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Normal Forms for Certain Singularities of Smooth Map-Germs
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Fumio ICHIKAWA

Tokyo Metropolitan University

In the fheory of singularity of smooth mapping, finite
determinacy has been studied by many authors [61. In [4], J.Mather
gave a complete characterization of finite determinacy, but in
general it is very difficult to check whether a given map-germ
f : (Rn,O)-——é(Rp,O) is finitely determined or not except@%or
stable singularities or the case p = 1. In this paper we give
some:classification of smooth mappings f : (Rn,O)——49(R2,0)
by an elementary method.

In '§l we recall J.Mather’s theorem on finite determinacy.

In §2 we prdve what we call Normal Form Theorem ( Theorem
2.1, Theorem 2.5 and Theorem 2.7 ).‘ In Theorem 2.1 we give
- normal forms of function-germs. As its immediate corollaries
we obtain the Morse lemma ( Example 2.3 ) and the splitting
lemma for functions ( Example 2.4 ). These corollaries are
well-known and have nothing new; however from these examples.show
how convenienﬁ and efficient it will be if we generalize Theorem
2.1 to the case of map-germs. This is what we have done. (
Theorem 2.5, Theoreﬁ 2.6 ).

In §3 we prove the Splitting Lemmas for map-germs of
corank 1 ( Theorem 3.2 and Thebrem 3.3 ) wusing the normal -

forms obtained in .§ 2.



In €4 as an application of our normal forms and splitting
lemmas, we classify finitely determined map-germs of R into
R2 of corank 1 ﬁhose 3-jets are non-trivial. An estimation of
order of their determinacy is given as well. From the splitting
lemmas develloped in 3, the classification and the estimation
of order of determinacy of these map-germs are reduced to those

of map-germs of plane to plane. Then they are carried out in a

rather elementary way.

§l. Preliminariés.

In this section we recall Mather’s theorem. Let Sn be
the ring of éifunction germs (Rn,O)-——aR and T be the maximal
ideal of Eh' By E(n,p) we denote‘the set of Cfmap germs
£ : (R",0) — (8RP,0). Two map-germs f , g € &(n,p) are k-jet
equivalent if the all partial derivatives of order ¢k at the
origin are equal. We denote by Jk(n,p)‘ the k-jet equivalent
classes and we call it k-jet space. There is a canonical projection
3% Em,p) —> 3" (n,p).

Let L(n) (resp.. L(p)) be the group of 6:localldiffeomorphisms
of (R",0) (resp. (RP,0)). The group A = L(n) X L(p) acts
on & (n,p) as follows; (¥,¥) f = 7l'°f°5f’ where (3’, ¥) e’ﬂ
and f € &(n,p). .



DEFINITION 1.1. A map-germ f ¢ g(n,p) is called k-determined

kf = jkg, f and g' are

if for any g ¢ E(n,p) such that j
contained in the same )¢'-orbit. A map-germ f is called finitely
deterﬁined if there is a positive integer k such that f is
k-determined.

DEfINITION 1.2. A map-ge;m f ¢ E(n,p) is called Co-k-
determined if for any g € E(n,p) such that jkf = jkg, there exist
homeomorphisms h : (R",0) —» (R",0) and h': (8RP,0) —> (rRP,0)
such that g = h‘°f°h.

DEFINITION 1.3, For a éimap germ £ , a vector field along f£

is é é2map germ 3 : (Rn,O)—19T?P” such that M-8 = £ where
T is a projection TRp-—>'Rp. By @(f) we denote ﬁhe set'of
all vector fields along f. Let Q(n)} (resp. 9(p)) denote
the set of all éivector fields germs at (Rn,O) (resp. (Rp,O)).
We define tf : Q(n) —> B(f) and wf : Bp) —> G(f) by

tE(3) = TE (3), (3efn)) and

wE(7) = £, (Nefp).

THEOREM 1.4 (Mather [4]). A C-map germ £ : (R",0) —> (BF,0)

is finitely determined if and'bnly;ig'there'EE‘g positive integer

k ‘such that

t£( Qn)) + wE(O(p) D M BiE).



