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Reordering Algorithm for Skyline Method
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1. Introduction
Let

Ax = b (1)
be an N*N Sparée, symmetric nonsingular system of linear equations.
As a direct solver for eq.l we find BAND MATRIX METHOD, SKYLINE
METHOD and WAVE-FRONT METHOD, and their efficiency wholly depends
on the elimination ordering for eq.l. On the other hand, the the-
oretical investigation on their ordering problem from the aspect
of combinatorial problems clarified that the searching of the
optimum orderings for them becomes NP-complete problems. This
result indicates that to find the ootimum elimination ordering
generally requires long execution-time, and, therefore, the or-
dering method to be proposed may become the one aiming near opti-
mum elimination ordering. Actually we find several effective
methods which are applicable for above solvers[1-5]. Among them
Reverse Cuthill-McKee(RCM) and Gibbs-Poole-Stockmeyer (GPS)
algorithms are often applied for not only the band solver but also

the skyline method. That is, both of them are fundamentally
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proposed for the band solver.

In this paper the author tries to propose new profile reducer.
For this final purpose the optimum elimination orderings for
above three solvers are firstly investigated from the theoretical
viewpoint, and he clarifies the differences between their order-
ings. By using these theoretical results new reordering algorithm
for the skyline method is proposed, and its efficiency is survey-

ed through a number of numerical tests.

2. Preliminaries
Firstly some terminology of the theory of graph. Aﬁ undirected
graph G=(X,E) consists of a set X of nodes together with a set E
of lines, which are unordered pairs of distinct nodes of X. A
subgraph G'=(X',E') of G is one for which X'CX and E'C E. The
nodes x and y are adjacent if {x,y}e€ E. A graph is complete when
every pair of nodes in G are adjacent. A clique of G is a sub-
graph which is complete. The degree of a node x is equal to the
number of lines gathered at x and it is denoted by deg.x. The
distance between two nodes, d(x,y), is the number of lines on the
shortest path connécting them. If d(x,y)<» for x,ye X, G is a
connected one. A level structure of G is a partition

L = {Ly, L1, Loy, ... , LQ}
of the node set X such that

adj.LiC Ly ULiy

adj.LoCL; and adj.LQCLLR_l

"

in which "adj." is the abbreviation of adjacent.

Let aij be (i,j) entry of A in eq.l. Then,
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B=max ( j - i) (2)
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P= % max (i - j) (3)
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Eq's 2 and 3 are the definitions of the half-bandwidth and profile
of A, respectively, and they determine the efficiency of the band
and skyline solvers. That is, the aim of reordering is to minimize
the values of B and P. For these solvers all data neccessary for
solving eq.l are stored in CPU. Wave-front méthod never treat the
matrix A as a whole in CPU but constructs only submatrix in CPU

by getting data of A row-wisely from the auxiliary memory appa-
ratus. After the elimination operation for the submatrix only

data in the submatrix subjected to the elimination are returned

to the auxiliary memory and data for new row of A are taken into
CPU. For the simplicity we assume that all data in the submatrices
treated in CPU are stored in two-dimensional array. Then, for the
effective usage of CPU there arise following two pufposes of
elimination ordering;

CPU memory « max F. (4)

Execution-time « N (5)
, where Fi is the dimension ofbthe submatrix constructed in CPU
and N is total number of nonzero entries of A after the forward
elimination process. Here, we note that new nonzeros appear in A
through the elimination process and they are called "fill-ins".
This phenomenon is explained by following equation; The i-th row

elimination of A modifies ajk to ajk which is expressed as
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That is, (j,k) entry becomes nonzero if both of aji and a;, are
not zeroé. Furthermore, this equétion indicates that the sub-
graph consisted of only nodes which are gathered at the eliminat-
ed node becomes complete after the elimination.

Since the number of nonzeros, N, in eq.5 is the sum of non-
zero entries in original‘A and the fill-ins, eq.5 is replaced as
following;

Execution-time « F (7)

where F is the number of fill-ins.

’
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For the matrix A, prepare n nodes labeled from "1" to '"n",
respectively, and connect two nodes,.vi and vj, by a line for
every nonzero aij in the upper triangular matrix of A. By this
procedure we obtain a graph G(n,m) from a matrix A(n*n) whose
upper triangular area contains m nonzero entries.

Let L be a level structure of G. If each ievel Li of L consists
of only one connected subgraph, G has the 0th level convexity. If
successive two levels of L construct a connected subgraph, the

graph is the lst level convexity.

