goooboooogn
O 5470 19850 230-267

230

Comparison of closure reduction and

combinatory reduction schemes

Tetsuo Ida + and Akihiko Konagaya §
t+ Riken: Institute of Physical and Chemical Research

1 C & C Systems Research Laboratories, NEC Corporation

This work is partly based on the activities of WG. 5 of Fifth Generation Computer
Project of ICOT.

The work is also supported by the Grant in Aid of Ministry of Education and
Culture, No. 59580027.

Authors’® addresses: T. Ida, Institute of Physical and Chemical Research,

2-1, Hirosawa, Wako-shi, 351-01, Japan, ‘

Akihiko Konagaya, C & C Systems Research Laboratories, NEC Corporation

1-1, Miyazaki, 4-chome, Miyamae-ku, kawasaki, Kanagawa, 213, Japan

231
Abstract

We‘_analyze the efficiencies of closure reduction and combinatory reduction schemes
by introducing a labelled iree representing a A-term. Translation of a A-term into
combinatory terms, 1i.e. bracket abstraction, can be viewed as attaching labels S,
B, C, K, I to each node. Similarly, a node of a tree representing a A-term can be
labelled depending upon the presence of free variables in the subtrees. Resulting
labelled trees which represent a A-term and the translated combinatory term are
made similar, i.e. whose underlying trees are the same. We can then make perform-
ance comparisons in terms of the cost involved in traversing the labelled trees by
machine models reflecting the essential behaviors of Turner’s combinatory reducer
and a closure reducer. Our work is an elaboration of Turner’'s and Peyton Jones’es
experiments of combinatory reductions. However, our approach is not to resort to
actual runs of programs, but is more theoretical based on abstract machine models
working on labelled trees. Our conclusion of the performance comparisons is thet a
cloeure reducer is in most cases more efficient than combinatory reducers in terms
of storage consumption which is a dominant factor in determining the overall
performance of the reducers. Furthermore, we show that the two reducers which seem
quite different at first sight is in fact very similar and with small modifications

the two schemes become essentially the same.

Keywords and phrases: {-calculus, combinatory logic, functional programming,

reduction machine

CR Categories: C.1.3, D.1.1, F.1.1, F.4.1, F.2

1. Introduction
This paper is an attempt to attain unified understanding of the behaviors of the
two known machine-implemented reduction schemes of A-calculus; closure reduction

and combinatory reduction.

In [10] , Turner presented a new technique of implementing functional programs
using combinators. Turner’s scheme consists in compiling functional programs into a
sequence composed of combinators and constants that are represented internally as a
graph, and reducing the graph into a normal form by the leftmost reduction stra-
tegy.r Efficiency comparisons are described in [10] in terms of the number of
consumed cells and the number of reduction steps in the graph reduction system and
SECD machine [8] . Later Peyton Jones gathered the statistiés of timings of
various program runs on both the combinatory graph reduction system (to be called
combinatory reducer) and the R—calculﬁs reduction system (to be called &-reducer)
[9] . In this paper, we investigate the efficiency of the schemes with the view to
elaborating the results of the efficiency comparisons made by Turner and Peyton
Jones, and further show that both reducers can be made to become thg same reducer

(which we will call a labelled tree reducer) by successive improvements,

Given a functional program, we have three alternatives for its execution following
the previous works as above;
(1) to translate it into a A-term and directly interpret

the R—term by the A-reducer,

(This scheme is to be called closure reduction for the reasons

to be described in section 2.)
(2) to translate it into combinators, and interpret the combinatory expression

by the combinatory reducer, ‘

(3) to translate it into SECD-like machine code and interpret the code

by that machine.

Measuring the timings of runs on the three abstract machines (simulated by the same

real machine) is one way of comparing the efficiencies. However, care has to be

233

taken lest that any peculiarity of the real machine might squeeze into the perform-
ances of the simulated machines. We first ask ourselves vwhether one machine sub-

sumes the other in some fundamental way.

Therefore we start our investigation by presenting a model of computation at a
A-term level, and elaborate the model into a machine model which is similar to the
SECD machine. In this process we attempt to ’form a clear view of underlying
machines for A-calculus and to give intﬁitive and convincingiarguments to the
efficiency comparisons. In this paper we limit our considerations to machine models
that are essentially of von Neumann type; it consists of a single processor and
random access memory. The processor is to execute the various reduction strategies
such as R-calculus leftmost reduction. The memory is organized as heap and stacks;
the'heap for storing the tree representation of the terms, and stacks for storing
temporary operands and control information. Finally, some examples of comparisons

are given.

2. A-calculus and machine models
We list preliminary notions below. For full exposition of A-calculus and combina-
tory systems, readers are referred to [1]
Programs are a sequence of terms', e.g. ((..MM2) .. WM,)
A-terms are either constants, variables, or functions denoted as Ax.M,
where M is a term and x is a variable.
A variable occurrence immediately after A is called a A-variable.
A pair of terms is called an application.
Function with n arguments xi,.., x, is represented ' as Axy..x,.M.
Assume M does not contain A, then x(,..,x, which appear in M
is called "bound” by R, otherwise "free”.
foot note

+ We use following short hand notation: - MiM>. .M, for ((..MM2)..)M,) and
Rxt..xn.M for Rxy. Raz. (.. (Rx M)..)) .
“We omit A" whenever context permits us to infer.

Machine LO

234
A-terms are reduced successively to a no longer reducible form called a normal form
by applying following reduction rules:
(1) substitution rule (B8-rule):
(Ax.M)a — M [x:=a] where M [x:=a] = is the result of substituting a for every free
occurrence of x in M.
@) &-rules: |
kMiMo. M, — L. where k is a constant called é6-constant. L is the result of the
reduction (&-reduction) specified by k on My, M> ,.., M,. The reduction associated
with "k is given a priori. d-rules are built into the system to make certain opera-
tions on terms as primitive, e.g. + in + m n — m+tn . We assume that the binary

relation & induced by é-rule satisfies Church-Rosser property.