§2. Elementary normal form theorem..

From Mather'’s theorem, we easily see that the classification
of finitely determined Cozmap germs can be reduced to that of formal
mappings. Thus, in this section we consider formal mappings.

Let K be the field of real numbers R or complex numbers C.
We denote by Hj the vector space of homogeneous pclynomials of
degree J and by 7?1 the maximal ideal of K[{xl, cee ,xn]].
For a formal power series fe K[[xl, ,xn]] ' we represent f

- ' . H2/ N\
as f = f(k) +_f(k+l) * oeee o f(j)e Hj (=2 k ). By W((;)f(k)/gx/
we denote the ideal -’rﬂrl2<"bf(k)/gxl, cee o4 af(k)/éxn> of KI[I[x;,

. = 2
,xn]]. We set Bj ’m(gf(k)/gx)n Hj and we denote by Gj

- {complementary 7 .
a linear subspace of B. in Hj (j = k+1).

J

THEOREM 2.1, ' Let the notations be as above. Then there

exists a formal diffeomorphism % - such that

BE = fh Y9 Y pan t oo

where g(j) € Gj (J = k+1).

LEMMA 2.2, Let Fi (32 2) bea formal diffeomorphism such

'y = I 3 . :
“that S)j (xi) X, + hi where hié Hj (i=l, ... ,n). Then

-} { -~ . j o, . j P
f(k) _‘Fj f(k) + hl(;)f(k)/dxl) + ...t hn(Q f(k)/gxn)
+ higher terms,
PROOF. It is enough to prove the case where ‘f(k) is a monomial.
: % %n
Suppose that f(k) =Xy oees X Then



s & s o
o = 3,1 J,'n
| oy -1 o an=l
_ 3 . iy n , %n 3
= (x; © 4 qlxl h] + higher terms).., (gn o ox ho

+ higher terms)

- 3 3 ‘
= £ FE 4y /ax)) e b (RF ) fax)

+ higher terms. Q.E.D,

PROOF OF THEOREM 2.1, First we decompose f .., into

b(k+1) + g(k+l)‘ where b(k+l) € Bk+l and g(k+1)e Gk+1' From
e es 2 2
the definition of Bk+l . there are hl, cns ,hn € H2 such that

) | 2
b(k+l) = hl(9 f(k)/gxl) + ...+ h( af(k)/éxn). We take a formal
. . _ 2.
diffeomorphism 592 given by §b(xi) = X hi (i=1, ... ,n).
Then, from lemma 2,2 we have

fo ?2 = f( + ... .

k) ¥ Ik+1) T Elke)

B ' . B .
Next we decompose f(k+2) into b(k+2) + g(k+2) where b(k+2)& Bk+2

and g },0y€ Gyype And we take a formal diffeomorphism ?3
such that

3

(i) 3:3(}(1) = xi - hl , h3 € H A(i=l, ."' ,n)

i 3
. _ .3 3,4 |
(11) b(k+2) = hl(gf(k)/axl) + e +hn(af(k)/’axn)o

B8 %3 = Fky * T(ke1) T T(kez) F Elkez) F oo

Then
Thus, inductively we can take formal diffeomorphisms ?2, 93, cee

the : ' \
and we define ¥ as Y limit of { o P30 0ee®y } (this makes sense).

Then fro =°¢ + ... . This completes

k)t Ik+1) 9 (k+2)
the proof. '

REMARK. Theorem 2.1 is:an analogy of Takens’s normal form

theorem for vector field [5].



EXAMPLE 2,3 (Morse lemma), Let £ be in the form + xi' +

oo x2 + higher terms. Then 'ﬁ‘TZ <3f(2)/3x> = 7?13 and

n
= {0'} (= 3). Thus\t(}r\_l%rmal form of f is + xi'_-l_- s + szm

i,e. f 1is 2-determined.