3. Minimum B, P and F Problems

It is obvious that the minimization of eq's 2 to 7 determines
the efficiency of the band, skyline and wave-front solvers. In
this section the minimum B, P and F problems are theoretically
treated, and we show that the strict elimination ordering for

the solvers are different each other.
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3.1 Minimum Half-Bandwidth Problem
By using the graph G(n,m) instead of A(n*n) the minimum B problem
is expressed as following;
min B = min { max (i -3 ) } (8)
v.,e¢ adj.v.
i j
j=1i
That is, the maximum difference of labels of two nodes which are
adjacent each other must be minimized. Assume that a level
structure, L, is constructed for a graph G, and all nodes are
successively labeled from the first level of L. Then, the half-

bandwidth is given as following;

B = max [Li[, for i = 0,1,2,...,2 (9)

, where ]Li[ is the number of nodes in the i-th level of L.
Therefore, eq.8 is replaced by

min B = min { max L1 3 (10)

That is, min B depends on how to construct a level structure and
it is governed by a level which includes the maximum number of
nodes.

The complexity of min B expressed by eq.10 for arbitrary graph
is well discussed in Ref.6, and the study concludes that the
design of effective algorithm for eq.10 is possible only for low-
level convex graphs. More precisely, the effective design becomes
possible if the level structure which is constructed from one
end of the diameter has low-level convexity. This indicates that
the optimum ordering for min B may be fundamentaly based on the.
level structure. GPS and RCM algorithms are effective only for

graphs with above characteristic, and Ref.7 is also effective



for them even though its strategy is quite different from above

two algorithms.

3.2 Minimum Profile Problem
Let's denote the number of zero entries in the profile by Loss.
Then, the definition of P is replaced as following;

P =m + Loss (1)
Since '"m" is the number of nonzeros, the miﬁimization of P is
equivalent to the minimization of Loss.

min P = min Loss (12)
By the elimination process a part of Loss becomes fill-ins and
the residuals keep to be zero. That is,

min P = min ( F + Z ) , (13)
in which F and Z are the number of fill-ins and zeros, respect- .
ively.

Let hi be the i-th column height of Aj;
hi = max ( i - j) ' (14)
vy eadj.vi .
izj
hi depends on the number of nodes being eliminated between s
and E Assume that all nodes adjacént to v; are successively
eliminated. Then, hi has the minimum values, because hi consists
of only nonzeros. If any node, namely V}f¥adj.vi, is eliminated
between v. and Vi then a zero element is included in hi' It is
obvious that this zero entry in hi is Z in eq.13.
Actual matrix we treat is a sparse one, and, therefore, even

if the ordering is one of best ones, most of h's neccessarily

include many zero entries before the elimination. Thus, above



consideration suggests that the elimination should be continued
so as to fulfill all zero entries in P by fill-ins.

We may assume that any row (or colummn) in A has only several
nonzeros originally. As denoted in Preliminaries, the nodes in
a suktgraph which are already eliminated and faces to non-elimi-
nated area construct a clique. Then, the number of fill-ins in
the subgraph depends on the square of the number of nodes in the
subgraph. This suggests that in o6rder to minimize the fill-ins
cliques appearing through the elimination processes must always
be kept small. That is, any clique should locate so as to cross
the direction of the diameter of the graph. Summarizing above
consideration we obtain following expression for min P;

min P = min F with Z=0 ' (15)

As far as we treat any convex graph cliques may be located
so as to keep above restriction, but for non-convex graphs like
fingure- or star-type graphs cliques may locate so as to cross
the diameter of the graph but a part of the clique often locates
along the direction of the longitudinal axis of the convex area.
Ref.8 surveyed on this problem, and it proposed following new
expression for min P;

min P = min F + min Z (16)
This expression indicates that‘(l) any non-convex graph is
firstly replaced by a gatherings of convex subgraphs by cutting
at the roots of convex areas, (2) each subgraph is independently
treated so as to satisfy eq.l5 and (3) at the assemblage of
ordered nodes in subgraph into the original one min Z is con-

sidered.



Now, we consider on min Z in eq.l6. From the discussion on h,
of eq.1l4 it is obvious that the value of Z is determined by the
number of nodes in convex-subgraph and the number of nodes facing
to the cutting line in thé first procedure. That is,

min Z = min { a.N. } (17)
. s i™j
i#j

, where the suffix indicates the label of convex subgraphs and
a and N indicate the number of nodes on the cutting line and
the number of nodes in a subgraph, respectively.