Observations I
In the realizatidn of fB-rule, the literal substitution on von Neumann type
computers is expensive, since it entails copying of the term to be substituted.
Finding every occurrence of variables at the substitution time is also time-
consuming.

The literal substitution may cause variable name clashes.

Therefore, we use a pointer to term a instead of the term itself, and simply
‘establish the correspondence between the value (pointer) and the variable. We delay
the actual substitution until the variables are referenced. To enable the delayed
substitution, we use an enviromment list consisting of the (dotted) pairs of a
variable name and the corresponding value, i.e. substituted term. Therefore,
M [x:=a]l 1is actually represented as a pair of the term and the environment, i.e.
[M,8 . Here, [, 1 1is called closure, and & in this case is ({(x.a).8&’) where &’
is the environment before the substitution. The variable name clash can be avoided
if a search for a variable in the environment list is made consistently from the

head to the tail of the list.

Given term MiM>..M, , Machine LO reduces thé term by finding the leftmost reducible

application (reducible application is called redex). It can be shown that the

235

leftmost reduction strategy is normalizing (i.e. the normal form, if exists, is
reached by repeated application of the reduction rules to the leftmost redex) [P.
321, 1] . This normalizing property is one of the reasons. why recent functional
programming systems [e.g. B, 1] adopt the leftmost reduction strategy despite the
added compléxity (and possible degradation of efficiency) compared with the lan-
guages with the applicative order reduction strategy. We assume that. term

((..(MiM2)..)M,) 1is represented as a binary tree (or tree for short) (see Fig. 1).

The machine is equipped with a reduction stack and heap storage. The leftmost
reduction strategy is implemented on machine LO by the following algorithm p;:
(Implicit in this algorithm is the presence of control stack which is necessary to

implement the recursive algorithm below).

Leftmost & reduction algorithm p;
Initial input‘ to p; is term, & and an empty reduction stack, where term is a

program to be reduced, and &, is an initial environment.

pr M, &,stack) =

let stack=<sy,..,sp> or < i.e. empty
(1) M is atomic’
if M is a terminal objectf2
then resultis®3

M when stack is empty
Mpi (st, O newstack OF). .p1(sa, (), newstack ()) othervise

else if M is &%
then resultis
Msis2..s, vhen n is less than the number of the terms

required in this 6-reduction
p:(w, &, stack’) othervise

where w is the result of the é-reduction, i.e.
w = M(sj,...s;)8.
and stack’ (=<s;.+1,..,S>) is the stack after the reduction.
else let w = px(lookup*7(8,M),(},newstack())
update’® environment & with (M.w)
resultis p; (w,8&,stack)
(2) M is of the form Ax.body
resultis

M when stack is empty
pi (body, ({x.s51).8),<s82,S3,..,S>) othervise

(3) M is closure
let M= IM,8]
resultis py M ,8& ,stack)
(4 M is MM> (i.e. application)

236
resultis p; M,8,< [M2,8] ,s1,S2,..,5>)

note: .

t Type atomic is given a priori; number, a sequence of characters, e.g. abcd, and
structured data, e.g. list are atomic.

*2 An atom is a terminal object if it is non-variable and not §&.

¥3 "resultis exp” means that this algorithm terminates with exp as a result.

¥ newstack () creates a new stack. ‘

¥5 A symbol is & if it is associated with a reduction rule, i.e. &-rule.

6 Functional notation for M indicates that M is an externally given function. The
order of reductions of 1 arguments are left to the semantics of M.

7 lookup searches for the bounded pair M, |M1) in the environment list from left
and returns |M| if such a pair exists.

8 "update environment & with (M.w)” implies the replacement of the bounded pair
QV.|M!) (first from left) in & by (M.w), where |M| is a term formerly bound to
M. That is, &=(...(M.|M|)....) > &=(..Mw).....)

Algorithm p; shows that the objects it handles are closures rather than A-terms.
Hence; we call this A-reduction system closure reduction system (or closure reducer
for short). The machine traverses the tree that represents the term leftwards from
top to bottom, pushing the closures of the subtrees on the reduction stack (cf.
Fig. 2). When a bottom, presumably some &-constant, is reached, the machine reduces
necessary number of operands which are on the reduction stack and the &-rule is

applied.

A note to the implementation of algorithm p;

(1) For clarity of the presentation, a closure is formed when it is stacked onto
the reduction stack.

(ii) We can avoid the unnecessary formation of closures, if we realize a stack that
consists of two fields; one is for storing a term, and the other for an environ-
ment.

(1i1) The parameter binding in f-reduction (cf. case (2) in algorithm p;) can be
extended to allow for the simultaneous binding of variables to the values on the
stack. That is, the execution of pg([&i%.M,&] ,<S1,..,Sp>) results in

pr (M, ({(xn.Sn).. (x1.51).8)] ,<Spst,..,Sa>) When m=n, or

p1(LRapet. . Xa .M, ((Zn.Su).. (x1.51).8)) ,<) when m<n.

From now on, we assume algorithm p; is modified as above.

(iv) Turner’s system employs a graph to represent a term. A graph is constructed

237
because a recursion function is realized by a circular pointer to the term defining
the function. The graph is converted to a tree by cutting the circular link to the
function and by letting the pointer to point to an atom of the function name which
is outside the world of our discourse, and hehce is regarded as a constant. (cf.

Fig. 3)

Observations II

Forming a closure with the current environment in each push of terms
M., Mp-1, .., M> onto the stack may be superfluous since the stacked environment
may not be used. Imagine the case that M; is a constant. Even if the improve-
ments of (i) and (ii) are made, the push of an environment onto the stack is
superfluous in the cases that terms do not need an enviromment.