EXAMPLE 2,4 (Splitting theorem). Let £ be in the form
+ xi‘ +oo.. x? + higher terms. Then T2 (%.f(z)/§x> = qu2<xl,
,xi> . Thus we can take the vector space of homogeneous
polynomials of degree Jj of variables Xipqr <o 1X, as Gj (7 2 3).
Therefore the normal fcrm of‘ f 1is given by i‘xi‘ .00t xi +

g(xi+l, e ,xn) where order of g = 3.

' A
“Now, let & (n,p) be the set of formal mappings £ : (K",0)

N\ N
— (KP,O). We identify E(n,p) with ﬁ(@ .. ® M and in
~ —_— T
p

PaN .
the natural way we regard E(n,p) as K[le, ,xn]]—module.

We denote by 7 Ei(n,P) the set of homogeneous polynomial mappings

of degree i , i.e. Ei(n,p) = H, @ ... & H; . For a formal

. - : € .
mapping f f(k) + f(k+l) + o ( f(j) Ej(n,p) « J= k),

we denote by ’h\l.z<’9 'f(k)'/gx> the submodule 7 2<D f(k)/; Xir oo
o
(k)/")x > of E(n,p). We set B = M <Df(k)/gx>n . (n,p)

complementary,

and we denote by Gj a\*—'\r—""“”llnear subspace of BJ in

Ej (n,p) (3= k+l),

THEOREM 2.5. Let the notations be as above. Then there

exists a formal diffe 'om'o‘r'ph'i'sm % - such that

fcff = f(k) + g(k+l) +‘g(k+2) + ...

where g () € Gj (J Z k+l).

The proof is quite same as the proof of Theorem 2.1,

-5-



EXAMPLE 2,6, For a formal mapping - f = f(2) + f(3) + ...

. (Kn,o)"> (K2,0) , we assume that f(z) = (+ Xi'i ees xi '

2 2, . .
a Xy + ... + anxn) where a; * aj £ 0 for i¥%¥ 3j . Then,
obviously we can take a linear subspace of ( fo} ® Hj ) as Gj'

Moreover, Xi(gf(z)/ng) i XJ( af(z)/axi) = (0; Z(aj i ai)xixj)-

Thus we can take <(0,xi),... ,(0,xg) >k as Gj‘ Therefore

the normal form of f is given by

( + x§,+ ees + x2 ¢ @ 2 + ... t a x + 2:. b x es * bjxj).
- - - n 1*1 323 323 n“n

Now, for a formal mapping £ of Wthh Jacobian has rank r,

@;J
om'implicite function theorem without loss of generality we can
assume-that f is in the form f = (xl, ...’,x ,fr+l o ,fp)

A on
where f°€ 7R2 (s=r+l, ... ,p). In this case we set f = (fr+l,

v ,fp) € é\(n,p-r). We represent E és ?(ki + ?(k+l) + ... where
ff.(j)'e E.(n,p—r) (Aj=>_,_ k). We set Ej = Az(af(k)/gxﬁ_l roeee ',
(k)/bx ), 0 E'(n,p r) and we dgnote by -85 a complimentary
linear subspace of Bj in Ej(n,p—r). |

THEOREM 2.7. Let the notations be as abo&e. Then there

exists a formal diffeomorphism ¢ such that

~N

B8 = Cxprvve o B + G0y F Tgeyy *oere )

where ‘c}‘(ji'e Ej (3 Z k+1),

PROOF. It is enough to take formal diffeomorphisms 3}

such that ?j(xi) = X (i=1, ... ,r) and Sg(xi) =x; + hg

(i=r+1, ... ,n) for each j = 3. The other part of proof is

the same as the proof of Theorem 2.1, This completes the proof.

-6~



§3. Generalized splitting theorem.

In this section we assume that n x> p.

PROPOSITION 3.1, ' A two-jet ze J2 (n,p) of 'w‘h‘i‘ch‘ Jacobian

1as rank p-1'is A >~equivalent to the following ‘two-jet;

*
CXproeee Xpgr XX Feee T XX F Q) o
—_--ix? + _-I_-_xrz1 and 0L i p-1, p-1¢ j=n,

vhere Qj+l je1 X oo

i-1 < 3 and i , j *are uniquely determined by z.