Summarizing the results of the consideration on min P problem
for convex graphs we may treat the problem of min F with Z=0,
and for non-convex graphs we have to treat it as min F + min Z.
Therefore, the ordering for convex graphs may be a similar one
of the ordering of min B, because the concept of level structure
may be an effective tool for this case, too. But, for the case
of non-convex graphs it is obvious that both optimum orderings

are quite different each other. By using above results the

author proposes new algorithm in the next chapter.

3.3 Minimum Fill-in Problem

In a glance this problem is very similar to eq.15 but we find
that eq.15 subjects to the restriction of "Z=0". We examine the
meaning of this restriction.

In order to eliminate all nodes in a graph with Z=0 any node
for the successive elimination is always selected among nodes
which are adjacent to the eliminated area. Thus, min F problem
treated here may ignore the appearance of Z.

As discussed in Section 3.2, the number of fill-ins depends
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on the number of nodes included in each clique appearing at a
vertex-elimination. Therefore, for min F in this section how to
minimize the number of nodes in each clique is the main object
of the node-reordering. On this subject we find excelent study
by A. George[9,10]. The nested dissection method and its extended
method are very effective for min F.

As obvious from above consideration on min F problem the node-
ordering for min F becomes quite different from the one with the

restriction of Z=0.

4. New Profile Reducer
According to the results in previous section the node-reordering
algorithm for the minimum profile must include following steps;
1. Selection of the starting node.
Separation of a graph into convex subgraphs.
3. Min F ordering algorithm for convex graph.
4. Min Z ordering algorithm.
At first each procedure is examined from the viewpoint of the

algorithm design.

[Selection of the starting node]

It is obvious that the starting node should be one end of the
diameter of the graph. But, it is already known that the search
of the diameter requires a lot of numerical operations[ll]. On
the other hand, Gibbs et al proposed an effective method for
searching an end of the longitudinal axis of any graph[2,3]. In

this paper their method is introduced for the determination of
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the starting node.
By the application of their method all nodes in G are order-
ed into a level structure

L={Losvi, L1, Ly, ... , L2 }

where vy is the starting node. This level structure and its

’

characteristics are usefully introduced in successive three pro-

cedures.

[Partition of a graphl]

Since the node-ordering is started from one end of the longitudi-
nal axis of the graph and the level structure is generated from
the starting node, the judgement whether the graph is convex may
be done only for the level structure.

Now, we assume a graph consisted of only'triangular mesh.
According to the definition of any graph the non-convexity is
recognized if all nodes in a level set, namely Li’ of the level -
structure are not connected each other. But, in precediﬁg section
it is clarified that the actual judgement whether the non-convex
graph should be treated so as to minimize F/and also Z must be
done by taking consideration the properties of the convex area,
i.e. the length of the cutting line and the nodes included in
the area.

Assume that in level sets { Li’ Li+l’ Pee Li+k\} we find
the discontinuity between nodes. If all nodes in Li and Li+k
have connectivity to the nodes in Li-l and Li+k+1’ respectively,
then we can recognize that these level sets construct a ring-

type structure. If some nodes in Li+k have no connectivity to



the member of L., .,, then the subgraph includes a convex area.
1
J
sets we can easily calculate the number of nodes in the convex

Let express Lj as L LJL§ for i<j<i+k. By using above level
area as Z]L}[ and Z]L?l, respectively. From the viewpoint of
algorithm design the method of the judgement must be simple.
That is, we may aim the decreasing of the profile value instead
of the minimum profile. Then, if
itk
k+1z2 ¢ z [LE])HP (18)
s=i
is satisfied for the smallest convex area, we treat the area as
a convex area for the ordering. Otherwise, we ignore the con-
vexity and we aim the reordering of min F for the area. The value
of "p" in eq.18 is equated to 1/2 and 1/4 for a planar and spatial
graphs, respectively. These values were decided by the results
of a number of numerical experiments.
For a graph with ring-type structure all nodes in { L% } or
{ L? } for i<j<i+k are ordered before the ordering of another.
[Min F ordering method]
By using above level structure and above judgement any graph can
be replaced to gatherings of convex subgraphs. Note that all
nodes in each subgraph are already set into a level structure
and that the level structure is constructed so as to cross the
longitudinal axis of the graph. Thérefore, all nodes of any convex
area may be successively ordered from one level to the adjacent

one. This procedure is repeated for all subgraphs, and this

procedure is finished.

- 11 -
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[Min Z ordering method]

According to the result in previous section min Z ordering should
be done by considering eq.17. But, for the simplicity we consider
only the number of nodes in convex subgraphs;

min Z = min Nj ' (19)

Assume that three convex subgraphs are gathered and that they
construct a star-type nonconvex graph. Then, all nodes in the
smallest area are ordered between the others. For this ordering
we compare only the numbers of nodes in the convex subgraphs,

and the algorithm is simplified.