Whether a particular term M; needs the environment for its reduction can be
determined beforehand. Simply check the presence of the variable that are free

in Mi .

Therefore, we elaborate machine 1O into L1 by introducing a tag in each node.
The types of tags are following:

s to denote that the right énd left subtrees need an environment.

b to denote that only the right subtree needs an environment.

¢ to denote that only the left subtree needs an environment.

See Fig. 4.

Machine L1 and algorithm p’;

Machine L1 checks the tag stored in each node and the closure is formed on the
basis of the comparison. Either the subtree itself or the closure are stacked
during the traversal of the tree. The rest of the workings are the same as machine
[0. The reduction algorithm p; is modified to process a tagged tree, The modified

algorithm is called p’;. It is further developed into algorithm pc; in section 7.

Claim I

Machine L1 is more efficient than LO. The underlying assumption in this claim is

238

that forming a closure is more expensive than providing the tag bits and checking

the node in the traversal.

3. Combinatory system and machine models

Combinators are defined as terms without free variables. We consider following
combinators most important from practical point of view, S = Rxyz.xz(yz), K

=xy.x, B =dxyz.x(uz), C =Axyz.xzy and I =Ax.x.

We recapitulate the method for translating terms to combinators. [10, 3]
Let the term to be translated be Ax.M. We eliminate x using the following
algorithm.
Case 1: M is a single -symbol
M=x I
M=x KM
Case 2: Othervise, let M = MiMo
x ¢€N; and x¢No KWMIN2)
xeN; means that N; contains free occurrences of x.
Likewise x¢N; is defined to the contrary.
xeN; and x ¢No CNiN2

where the term with ~ is the translated term by this algorithm.

xeN; and x N> BN N>
xeN; and x N> SNiNo

In the case of an n-variate term, Ax(..x,.M, recursively apply the above algorithm

starting with Ax,.M.

Machine CO (Turner’s combinatory reduction machine)

Machine CO reduces the translated combinatory terms using the leftmost redﬁction
strategy. The combinatory terms are represented in the same way as K—tefms. [10]
described in detail the reduction algorithm. ‘

Essentially, the reduction is performed in two phases; first remove the combinators
by copying the nodes and distributing the arguments to proper places (distribution

phase), ~and then reduce the constructed subtree by 8-rules (reduction phase). This

239

reduction is performed bottom-up. It is instructive to note the similarity between
the closure constructed in p; (and p’;) and the subtree constructed immediately
after the removal of combinators. The picture will become clear as we introduce a

r-labelled tree.

4. r-labelled tree and labelled reducers
A I-labelled tree is a tree where at each node (both terminal and non-terminal) of
a labelled tree a sequence of symbols in the set L can be attached as a label. A

distinguished symbol £ is used to denote an emptyrsequencé.

A tree in Fig. 4a is a {Ax}-labelled tree. (We simple call it {&}-labelled tree.)
From {i}-labelled tree, we construct a {S, K, I}-labelled tree using following

equations. We consider first a single variable case.

Ax MiMo = S{Ax.My) (Rx . M2) 1)
AxM = T if M=x @)
Ax.M = KM if M is an atom other than x 3)

Translating the term of the lefthand side of the equations to the righthand side
and regafding combinators as a label, we obtain a {S, K, I, A&}-labelled tree.
Figure 4b shows a {S, K, I, &}-labelled tree constructed from a A-term tree.
Variable names bound by & are entirely eliminated by the repeated application of

the above rules. Eventually we get {S, K, I}-labelled tree. (cf. Fig. 4c)

The leaf nodes of the {S, K, I}-labelled tree are either labelled as I or K. The
I-labelled nodes are empty, and K-labelled nodes have a constant. For technical
reasons (such as enumeration of leaves, or debugging), instead of an empty
I-labelled node, we use an I'-labelled node in which a variable name to be elimi-
nated in Turner's translation scheme is retained.

That is, Ax;.M is translated to I'x; when M=x; and the corresponding reductioh
rule is I'x;a — a . Here the variable is now regarded as a constant. Mostly in our

discussion the presence of the variables is ignored, however.

249
In the case that one of M; and M> does not have free occurrences of variable x, we
have the following:

x € My Ax.MiMe BMi (Rx . M2) - 4)

x € M Ax.MiMo CAx .M Mo &)

B and C make more optimized reduction possible, as we see in the following reduc-

tion algorithm p¢.

We novw extend the labelled tree construction to the case of an n-variate A-term. We
first consider the following lemma. |
Lemma 1
A2 MiM2=8" "8 (AT . My) (R2 . M2) ®)
Here we use the following notation:
S ™M= S’ (S'™'M), and S'°M= M for any M,
where S° is defined as Akxyz .k (xz) (yz). \
Proof': By systematic renaming of variables we rewrite KE%.AA&& as
At,.My Mo =21t,..t .M .M> and prove
A MiM=S"™ 1St .M) (AT, M)
Induction on n.
When n=1, obvious from equation (1).
KG M= . (et HiR) |
Atn. (8" ZS(RTnet .My) (RTne1 Mo))= 8" (S"™28) (Aty. (@;—1 M) @tn. Rty M)

1t

S ISRt M) (Rt M) , O

We have a label S'™!S at the root node of the tree Ax,.MiM> . We can genefate
‘optimized’ labels using B’ (=ikxyz.kx(yz)) or C’(Ekkxyz.k(xz)y) instead of S’
depending upon the presence of a free occurrence of a variable’to be eliminated in
the subtrees. That is; we have, for example,

AT MMp=S" (B’S"™38) (Ax123. . . xn .My) (R2y.M2) when x2 €M

and

RTn . MiM2=S" (C"8'™38) (RTn .M) (RT1X3. . .%n. M) when x2 €M

In the label, a prime of the combinator is omitted since by the way of the genera-

241
tion of combinators in labels all the combinators in the sequence except for the

rightmost one are always with a prime. Hereafter all the combinators with a prime

are treated as if ones without a prime.