PROOF. Without loss of generality wé can assume that 2z =
( X1r eee 'Xp-l' f ) where f 1is a homogeneous polynomial of
degree two. By the right linear transformation we can assume

that £(0, «.v. +0,X 4 oue ,xn) = Qj+lp: Thus f is in the form

P
f(xl»;_,.. ,xn) = h(xl, eee 'Xp-l) + <Zs=1 as,p xs) xp + .. F
p-1 p-1 p-1
. . . . + oot . .
(:4;:1 aS'J xs) xj + %E g 541 xs) .xj+l (éi::l 3 n xs) x, + QJ+1.

By the .right transformation N7 such that ¢ (xt) = Xy (t=1, ...,3)
. p-1

and ¥ (x.) = x_ * W/2UZ a5 ¢ %) (t=3+1, .. ,n), we

can eliminate the terms (2>_ as,j_xs) 'xj roeee o (D2 aé,n xs) X

And we can eliminate h(xl, 'Xp—l) by the left transformation

¥ such that Fiy) =y, (=1, ... ,p-1) and y(yp) =¥, -

h(yl, ces o p-l) where (yl, ,yp) is the local coordinates.

of (KP,0). Next we assume that in {Zaé'p g 1 oees . Zas’j xs}
the first i functions are\‘l'ﬂej“{»’lllndependent and the other
functions are written by linear combinations of them. Thén
there is a right 1ihear transformation ¥ of Xyr eee 1Xg g

such that 2z is equivalent to

(g{(xl)’ M ?/(xp-—l)' xlxp toeeo d Xixp+i-l + (2: bs,P+i' xs.)xpfi
i
+ ';0 y . o .
+ (5 bs'J xs)xJ + QJ+1 ),

-7-



the

By the left linear transformation of Yyr eee 0¥, bfai_gove is

P
equivalent to

(Xl' LI 'xp_l' Xlxp + L + Xixp+i_l + (stlp+i Xs) xp+i + * e 0
+ (Zbg 5 x) xg + 0. ).
We rewrite the above p-th component as follows
3 | .
(x + Z__ b X, ) X+ o0 + (x_,. .+ F b, , x,.) x. + Q.
P t=pti 1,t "t 1 pt+i-1 f=pti i,t 7t i j+1.

Finally, by the right linear transformation 5"/( such that

?’/ _ _ . ?,, —
(x,.) = x, (r=1, ... ,p-1,p+i, ... ,n) and (x.) = x -
5 .

(t—-—pz_;i br-p+l,t X, ) (r=p, ... ,pt+i-1) , we have the normal form (*).

The number Jj 1is determined by the contact class of 'z and
the number i 1is determined by the codimension of A 2--orbit of
z for fixed j (the definition of contact class can be seen in

'[4] ,[6])., This completes the proof.

A
THEOREM 3.2. Let the two jet of formal mapping fé€ & (n,p)

be in the form (*), Then there exists a formal diffeomorphism N

such that

f"y = (xl' e e e pr_l'xlxp + Y + Xixp+i—l + Qj+l + g(xi+l’ L 'xj))
where order of g2 3.

PROOF. 1In Theorem 2.7, we set r = p-1 and "'k = 2, Taking
\complementary A 2
the inear subspace of T <?f(2)/;;xp, cee s gf(Z)/axp+i—l,

N2
Gf‘z)/ax .’af(z)/gxn> =’m<xl, TRRNE I ST TARTY ,xn> ,

j+l' e 0.0
we obtain the normal fbrm (**), This completes the proof,



«Theorem 3.2 and,

The following theorm is an immediate consequence of' the

-esult of du Plessis [1] (3.34).

be in the

A
THEOREM 3.3. Let a formal mapping £ € ¢ (n,p)
Form (**). We set f = (xl, o 'xp—l’ xlxp+ eee xixp+iel +
-Then f is k-determined if and

A
g(xi+ll e lxj)) € E(le)'

only if (3 is k-determined.



i1
$4. Some normal forms.