According to above considerations we propose new profile reducer.
Since the reverse ordering is effective for the profile reducing,
we use it in this new method, too[2].

The input data neccessary for this new method are as follows;
. Total number of nodes

. Expected maximum degree

. Node-node incidence

S~ o N

. Parameter

Among four procedures neccessary for the new method the first,
the second and the last two procedures are presented as ALGORITHM
START, ALGORITHM BREAK and ALGORITHM PROF, respectively. Note
that ALGORITHM START is the one given by George[2]. The details

of these algorithms are given as followings;

ALGORITHM START

Step 1 : Find a node r of minimum degree.

- 12 -



Step 2 : Generate the level structure rooted at r;

L(r) = {Lo(x), La(x), Lo(r), ... , Ly(n)}

Step 3 : Find all connected components in Lz(r).

Step 4 : For each component C in the level set, find a node x
of minimum degree and generate its rooted level structure.
If 2(x)>2(r), and put r < x and go to step 3.

Step 5 : r is a starting node.

The aim of ALGORITHM BREAK is the searching of the convex areas,

and for this purpose above level structure is reversely used.

ALGORITHM BREAK

Step 6 : Find all connectéd components in each level set from
the last level, reversely. If all levels consist of only
one connected component, then reorder the level structure
and go to step 14.

Step 7 : Divide L(r) into sub-level structures, namely {L°, L?!,

}, by considering the connectivity between connectéd
components in successive level sets in L(r). We assume
that L° includes the starting node.

Step 8 : For the first level set of each sub-level structure,
search the connectivity to other sub-level structures.
If there exists no connectivity and the sub-level
structure doesn't satisfy eq.18, restore all nodes in
the sub-level structure to the original places in L(r).

Step 9 : Step 8 is repeated for all sub-level structures except
L°.

ALGORITHM PROF

Step 10: Find a sub-level structure, namely L' , whose last level

- 13 -



set is connected to a level set of L°. This procedure
is continued in the ordering of level sets of L;.

Step 11: If the first level set of L' has connectivity to any
level set of L°, then go to step 13.

Step 12: If the sub-level structure include more nodes than level
sets of L% till the level set where the sub-level
structure is connected, insert the sub-level structure
before L° and go to step 10.

Step 13: The sub-level structure is inserted behind the level
set of L° which was found in step 10 in succession, and
go to step 10.

Step 14: L° is the new node-ordering fot the skyline method.

5. Numerical Examples

In order to survey the efficiency of the proposed method more

than 10 test examples are solved by using the new method(NEW),.
Reverse-Cuthill-McKee (RCM) and Gibbs—Poole—Stockmeyer(GPS){
algorithms, and their results are compared for the profile wvalues,
the execution-time and several other items. The reason of the
usage of RCM and GPS for this comparison is that both of them are
most commonly used at present. But, since original RCM lacks

the procedure to select an appropriate starting node, it may often
require 1ong‘execution—time for the reordering. Therefore, we
modify as following; Determine the starting node by using ALGORITHM
START given in this paper and apply RCM only from the starting
node. By this modification RCM generates only one level structure.

Henceforce, we call this modified RCM as MRCM.

- 14 -



Table 1 Details of test examples

Case No. of nodes Dim. Mesh Subgraphs
I 42 2 0 T
2 47 2 1 2
3 59 2 0 3
4 99 2 0 1
5 136 2 0 1
6 148 2 0 1
7 193 2 2 2
8 232 2 0 1
9 374 2 1 3

10 414 2 1 2

11 630 2 1 2

12 157 3 0 3

13 211 3 0 3

14 312 3 0 5

Details of the test examples used in this paper are summarized
in Table 1. In Table 1 the column '"Dim.'" indicates whether the
graph is a planar or a spatial one, the column 'Mesh'" indicates
whether the graph has a ring-type structure. The column of "Sub-
graphs" indicates how many sub-level structures are generated by
the proposed method. As obvious from the result of the theoretic
investigation of the minimum profile problem the topology or the
configuration of a graph becomes complicated as the graph contains
more meshes and also sub-level structures. That is, these two
columns indicate the complexity of the node-reordering.