Machine C1 (I-labelled combinatory reducer)

Machine Cl1 reduces the I-labelled tree by the leftmost reduction. We use L = {S, B,

C,'K, I} and Algorithm p; below for reduction.

Algorithm p¢

pc{t,stack) =
/% 1t is initially a tree (later modified to a graph) to be reduced.
stack is either empty or <ty,t2,..,t,> where t; is a subgraph so far stacked. */
if t is atom
then if t is a terminal object
then return

t when stack is empty
toc (ty,newstack ()),..,pc(tn,newstack ()) when stack is<t{,tz,..,t,>

else /x t is & */

return
{ ttite..t, when n is less than the number of the terms

required in this &-reduction
pc(w,stack’) otherwise

where w is the result of the &-reduction
i.e. w=t(ty,...,t;) (cf. note t6 in Algorithm p;)
and stack’ (=<t;.1,..,t;>) is the sitack after the reduction.
else ’ ‘
let L,l,r be the label, left, right subgraphs of graph t, respectively.
/% In the case of a terminal node only the left subgraph field is used *x/
if L of t is ¢
then return pc(l of t, <t,t1,..,t>)
else
if stack is empty then return t
else
let label of t is Xi..X,
d)Xxy =8
l of t; « newnode’ X2..X,, 1 of t, v of t;)
rof ti <« newnode(X2..X,, r of t, r of 1)
return pc(l of t, <(l of ty), t2, .., t>)
@)Xy =B
rof t;y <« newnodeXo..X,, r of t, r of 1)
I of t ~ loft
return pc(l of t, <ti,tz,..,t>)
4) X =¢C
Il of | « newnode (X2..X,, L of t, r of ty)
rof t{ <« rof t

return pc(l of t, <(l of t;), t2, ..,t>)
®) X =K :
lof tf « lof t
return pc(ty, <tz, .., t>)
® Xy =1 ’

return pc(l of ty, <t2, .., t>)

note

Now an intuitive interpretation of the working of algorithm pc is due.

Let Tc be a labelled tree corresponding to the combinatory term translated from
Axi..xn.M. When Ax;..x,.M is applied to some term aj, algorithm pr distributes g
to the leaves where x; is stored (the node with label I’ and the constant x;) using
the first combinator of the labels on the distribution path as a directive [6]
On its way to the destination, pc constructs a subtree. (Since a subtree is shared
by other subtrees, the resulting structure is in fact a acyclic graph.) On return
from the leaf, pc reduces the subgraph (by &-rule) if possible. Let the resulting
tree be T}. Similarly, x; 1is distributed to the leaves of x; in TE! for j =

2,3, .., n.

Assume that the cost of the provision of a label in each node and the check of the

label at the reduction time is lower than that of Turner’s system.

Claim II: With proper hardware support which makes the above assumption valid,

machine C1 with X={S, B, C, K, I} is faster than machine CO.

It is clear that a machine with X = {S, B, C, K, I} is more efficient than a
machine with £ = {S, K, I} since the former makes use of the prior knowledge of the
presence of the occurrences of free variables in the subtrees, and does not con-

struct redundant nodes.

With the same hardware arrangement for the A-term representation we can realize
machine L1 as a {i,s,b,c,/7}-labelled tree reducer, where /7 1is a label for a
closure. Note the correspondences of the roles of s and S, b and B, and ¢ and C in

machines .1 and C1.

5. Initial comparison of A-reducers and closure reducers

We are ready to make a comparison between machines L1 and C1. We first give a data

243

structure for a labelled tree. A cell 1is a structure which consists of three
fields; label\field, l field, and r field. In ! and r fields, a pointer to the left
subtree and a pointer to the right subtree are stored, respectively. For the label
of the node at most nlogz|L| bits are needed to accommodate a label, where n is the
number of A-variables in the original term ix,.M and |Z| is the cardinality of the
L. We assume a fixed bit field for the label‘in the following' treatment. Because
the bit requirement for the label does not increase during the reduction, this
assumption does not affect the validity of the following analysis. A cell can also
accommodate a dotted pair and a closure; in the former case the label field is not
used, and in the latter case ! field contains a pointer to a subtree, r field an

environment and label field is marked as /7 :

Let T; be a tree of the {A}-labelled tree and T¢ be a corresponding translated (S,

B, C, K, I}-labelled tree.

We define én'underlying tree T' of tree T as a trée with all the labels and leaves

removed.

Lemma 2

T’c and T’; are equivalent, hence Ty and T; are similar.

For the notion of ’'similarity’ and 'equivalence’ of trees, see [7, p. 326]

Proof: Since the underlying tree of T; is intact during the process of the con-

struction of T¢ as illustrated in (8), T’'¢ is obviously equivalent to T’;.

We first consider the reduction (Ax,.M)N, —>1V[§;2#QJ , where M does. not contain
A. The original B-reduction (Ax,.M)N, -> M [x,:=N,] 1is fully simulated by p’; when
N, consists only of terminal objects. (In this case M [%,:=N,] is a normal form.)
The simulation by p’; is the same as thé preorder traversal of the labelled tree
representing Ax,.M. The corresponding reduction by pc is also characterized by the
visits of nodes of the corresponding {S, B, C, K, I}-labelled tree T¢. Under the
above conditions, the orders of the traversal of Tc by pc and T; by p’;, i.e. the

orders of the visits of the nodes of the trees, are the same since the underlying

244
trees are equivalent.
Therefore the comparison of the efficiency can be made for the cost, e.g. storage
consumption, involved in the traversal between any subtrees Sb of Tc and S; of Ty

when both represent the same subtree of a A-term.

We first take up a general case.

