }
STEP : 1 CONVERGE status : {g}
FUNC g(a,b) : DPS = { {a} }

-—-—- End of Iteration ---
Dependency Property Set of the Block ::

FUNC g(a,b) : DPS = { {a} }

Dependency Property Set of the Block :{
{ {x}}
Initial DPSs of functions in the surrounding block
FUNC f£(x,y) : Initial DPS = { {x} }
<< Iterative Procedure >>

STEP : 0 TEMPORARY status : {f,g}

FUNC f(x,y) : DPS = { {x} }
FUNC g(a,b) : DPS = { {a} }.

STEP : 1 CONVERGE status : {g}
| FUNC f(x,y) : DPS = { {x} }

FUNC g(a,b) : DPS { {a} }
-—— End of Iterationh———

Dependency Property Set of the Block ::

gxamples of the DPS Computation

DPS = { {x} }
{ {a} }

As shown above, DPSs of nested block expressions are evaluated

FUNC f (x,Y)

DPS

FUNC g(a,b)

from the inner to the outer one.

6. Conclusion

This paper has proposed a new partial computation method for
functional programming languages, called the projected function
method. This method makes it possible to execute general partial
computation without the pre-binding capability that is essential to
the partial computation of non-strict functions in the conventional
method.

This paper has also presented a new concept called Dependency
Property Set (DPS). The DPS indicates the dependency relation
between function parameters and resultant values. The DPS concept
plays an important role in the projected function method. An
algorithm for computing DPSs based on the data flow analysis method
is also shown.

In spite of 1its clearness, the most serious problem 1in
functional programming has been computational inefficiency compared
with side-effect based programming. Since partial computation
enables intensive program optimization and computation sharing in
fully automatic way, significant computation reduction is possible.
The computational power required for the projected function method
is same as the computational power of the DCSB model. Therefore,

”this method in conjunction with the DCSB model offers a way to

225
Conclusion

realize highly-parallel and highly-effective functional programming

machines.

Acknowledgements

The authors would like to thank Dr. Noriyoshi Kuroyanagi,
Director of the Communication Principles Research Division at
Musashino Electrical Laboratory for his constant guidance and
encouragement. They also wish to thank the members of‘the dataflow
system research group in the Communication Principles Research

Section 2 for their thoughtful discussions and comments.

References

1. Futamura,Y. Partial Computation of Programs, Proc. 4th RIMS
Symposia on Software Science and Engineering, Lecture Notes in
Computer Science No.147, Springer-Verlag, (1983), 1-35

2. Henderson,P. Functional Programming / Application and
Implementation, Prentice-Hall, (1980)

3. Ershov,A.P. Mixed Computation in the Class of Recursive Program
Schemata, Acta Cyberneticca, Tom.4, Fosc.l, Szeged, (1978),
19-23 |

4, Beckman,L.,, et al. A Partial Evaluator and its Use as a

Programming Tool, Artificial Intelligence 7, (1976), 319-357

2235

References

5.

Kahn,K. A partial evaluator of Lisp written in a Prolog written
in Lisp intended to be applied to the Prolog and itself which in
turn is intended to be given to itself together with the Prolog
to produce a Prolog compiler, UPMAIL, Dept. Computer Science,
Uppsala Univ., (1982)

Ono,S., Takahashi,N. and Amamiya,M. Partial Computation with a

‘Dataflow Machine, Proc, 5th RIMS Symposia on Mathematical

Methods in Software Science and Engineering, RIMS Kyoto Univ.
(1984), 169-203
Kam,J.B. and Ullman,Jd.D. Global Data Flow Analysis and

Iterative Algorithms, JACM 23, (1978), 158-171

~Amamiya,M., Hasegawa,R. and Ono,S. Valid, A High-Level

. Functional Programming Language for Data Flow Machines, Rev.

10.
11.

12.

13.

14.

ECL 32, NTT, (To appear)

Manna, Z. Mathematical Theory of Computation, McGRAW-HILL,
(1974)

Bird,R.S. Tabulation Techniques for Recursive Programs, ACM
Computing Surveys 12, (1980), 403~-417

Turner,D.A. A New Implementation Technique for Applicative
Language, Software - Practice and Experience 9, (1979), 31-49
Keller,R.M. and Sleep,M.R. Applicative Caching: Programmer
Control of Object Sharing and Lifetime 1in Distributed
Implementations of Applicative Languages, Proc. Conference on
functional programming and computer architecture, ACM, (1981),
131-140

Amamiya,M. and Hasegawa,R. Dataflow Computing and Eager and
Lazy Evaluations, New Generation Computing 2, (1984), 105-129
Umemura,K. TAO-Lisp: Portable Lisp System written in Pascal,

Proc. 27th Annual Conference of IPSJ, (in Japanese), (1983),

-409-410