14 test examples are used fdr the comparison of NEW, GPS and
MRCM. 11 cases among them are planar graphs and other three are
spatial ones. 5 examples have ring structure, and the maximum

number of rings is two. The graphs whose column of '"Subgraphs"
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is equal to "'1" are supposed to be convex, and, therefore, 9 -
test examples are non-convex graphs. Maximum sub-level structures
appears in a graph of case 14. -

The results of the execution-time only for the node-ordering
and the number of zero entries in the profile are shown in Fig's
1 and 2, respectively. For the former three methods are compared
, and for the latter only the results by GPS and NEW are compared,
because MRCM is one of the fastest methods but it can give rather
poor results with respect to the profile values[3].

Table 2 is given for the examination of the efficiency of NEW,
GPS and MRCM as the ordering method not only for the profile but

also the wave-front and the band matrix methods. The efficiency



Table 2. Comparison of results by NEW, GPS and MRCM

Case Profile Solver Wavefront Solver Band Solver

Wavg Wrms Wmax Wrms B

MRCM GPS NEW MRCM GPS NEW MRCM GPS NEW MRCM GPS NEW MRCM GPS NEW

1 8.0 6.1 6.4 8.5 6.4 6.8 12 9 10 11.1 8.2 8.9 14 8 13
2 5.8 5.8 5.6 6.1 6.0 5.8 8 8 7 7.3 7.2 6.8 9 7 15
3 6.2. 5.5 4.5 6.7 5.8 4.7°10 9 8 9.7 8.3 6.7 15 8 19
4 9.8 8.6 8.9 10.2 8.9 9.3 14 11 13 13.5 11.5 12.4 17 11 15
5 9.2 8.3 8.4 9.9 8.8 9.0 16 14 15 12.3 11.4 11.4 25 18 26
6 13.0 11.5 12.4 13.7 12.0 13.2 18 15 20 17.6 15.6 17.3 33 16 21
7 14.9 12.7 12.8 15.7 13.1 13.5 24 18 21 20.1 16.9 17.8 36 19 75
8§ 15.2 13.8 13.7 15.7 14.1 14.1 21 19 19 20.3 18.7 18.7 32 19 27
9 16.9 16.4 15.6°'17.7 17.1 16.4 25 22 24 23.6 22.8 21.9 36 23 152
10 20.1 19.6 :18.9 20.8 20.5 19.6 29 29 29 27.2 27.3 26.2 44 29 40
11 .30.5 22.9 27.4 32.7 23.5 29.4 50 29 47 43.0 31.5 40.0 81 29 50
12 14.2 12.3 14;0 15.6 12.9 15.0 26 19 27 26.9 22.2 26.0 45 18 37
13 16.7 15.6 13.7 18.1 16.2 14.6 31 23 26 31.1 28.1 25.4 51 22 60
14 19.2 17.9 13.9 20.5 19.0 14.7 35 30 24 35.1 32.9 25.1 56 35 109

of the ordering method may be measured by the memory size
neccessary for the data structure after the ordering and the
execution-time for the ordering. According to Everstine[l2] they
are estimated by using two parameters, Wavg and Wrms, for the
profile method and Wmax and Wrms for the wavefront method, and
by using the half-bandwidth, B, for the band matrix method.

From the results of above numerical experiments we can remark
following items;

1. New method requires only about 1.25 times of the execution-
time by MRCM, and its execution-time is less than half of the one -
by GPS. This result indicates that NEW is also one of the fastest

reordering methods.



2. New method can generally give almost the same profile values
as GPS can, and comparing to the results by MRCM it can give
better orderings. If the configuration of graphs is complex, new
one can show its characteristics for the ordering, and the results
become best.

3. As the ordering method for the profile method new one is as
effective as GPS can, but it can give poor results for the order-
ing method for the band matrix method, especially for the non-
convex graphs. The reason is that NEW is not designed for the
decreasing of the bandwidth but for the decreasing of the matrix
profile. As the ordering method for the wavefront method NEW is

as effective as GPS is.

6. Concluding Remarks
The theoretical investigation on the minimum profile problem
could give several important results, and by their introduction
new profile reducer was proposed in this paper. Its efficiency
was examined through a number of numerical experiments, and the
results show that with respect to the profile value new method
is so effective as Gibbs-Poole-Stockmeyer algorithm, and with
respect to the execution-time for the ordering it requires only
half of GPS does. Especially, the new method can give good
results for graphs with complex configuration.

The propriety of the application of the profile reducer to
the ordering of other solvers, for example the wavefront method,
was also theoretically investigated, and we obtained the

conclusion that different ordering method is required for them.

- 18 -
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Numerical error appearing at the application of the profile
method was also experimentally investigated, and we obtained
that there exist slight difference between the band solver and
the profile solver.

All of the computations in this paper were done by using a
computer, ACOS 1000 Model 20, of Data Processing Center in

Okayama University.
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