In this éection we consider a dahapping f: (Rn,O)-——> (Rz,O)
of which Jacobian has rank one, Thus we assume that f is in the
form ( Xy g(xl, . ,xn)) where ge¢ 1n2. Moreover we assume
that two jet of g(xl, e ,xn) is in the form Q2 ' xlx2 + Q3
or. Q. Then from Theorem 3,3, the classification of f is
reduced to that of the mappingé (R2,0)-ﬁ>(R2,0).

Let (x,y) (resp. (X,Y)) be thé local coordinates of the
source space (R2,0) (resp. the target space (RZ,O)). Simply
we denote by (hl(x,y),hz(x,y)) the veétor field along f. of the form
hl(x,y)((Q/gx)of) + hz(x,y)((a/gY)°f). The following proposition

is a corolally of Proposition 3.1.

PROPOSITION 4.1. A twoijet Z € J2(2,2) of which Jacobian

has rank one is ,1’2¥eguiva1ent'gg one of the following:
Notation A B C
Normal form ( x , y2) (x , xy ) (x, 0)

In the case (A) , from Teorem 3.2, the normal form is givén by

( x, y2 + E;é akxk ). By a left transformation %’ such that

Y -12:_ a Xk , this is equivalent to
k23 K

(x, y2) i.e., we have a Whitney's fold singularity which is

Fx) =x and v

2-determined,
In the case (B) the normal form is given by

(x , xy + 2;: akyk ). (B*)
k=3

-10-



is

THEOREM 4.2, For a real analytic map germ £ : (R2 0) — (R-Z,O)

:here is a positive 'i'n‘t‘eg‘er k such that a, ¥ 0. Moreover

for a C'i‘map germ wWith OO—Jet (B*) Tlet k denote the minimum

k ‘such that ap $# 0. Then f£f(x,y) is C0-—*k‘—'d‘e‘t‘e’rm'i'n‘ed.

PROOF. If for any k2> 3, a, is zero then (0,yk)é§
tf( O(n)) + wf( @(p)). Thus f 'is not finitely determined.

For the minimum k such that a ¥ 0 , by the scalar multiplications

of x, vy, X and Y we can assume that ap = 1. The singular
v : . . k-1 t 1
set S(f) of f 1is given by {x + ky + 2 ta = 0} .
: =k+1

The set f-l( {Y=0} ) is given by 5 y( x + yk-l' + > atyt—l)= 0} .
, tEk+1

, S,a_J - v

Note that from'theorem oniV—sufficiency (cf, 1[3,6]) the above
sets are determined by the finite jet. We see the topological

picture of £ by the figure 1 and 2. The figure 1 is the case

where where

—~— k 1is even, The figure 2 is the case~—~— k is odd.

In the figures we denote by thich lines the set ‘f-l( {Y=O} )

and by dotted linesthe singular set S(f). From the figures

it is obvious that f is Co—k—determined. - For the real analytic
case, from the figure we see that the complexification of £ is
stable in U\-{O}, where U is a small neighbourhood of 0 in
n

C'. Thus f 1is finitely determined (cf. Propositvion 1.7 and

theorem 2.1 of [6]). This completes the proof,

C=11-
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Figure 1.
Y
A
f(x,y)
)X > >X
Figure 2.

REMARK. Even for tﬁe map—germ‘ f=(x, xy + yr) it is
not easy to determine the minimum number k such that £ is
k-determined. 1In [1] du Plessis proved that when r = 3, 4 and
5, £ 1is respectively 3, 4 and 7-determined. In general by
Complcatéd computations it can be proved that

tE(H(n)) + wE( §(p)) > M2 Q).

-12-
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Y

Now, we classify the case (C)‘in the three jet space.