Suppose we reduce (KEQ.ML@Q W, (1)
where M,;,) 1is represented by a tree T,3, with leaves o(x). 0(x)
=o(xy)..0(x,)) 1is a permutation of Eﬁ, and KL:N1,.AQ vhere N;,1=1,2,..,n 1is a

term consisting only of terminal objects. Let T,;)c and T,3,)2» respectively be a
‘{K}~labelled tree and {S, B, C, K, I}-labelled tree, both representing
(KEL.ML@J N,. During the reduction of (7) by p';, all the nodes of Toiz,) are

visited. In the {&}-labelled tree, a closure is made at every node {(including
leaf). Therefore, the number of closures créated is 2n - 1 (cells). The total
number of cells consumed during the traversal is therefore 4n-1, since 2n cells are
required by the construction of the environment of n variables. (See below)

We have more general statements (Lemmas 3 and 4) about the storage consumption by
p'; and p’; in the case of (&x,.M)N, in which M is represented by {i}-labelled tree
T. |

Lemma 3

In p’;, binding (A% .M)Na,81 > [M, (@a-Na) @1 Naci) .. (@1.N1).8)] requires 2n
cells on machine L1.

(The lemma relies on the representation of the environment list which is in our

case a list of dotted pairs.)

Lemma 4

Given a {K}—labelled'tree T: with m leaves. The total number of closures created
during the traversal of all the nodes by algorithm p; is 2m-1. In the cése of
{,s,b,c,/7 }-labelled tree, that number by algorithm p’; is 2m-1, maximum

Proof':

Since in algorithm p; a closure is created at each node of tree T;, the total

number of closures is equal to the number of the nodes of tree T;. O

245

pProposition 1
The maximum number of cells consumed during reduction (7) by algorithm p’; on
(X,s,b,c,[0}-labelled tree is 2n+2m-1.

Proof: Obvious from lemmas 3 and 4. [J

All the nodes of T,;3,)c are visited once for each distribution of x;, 1i=1,2,..,n,
by {S, B, C, K, I}-reducer. Hence, we have the following proposition.

Proposition 2 |

The average number of cells consumed during the reduction (7) by algorithm pc on
(S, B, C, K, I}-labelled tree is 0(n').

Proof:

During the distribution phase of the reduction each variable creates a cell
vhenever it visits the node. (In fact, in this case all the labels except for
leaves consist of only B's and C’s.) The total number of visits to reach the leaves
sunmed over all the variables is equal to the path length of the tree. Since the
average path length over all binary trees is C(nLS) , the average number of cells

consumed is 0(n!-®) . O

The amount of the storage consumption by p¢ varies greatly depending upon the
shapes of trees.

The worst case is with the tree

To(a‘cn):(xl (2. .. (@Xn-1Zn)...))
in wvhich the storage consumption is

Eﬁ%fl) — 1 for n = 3.

and the best case is with
TO(;): l‘lxz. .xna

in which case the storage consumption is none, since Ax,.x, = I by extensionality.

In practice, some leaves are constants. Moreover, the cell consumptions on both

240

machines C1 and L1 are different depending upon the pattern of variable occur-
rences. Consider first the traversal of the trees in Figs. ba and Bb. During the
reduction, S, B and C consume 2, 1 and 1 cells, respectively by algorithm p¢ and s,
b and ¢ consume 1, 1 and O cell, respectively by algorithm p’1. Hence the numbers
of cells consumed during the traversal of the trees are as follows for the cases
shown in Figs. ba and 5b:

2+n for the traversal of the {,s,b,c}-labelled tree representing
Ax.ky k2. . (kax)...) in Fig. Sa by algorithm p’;, and

n for the traversal of the corresponding {S, B, C, K, I}-labelled tree in Fig. 5b
by algorithm pc.

On the other hand, the traversal of the trees representing Ax.xk,..k2ki (Figs. 6a
and 6b) consumes 2 cells by p’3 and 2n by pc. In the case of single variate A-terms
pc only outperforms p’; when the number‘of S and C encountered during the traversal
is less than 2.

The disadvantage of p’; is the creation of an environment list during the parameter
binding. Therefore, it 1is possible to think of unusual examples such as
Ax{..xp.x1x2 in which some A-variables do not appear in the body of the A-term. In

this case pr consumes 2 cells whereas p’; consumes 2n+1.

6. Elaboration of &-reducers
The investigation in fhe previous section shows that in simple cases considered in
section b:

Generally speaking, machine L1 is more advantageous than machine C1 in terms of
the storage consumption. |

As the number of arguments increases, the difference of the amount of the
storage consumption become large; and hence machine L1 becomes more advantageous
than machine C1.
On the other hand we observe the following advantages for machine C1:
(1) No search for variable names is needed at the reduction time.
(2) Uniform treatment of application of terms is‘possible, and hence we can avoid

vthe extra level of complication incurred by forming an environment at the time

of binding.

247
3) Partial evaluation is automatically in effect in machine Cl1, whereas in 12 not.
As for the point (1), variable names can be eliminated before the reduction in

machine L1. The method for variable elimination is similar to the one adopted by

Automath [2] and SECD machine.

Nameless-A-reducer L2

For each variable x; in Ax,.M, the relative position (the order from left) of its

" pounded pair in the environment to be formed when Ax,.M is applied is known stati-

cally. Wé replace free occurrences of x; in M by that relative position, say k. k
is treated as a function to be called enufun to get the kth element (from left) in
the environment list. The numbering rule is similar to the ones adopted by block
structured languages such as Algol 60. For example,

Axixz. (X1 (Ax1x2. 21 ... X2) (AUIY2. 22U2))

A 1is replaced by A, where n is the number of A-variables. The environment formerly
defined as a list of dotted pairs of a variable name and a corresponding value are
nowv consisting of only values. During the reduction, k gets the kth element of the
current environment list, and update the kth element after the reduction. &, is
changed to &,-1 when that term is applied to an argument. Slight modifications of
algorithm p’; in the environment handling (i.e. environment search and environment
formation *) are sufficient for machine L2 to operate (see pc; in section 8).

The .cell consumption in the reduction by machine 12 incurred by parameter binding
is now n for n variables. Moreover, the speed of the environment look-up is

increased.

Point (3) mentioned at the beginning of this section needs more explanation.

* When A-terms are nested as above, the search time for the outer level of
A-variables become large, i.e. proportionate to the product of the number of
A-terms and the number of recursions of the same level of A-terms. This trouble can
be taken care of easily in the combinatory reducer. In the A&-reducer, it can be
handled by introducing a LABEL function as used in Lisp 1.5. The technique is
Similar to static chaining used in compiling block structured languages. We do not
discuss this point further since this is besides the point of our argument.

248
Suppose we have Axjxz.+ (+ x1 1)x2 . When term X(E=Axixz.+ (+ 21 1)x2)10) is
reduced, a (S, B, C, K, I}-labelled tree corresponding to (Axz.+ (+ 10 1)x2) is
constructed. Suppose multiple copies of term X (actually a pointer to X) is distri-
buted to several places. When X is further reduced, e.g. when X is applied to 3,
the expression + 10 1 1is reduced to 11 and the effect is felt by all the terms
which refefence the term X in the combinatory reducer. On the other hand, on
machine L1 (also on IL2) the closure [(+ x1 1),((x1.10).8)] created during the
reduction of [(Axz2.+(+ x1 1) x2),((x1.10).8)]1 is computed every time X is applied
to some value. The effect of this partial evaluation may be great if a partially

applied function such as above is distributed and reduced many times.

Fortunately, even on machine L2 the same effect is achieved by rearranging terms.
The method is due to [4] . We identify a maximum free term i.e. term consisting
only of constants and free variables, and shift it outside the enclosing function
body. In this case the maximum free term is (+ x1 1) in RQxe.+ (+ 21 1) x2. We
change Axjxz.+ (+ 21 1) x2 to Axy. (Rasxe.+ x3 x2)(+ x1 1)). Then the reduction of
x3 only once induces the reduction (+ xy 1), and the effect of this reduction is

felt by all the terms that reference the closure of Axy. ((Axzxz.+ x3 x2)(+ x1 1)).

The other aspect of the partial evaluation is self-optimization [10] in conjunc-
tion with the local definition of a recursive function. The self-optimization is
equally well taken care of by a &-reducer. We discuss this point in the example

foldr in the next section.

7. Examples of comparisons

In the following analysis, the comparisons of the performances are made by measur-
ing the difference of the numbers of the cells consumed during the reduction. In
doing so, we assume that the amount of time used for &-reduction is the same in
both reducers. We use the following three examples all of which are given in
[10] ; factorial, foldr and twice.

factorial

def factorial = An. cond (eq n 0) 1 (times n (factorial (- n 1)))

249
Figure 7-a shows {4,s,b,c}-labelled tree representing factorial. The number of
cells consumed during the reduction of factorial n on machine L2 is:
4 (8 for the traverse and 1 for the environment) when n = 0, and 6n+4 when n =1,
Figure 7-b shows the corresponding {S, B, C, K, I}-labelled tree. The number of
cells during the reduction of the tfee on machine C1 is

6 when n = 0, and 12n + 6 when n =1 .

foldr
def foldr = fkx.cond (null x) k (f hd x) (foldr f k (tl x)))
foldr is a list manipulating function used in conjunction with a binary function f.
For example,
def sum = foldr plus 0
def product = foldr times I .
Figures 8-a and 8-b show the corresponding labelled trees representing foldr. The
numbers of cells consumed are 14n + 7 on machine 2 and 24n + 9 on machine C1,
respectively for the given list whose length is n.
However, this comparison may not be fair since in machine C1 the self-optimization
is not workable in this definition. To realize the self-optimization, we introduce
the following local definition of function g.
def foldr = Afkx. gx

where def g = Ay. cond (null y) k (f (hd y)(g ({1l u)))
The reduction of foldr plus O‘e.g., using the above definition of foldr is per-
formed only once. The local definition bf a recursive function such as the above
can be transformed to a A-term using combinator Y (Y is a combinator with the
following reduction rule Yf = Ff(Yf)).
def foldr = Afk. Y(Agx.cond (null x) k (f (hd x)(g (tl x))))
The (S, B, C, K, I}-labelled tree representing the above term is shown in Fig. 8-c.
In this case the cell consumption becomes fIn + 15, which is comparable to the‘cell

consumption on L2,

- Similar optimization effect can be achieved by introducing &-constant label which

éiis similar to LABEL function of Lisp. label adds a new local definition of a

250
function to the current environment.
def foldr = &fk. label g (Ax.cond (null x) k (f (hd x)(g (t1 x))))
Figure 8-d shows the corresponding labelled tree. '
In this case the number of consumed cells is
2 for creating the environments for f and k,
2 for the execution of label
(1 for constructing a closure, and
1 for adding the definition of a function into the current environment),
10n + 5 for execution of the locally defined function g,
hence in total

10n + 9.

twice

def twice = Afx.f({fx)

twice is a function which applies a given function twice.

Figures O-a and 9-b show {R&,s,b,c}-labelled tree and {S, B, C,'K, I}l-labelled tree
representing twice, respectively. The numbers of the’cell consumption are 4 and 5
respectively. However, on machine Cl we caﬁ generate a more optimized combinatory
expression for twice. That is, we have Afx.f(fx) = SBI, in which case the cell
consumption for each application of twice becomes only 3. In the above example, the

extensionality plays an essential role in simplifying the resulting combinatory

expression:

Afe.f(fx) = &f. Bf)@x.fx)
= Rf,(Bf)f by extensionality on Ax.fx
= SQAf.BfDOA.f |
= SBI by extensionality on Af.Bf

Thus using the extensionaliiy we can effectively transform the original labelled
tree to a more optimized (simpler) tree. In such a case, our method of comparison
does not work well since the shapes of the initial trees to be reduced are diffe-
rent in the closure and combinatory reduction schemes. However, in real programs,
8-constants are scattered in the terms representing the programs ana prevent the

extensive application of the extensionality, as we see in the example of factorial.