PROPOSITION 4,3, ‘g‘three‘jet Z =A(x,ax3+bx2y+cxy2+dy3)e J3(2,2)

is /¢3=equivalentf§g~one ggfthe‘folibwing;

+ -
Notation Cl‘ | C1< _A.QZ' C3. 7 C4 D

Normal_form,AA(ny3+x?y) (x,yg-x2Y) ‘(X,y?) (x4xy?) (xﬂgfy) (x.,0)

PROOF. (i) The case d %# 0, By scalar multiplication of vy
we assume that d = 1, By the right transformation ,? such that

?(x) = x and. EP(y) =y - (c/3)x , we can eliminate the %erm cxy2

3 2

and we obtain the form (x,ax +bx y+y3). If b % 0, then by the

scalar multiplicatiOns of x and X we can assume that b =+ 1.
By the left transformation 7L such that ¥(X) = X and ) (¥)

, +
=y - ax> , we obtain the normal form CI . If b=0, then by

the same way , we obtain the normal form Cz;

(ii) The case d =0 and c¢ ¥ 0. By the scalar maltiplications
of X and X , we can assume that c =1, i.e. (x,ax3+bx2y+ xyz).
By the right transformation % such that $(x) =x , £(y) =

y - (b/2)x , we can eliminate the term bxzy. Finally by the left

transformation we obtain the normal fcrm C3.

c=0 and b ¥ 0. In this case it is easy

"

-(iii) The case d
fo see that 2z is equivaient to C4.

(iv) The case d = c =b = 0. Obviously, z 1is equivalent to D.
This completes the proof.

and FD are

: +
REMARK, The adjacencies of _CI

r €3 1 C3 4Gy

given by

-13-



[y
[y

where Ci<———-Cj means that the closure of C; contains Cj.

The following propositions 4.4 and 4.5 was proved by du

Plessis as the examples of finitely determined map-germs in [1]

+
PROPOSITION 4.4. The map-germs CI’= (x . y3i x2y ) ® are

3=determined.'

In the case (CZ) from Theore 2.7 the normal form is given by

( x , y3 + E; akxky + zz: bkxk ). However by the left transformation

k=3 k24
. . jz: k ) .
we can eliminate the term ~ bkx . Thus the normal form is
k=4
given by
3 5:. k
(%, ¥ + 2 2 xy ). (C,*)

'PROPOSITION 4,5. For a C-map germ f with w-jet (C,*),

such ‘that a, %X 0, £ is (k+l)-determined.

-14~



REMARK, (l) In the case CI , £ = (x,y3+x2y) has an isolated

singularity at the origin and f 1is a topological embedding.
(2) 1In the case CI , a topological piéture of f = (x,y3—x2y)
is given by Figure 3.

(3) For £ = (x,y3iakxky) by the scalar multiplications of x

and X, f 1is A4-equivalent to (x,y3ixky). It is easy to see

3

that if k is odd then f is A -equivalent to (x,y +xky) and

the topological picture of £ is given by Figure 4. In the case

where, 3

~ k is even and f = (x,y +xky) r £ has an isolated

singularity at the origin. Thus f 1is a topological embedding.

3

where
In the case %}f"’@ is even and f = (x,y -xky) , the topological

picture of f is the same as Figure 3.

-15~
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Figure 4,
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In the case C3; (x,xyz) , from Theorem 2,7 and the left
transformation we obtain the normal form

2 k.
(%, xy +kZ=4 2,y ) (C4*)

- THEOREM 4.6. For the analytic map germ f(x,y) given by

(C3*) £ is finiteiy‘determined‘ig and only if there is a

positive odd integer k ' such that ay %0, Forig dzmag germ

£ with ®-jet (Cy*) " let k<® be the minimum odd integer

such that ap ¥ 0. Then, f£f(x,y) is Co—kJ'etermined.

PROOF.. Let r denote the minimum‘integer such that *a, ¥ 0.

The singular set S(f) is given by {.y(2x + ryr_2 + > atyt-2)= 0}‘
t=r+l

And the set f—l( {Y=0~}) is given by 1 yz(x + yr"2 + > atyt_z)-
t=r+l

= 0 } . If there is an odd integer k such that a, ¥ 0 , then

£ fxrest) 5 y>0 ) nE(f i) estE) , y<0}) = 4

in a small neighbourhood of 0., We see the topological picture

by the figure 5 and 6. The figure 5 is the case &EEEQ)I is even,

where
The figure ¢ is the case ™" is odd. From the figures it
is obvious that f is Co—k—determined. If for any odd number

k ,a =0 and £ 1is finitely determined, then we can assume

k
that f is a polynomial mapping. Then the subsets of critical
values £({(x,yJeS(f) ; y>0}) and £(] (x,y)eS(f) ; y<0})
coincide , thus f 1is not finitely determined., The proof of

real analytic case is the same as the proof of Theorem 4.2,

This completes the proof.