]

251

In Turner’s measurement twice is the only case in which Turner’s combinatory
reducer outperforms SECD machine in the applicative order evaluation. In this case
the performance is susceptible to a small optimization. For example, if we counted
2 cells for the construction of the environment of a variable, the cell consumption

would be 6 for machine [2. Therefore, the performance of machine Cl could be twice

as high as that of [2.

8. Towards a more efficient reducer

To make our argument clear we use trees illustrated in Fig. 10. Suppose we reduce
Majaz by a combinatory reducer. In Fig. 10, the leaves x; and x2 in M are initially
empty. When Ma; is reduced, a; is placed in the leaf x;, and a new tree is con-
structed (left subtree T; is shared). Further when Las (where L=Ma;) is reduced,
another new tree is constructed. Hence we actually have three trees T{, T2 and Ts.
T; in Fig. 10 is shared since T; is not "contaminated” by these applications of the

terms. This observation leads us to have a pure tree and separate working storage

(taken from heap) for variables. A pure tree is a tree with all the leaves of

variables being replaced by a relative location for the variable within the working
storage. A term to be reduced can be represented as a pair of a pure tree pt and
separate working storage w for variables. Furthermore we need status bits to tell
whether the storage for variables is filled with actual parameters. Let us call the

machine which reduces this tree machine C2.

The pair above has a remarkable similarity to the labelled closure constructed in

the labelled closure reduction system with the following correspondence:

pt nameless labelled tree
w the portion of the environment currently accessible
status bits n in label 2,

(n indicates the number of remaining arguments to be applied)

As for the label of nodes of pt, we have two choices:

Case 1, Use (S, B, C, K, I}.

25%
In each node, each variable is inspected whether it is used in the subtrees
and the closure should be constructed.
e.g. label=SB with & =(w 1.8)
We create 8§,=(v2 v1.8") for the right subtree and & =(vi .&8") for the left
subtree.
case 2, Use {s, b, c}.
On each node the use of an environment by the left and right subtrees is
examined.
e.g. label=s with & (v v;.8")
For the same tree as the above example, label s is attached because the left
and right subtrees have at least one variable occurrences and & is paséed to
both subtrees.
In case 1, we construct an environment for the more efficient access, whereas in
case 2 we sacrifice speed for the economy of storage if the same variable is
accessed several times. Although we departed from machine Cl in order to decrease
the storage consumption, in case 1 we again return to a scheme in which the storage
consumption is equal to that of C1. The storage is consumed in preparing the proper
environment. One can easily see that what is performed in case 1 is essentially the
same as in pc. On the other hand, when we take case 2 we see that machine C2 is

converged into machine [2.

To sum up, by improving the combinatory reducers we come to a nameless {i,s,b,c,/7
}-labelled tree reducer. The reduction algorithm pc; for the {K,s,b,c,[7}—labelléd
tree, is derived from p¢ and p’;.
Let a closure representing term (Ax,.M) [x;:=N;] by a labelled node be
&Fi;QZ,UW N> ... N;.8))* where M is a nameless A-term.
Algorithm pc; :
pcr (t, stack) =
let 1; (M,8)=t and stack=<s;,..,sp> or <, i.e, empty

1)1l is e, i.e. M is atomic

if M is a terminal object
then resultis

{ £;M when stack is empty
€;Mper(st, O,newstack). .pcaisns O)snewstack ()) otherwise

* A symbol in front of the semicolon (in this case 4;-1) is a label of the node.

253

else if M is &

then resultis
€;Ms182. .5, when n is less than the number of the terms

required in this &-reduction
pcy (w, 8,stack’) otherwise

where w is the result of the 8-reduction, i.e.
w=M(s1,...8;).
and stack’ (=<Sj:i,..,Sp>) 18 the stack after the reduction.
else /« M is enufun k x/
let er = kth item on the environment list &
w = pcalex, (),newstack ())
replace kth item on & with w
resultis pg (w, 8,stack)

@) 1 is A, 1°
resultis
1;M when stack is empty
Aanl” s M, (Sp Sp-1 ...S1.8)) when m > n

pca (UM, (Spim-1Sn+a-2 -« -Sn.8),<Spsm>Snemsls.»>) When m = n

@) 1lis O
let M= M, &)
resultis poi (M ,8 ,stack)
(4 1 is b, c or s in vhich case M is MiM> (i.e. application)

lis b

resultis poy M, <, M2,8),S1,S2,..,Sp>)
lis ¢ '

resultis pcy M;,8,<M2,S1,S2,..,52>)

lis s

resultis poy M,8,<J; M2, 8),81,S2,..,S>)

9. Conclusion

Major work involved in reduction is the traversal, copying and reconstruction of
the tree to be reduced. In this paper we analyzed the complexity involved in the
reduction in terms of the storage consumption. Two known methods, the A-reducer and
the combinatory reducer, are reviewed and elaborated. When a term is represented as
a labelled tree, the behavior of the reductions by both reducers become quite
similar. The difference of the performances of the two reducers is then measured in
terms of the storage consumed during the traversal of the tree. Contrary to the
arguments _for combinatory reducers claimed by Turner and Peyton Jones, our conclu-
sion in the comparison is that the advantages of the combinatory reducer diminish
wvhen due considerations are made for the formations of closures before the reduc-

tion.