-17-~



Figure 5,

Figure 6.
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Finally, we study the case Cy. From Theorem 2,7 and the

left transformation we obtain the following normal form

(x, x°y+ 2 axy"" + 3 by, (C4*)
r=s rst

Here we assume that as#o.and btieO (3£ s4<&, 4été60).

LEMMA 4,7. If a C-map germ f(x,y) with oo-jet (Cy*) is

finitely determined, then t< X .,

PROOF. Suppose that t =& i.e. f(x,y) = ( x ,‘xzy.+ .

2;: grxyr—l). Then for any positive integer k , ( 0 , yk)Q
r=s :

. (reviewed in §1,
tf( Q(n)) + wf( 6(p)). From Mather’s theorem ! f(x,y) is not

finitely determined. This completesithe proof.
For the rest of paper we assume that t <090, We identify
a dgmap germ f(x,y) with a formal mapping (C4*), but there will

be no fear to confuse,

THEOREM 4,8. For a C-map germ f(x,y) with oo-jet (C4*)

the following holds.

(1) If s>t , then £f(x,y) is Co—t;determined.

(2) In the case that 2(s-2)< t-1 , the topological picture

of f(x,y) 1is given by Figure 9:~-Figure 13 .

PROOF,. The set f—l({‘Y=0} ) 1is given by

U - - .
{y = 0} {xz + Eéé a!:;cyr 2 + E%i bryr 1. 0}
: - -2.2 -
=fy=0}Y{x- a/nf-(3 ay %) + ’(rEZs 2y At 4 by L.
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We set

2 .
s T

Ay = (L ay™™hH% - s byl
I=s r=t -

‘h(y)

The singular set S(f) of £(x,y) is given by

Y x2 + j;: (r-l)aiy x + Z:. rb yr -1 =-0 }
r<s

rZt

- | = =/ {-(L tr-Day"?) (ZZ (r-l)ary 224 (L rb_y*]) }}

r=s rss rzt
We set
Ao = (2 r-DayTH? - a2 b yth.
r3s r=t
(1) In the case s 2> t, from s z 3 we have that 2(s-2) >
t-1. Thus
v‘Al(Y) = —tf:btyt"l + higher terms,
A ly) = -4 tb yt_l + higher terms.
~2 t

(a) If t is odd and b, >0, then 4, (y) <0 and 4 (y) < 0
for small y % 0. Thus f—l( {Y=0 }) = {y=0} and f(x,y) has
an isolated singularity at the origin. Henceb f(x,y) 1is a
topological embedding and Co—t—determined. If t 1is odd and
b, <0 , then Al(y) >0 and .Az(Y) > 0 for small y % O.
Moreover, |

£ {v=0)) = {y=0}Y(x = £ [ap, y(t1)/2

+ higher terms}

and

S(f) = { x =+ ’_4tbt y(t_l)/2 + higher terms } .

Thus the topological picture of f(x;§) is given by Figure 7.
Co-t—determinacy of f(x,y) 1is obvious from the figure. 1In the.

below figures we denote by thick lines thé set £ fY=0‘}) and
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by dotted lines the singular set S(f).

Figure 7.

(b) If t is even and b, >0, then Al‘(y) > 0 and- A2 (y) > 0

for small y < 0. In the same way as above we obtain the topological
picturé'of f(x,y) which is given by Figure 8. The case Wwhere

t is even and bt < 0 can be reduced to the case 'bt >0

by the transfcrmations of coordinates (x,y)—> (x,-y) and
(X,Y) —> (X,-Y). From Figure 8 it is obvious that f£(x,y) 1is

Co—t—detérmineq.