Our analysis also shows that there is a trade-off relationship between the access

speed to variables and the storage consumption in the implementation of the left-

254
most reduction strategy of A-calculus. Fast access is enjoyed by the combinatory
reducer at the expense of extra work on the distribution of arguments and small

storage consumption by the labelled A-reducer.

In this paper we will stop the elaboration of machiﬁe models at the labelled tree
reducer, sincé the introduction of the labelled tree reducer reveals the essential
work to be done on the reduction. Optimizations of machine models on both reducers
would be fruitful. On the closure reducer side an obvious optimization is to
‘compile’ pt to make the traversal of the tree faster. Since the shape of ptl is
fixed, we can traverse the pt beforehand, and generate linear code from a tree.
Therefore the design of the code is a next theme to pursue in speeding up the
reduction. It is interesting to observe that similar approach is taken by Warren in
speeding up Prolog (known as structure sharing) although the objects of the study

" are Prolog clauses [11]

Peyton Jones’es experiment compared the performance of machine CO with machine LO,
and measured the efficiencies of only Curried functions. (All the functions are
treated as Curried in the closure reducer, but not decomposed into single-argument
functions.) But the efficiency advantage of the combinatory reducer claimed in the
paper [9] will be much smaller when algofithm pr 1is properly implemented as
suggested in this paper. The comparison of the reduction stack depth is not essen-
tial in the performance analysis since both the closure reducer and the combinatory

reducer traverse and reduce similar labelled trees.

Our observation is limited to the case of a single-processor machine. The advantage
of functional programming in multi-processor environment is pointed out, since
functional programming enjoys the property of referential transparency. One may
argue that in the multi-processor environment the combinatory reducer is more
advantageous than the closure reducer, since arguments are copied and distributed
in the combinatory reducer. To prove the validity of this statement we need further
analysis based on concrete multi-processor machine models. The invenstigation in

this direction will be a future theme.

255

References

(1]

[2]

[3]

[4]

(5]

(6]

[l

(8]

e

[10)

(11]

Barendregt, H. P., The Lambdq Calculus, its Syntax aﬁd Semantics, North-
Holland Pub. Co., 1981
de Bruijn, N. G., Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, Indag Math, 34, 381-392
Hikita, T., On an average size of Turner’s translation to combinatbr pro-
grams, Journal of Information Processing, to appear
Hughes, R. J. M., Super combinators: A new implementation method for applica-
tive languages, Conference Record of the 1982 ACM symposium on LISP and
functional programming (Aug. 1982), 1-10
Keller, R. M., FEL (Function-Equation Language) Programmer’s Guide AMPS
Technical Memorandum No. 7, Department of Computer Science, Univ. of Utah,
March 1982; Revised April 1983
Kennaway, J. R., The complexity of a translation of &-calculus to combina-
tors, University of East Anglia, Report CS/82/23/E, 1982
Knuth, D. E., The Art of Computer Programming, 2nd edition, Vol.1, Addison-
Wesley Pub. Co.
Landin, P. J., The mechanical evaluation of expressions, The Computer Jour-
nal, Vol. 6, (1964), 308-320
Peyton Jones, S. L., An investigation‘of the relative efficiency of combina-
tors and lambda expressions, Conference Record of the 1982 ACM suymposium on
LISP and functional programming (Aug. 1982), 150-158 |
Turner, D., A nev implementation technique for applicative languages,
Software-Practice and Experiences, Vol. 8, (1979), 31-49
Warren, D., Implementing PROLOG - Compiling logic programs, 1 and 2, D.A.I.

Research Report No, 39 and 40, University of Edinbough, 1977

256

Figure Captions
Figure 1 Representation of term MiMo...M,
Figure 2 A snapshot of the reduction (Kf(&x.f(fx))) addl O
Figure 3 Conversion from graph to tree
Figure 4-a {&}-labelled tree representing Ax.cond (eq x 0) 1 (-1)
Figure 4-b {S, K, 1}-labelled tree representing Ax.cond (eq x 0) 1 (-1)
Figure 4-c {S, K, I}-labelled tree representing Ax.cond (eq x 0) 1 (-1)
Figure b-a {i,s,b,c}-labelled tree representing Ax.k; (ko.. kpx)..)
Figure 5-b {S, B, C}-labelled tree representing Ax.ki (k2. . (knx)..)
(Best case for pc)
Figure 6-a {i,s,b,cl-labelled tree representing Ax.xk,...k2ki
(Case favorable to p’y)
Figure 6-b {S, B, C}-labelled tree representing Ax.xk,...koki
Figure 7-a {A,s,b,c}-labelled tree representing factorial
Figure 7-b {S, B, C}-labelled tree representing factorial
Figure 8-a {4,s,b,c}-labelled tree representing foldr
Figure 8-b {S, B, C, K, I}-labelled tree representing foldr
Figure 8-c¢ {S, B, C, K, I}-labelled tree representing foldr
(using Y combinator)
Figure 8-d {&,s,b,c}-labelled tree representing foldr
(using function label)
Since label needs the current environment, c’s
are generated in the ancestory nodes of label.
Figure 9-a {A,s,b,c}-labelled tree representing twice
Figure 9-b (S, B, C, K, I}-labelled tree representing twice

Figure 10 Construction of trees by a combinatory reducer

Fig. 1

add |

[

(x.0)(f.add N]=1—

reduction
stack

25¢
8

Fig
- 3

AX

cond

€q X 0

Fig. 4-a

Fiz. 4-b

259

R60

261

AX ;Db

Fig. 5-b

26k

Fig. 6-a

263

AR;S

factorial

Fig. 7-a

Fig. 7-b

264

Fig. 8-b

265

Fig. 8-¢

260

Afx:s

SB

CB

Fig. 9-b

267

(®o'piy =) %07

ND.-.NO _O-o o—D

XL

10

Fig.