Figure 8,
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(2) 1In the case 2(-5'-2)'< t-1 , we have that for small ' vy 0
Al(Y) =,ég 2(s-2) higher terms > 0 ,
A, (3) y2(5-2)

By the transformations (x,y) — (-X,Y) and (X,Y) — (-X,Y) , without

+ higher terms > 0 .

(sl)a

loss of generality we can assume that as> 0. We consider the
following cases.

(a) s 1is even and t is odd.

(b) s 1is even and t 1is even.

(c) s 1is odd and t 1is odd.

(d) s 1is odd and t is even.

In the case (a), if bt> 0 then bryr-l >0 for small‘ vy ¥ 0.
rZt

Hence Al(y‘) < ’h(y)l and <-h(y) + Al(y) £ 0 for small vy % 0.
Note that the functions x = -h(y) and x = >_ bryr”l ‘are
r=t :

topologically the same as the functions respectively x = —asys"2

and x = btyt'-l (cf. [2]). Thus the functions x = (1/2) (-h(y)
+ 1!Al(y) ) are locally monotone functions for small y % 0.

We can determine the topological picture of the singular set S(f)
by the same argument as above. Hence we obtain the topological
picture of f(x,y) which is given by Figure 9 . 1In the below

figures the thick lines with +sign (resp. -sign) mean the set

{ % = (1/2) (-hn) +{A () )} (resp. {x = (1/2) (-h(y)- VA, (3) )})

If bt( 0 then >_ bry <0 for small y % 0. Hence
rst _

Al(Y) > |h(Y)‘ and - -h(y)thl (y) > 0 for small y ¥ 0. Therefore
we obtain the topological picture of £(x,y) which is given by

Figure 10 .
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£(x,y) v
- X > > X
Figure 9.
Y
A
f(X,Y) > \ \\\ ’l” \ > x
' \
\ Y
/———_——-—
Figure 10.
A Z r-1
In the case (b), if bt >0 then — bry >0 for y >0 and
‘ r=t '

Z bryr-l < 0

rZt

for y < 0. Thus for small y >0 , .’ Al(Y) <

h(y)l

and -h(y)+ 4l (y) <0. For small y <0 , 44, (y) >|n(y)| and
-h(y)+/4,(y) > 0. Therefore we obtain the topological picture

of f(x,vy)
can be reduced to the case

coordinates such that

which is given by Figure 11.

(x,y) —>(x,-y)

-23-

The case b, Lo
b, > 0 by the transformations of

and (X,Y)—(X,-Y).



£(x,y) NSh-

\
:__/___
A4
>

Figure 11,

y:;l,>'0 for small y'¥ 0.

In the case (c), if b_ > 0 then E: b
t rZt r

Hence, Al(y) < ’h(yﬂ and -h(y)+JAl(y)<< 0 for small y >0
and 4h(y)-’A1(y) >0 for small y < 0. From the facts that

x = -h(y) and x = E;: bryr_‘1 have the same topological types
r=t
_ o s=2 _ t-1 . . \
as x = -a.y and x = bty , we obtain Figure 12. If bt-< 0,
then igf bryr_l <0 for small y % 0. Hence yldl(y) :>lh(y4
TrEt ;

and —h(y)+’A1(y) >0 and -h(y)—JAl(y) £ 0 for small y % O.

Thus we obtain Figure 12°',

Figure 12,
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Figure 12°',

In the case (d), if b_>0 then 2_ by"™ >0 for y >0
’ r=t :

and > ‘bryr_l <0 for y <£0. Thus for small y >0, ,}Al(y) <

3t ‘_ |
lh(y)l‘and' —h(y)f/ZI??} < 0. For small y< 0, /4, (y) >'|h(y)|
~and ~-h(y)- Z&(y) < 0. Therefore we obtain Figure 13. The case
b, < 0 can be reduced to the case b, > 0 by the
transformations of coordinates such that (x,y)———a(?x,—y) and

(X,Y)—>(-X,-Y). This completes the proof.

Figure 13,
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