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Topology of Complex Webs of Codimension One and
Geometry of Projective Space Curves
Isao Nakai
Abstract.

A b web of a manifold M of codimension 1 is a
configuration # of b foliations 71""’Fb of M of
codimension 1. In Chapter I, we prove that the topological
and analytic classifications are the same for complex analytic
webs of a complex‘manifold M under the condition b > dim M
+ 1 and a certain generic condition (Theorem I.4.%). This is
a complex analytic version of Dufour's theorem for C° -webs
IDB’DA]' Ianhapteriﬂ, we apply our theorem for the d webs
UC of the dual projective space. E’X of codimension 1
generated by the dual hyperplanes XVHGZPX of x € C with
algebraic curves C CiPn of degree d, and prove that the
imbeddings C CIPn are determined by the topological
structures of UC up to projecti#e transformations if 4 >
n + 2 (TheoremII.1.3). The singular locus ZKUC) of W,
is closely related with the projective geometry of C and the
dual variety and curve of C. In the final two sections, we
investigate the structure of UC for the exceptional cases
that C CﬁPn is of degree n , n+1 , €eg., rational and

elliptic normal curves, and singular plane curves.



4 35

A foliation Fi of a manifold M 1is locally defined
to be a family of level surfaces of non singular functions ui
onr M, so the local study of b webs is equivalent to one of
the diagrams of functions of the form: M-—Eée]K (K= R,T).
The diagram of this type appears often in various areas of
differential topology and its applications. Especially the
envelope theory is reformulated by the diagram of this type
which was studied by Thom, Arnol‘d,Carneiro, Dufour, Bruce,

Gibson [T,A,Ca,D,,BG]l.

4°
The preblem of this diagram is the simplest and a very
attractive part of the general theory of diagram of c”-
mappings, for which Thom Mather theory does not work because
of the fact that Maigramge‘s preparation theorem fails [D1].
This difficulty seems'ﬁot to be only on these appearence of
the diagram: In fact Dufouriproved in [D1,D2] that for non-

degenerate diagrams of three functions F,G :E{27—9}L

=~ .
SR
( or 312——>H12 ), F , G are Cm-equivalent if and only if
R :
topologically equivalent (Lemma I.0.1) wusing basically
Lebesque's theorem, and consequently that the topological
stability theorem does not hold for these divergent diagrams
in contrast to the known result that for the convergent
diagrams of Cm-mappings: ;353:;;; » Thom-Mather theory works
well and the topological stability theorem holds [B ,D,,Da,N].
.In Chapter I , we prove a Dufour typé theorem for complex

analytic case, namely if two 3-febs ¥ = (71,£2,73) ’
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The Poincaré map of a 3.web W = (71,72,73) of R

with the center x.

Figure 1.
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not hexagonal is essential. In fact any hexégonal 3 webs of
foliations by parallel lines in E2 admits real linear but
non complex linear automorphisms as E2 = 3{4.

In Chapter 2, we apply the theorem to the dual 4 webs

W denerated by algebraic curves C CZPn of degree d.

C
0f course MC have the singular locus Z(WC) = envl(wc)
degn(UC) (see Chapter II, section 2) biside which W, form
nondegenerate d webs. |

The Graf-Sauer's theorem says that UC is haexagonal
beside Z(UC) if and only if C CﬁPz is a cubic curve for
n = 2 (Theorem X.3.1, or see fBB,GS]). This result was
expanded by many authors [AG,Ba ,Ak,GC].

The restriction of UC to an intersection x: Neee N x;:g
= E’Z » X5 € C is %the web generated by the image of C under
the projection of :Pn with the center :En13 spanned by X4
ceesX o s which is a plane curve of degree 4 -(n-2) if
c - E)n—3 =Xt tx 5 is non singular (Proposition
Z.1.4). Therefore we can apply the theorem to restrictions

. v v .
of UC to generic planesIP2 =X 0 .00 Nxo, C;Pn if the

degree d =z n+2 and we get:

TheoremII.1.3. Let C , C' C E’n be irreducible algebraic

curves of degree > n+2 and h Dbe a homeomorphism of the dual

dual space IP‘I’1 such that h(¥g) = Uy, . Then h or its

complex conjugate h is a projective linear transformation.

V.
of PV,
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Corllary 2.1.5 says roughly that a complex structure of

g line bundle L >~ C on a Riemann surface is determined by

a _tovological structure of a2 net of effective divisors

linearly equivalent to the divisor D € C determining L.

In section 2, we investigate some results on the geometry
of‘the singular locus Z(MC) ,,some of which are classically
known and can be found in [GH,P,We], A point y is in Z(UC)
if and only if yv ¢ C d1is singular or an n-tuple of points

\'

in y '« C does not span yv = 1P . Correspdnding to the

n-1
mutiplicity or degeneracy of yer C, we define the
filtration P: = enle(UC) 2 envl1(UC) 2 ... 2 envln;1(MC) o)
.en and degn(wc) so that envl1(UC)!J degn(wc) = Z(UC).
Then envl1(wc) , envln_1(wc) (= Cv) are called the dual
variety and dual curve of C respectively, and envli-1(wc)

= Tan(envli(w )) (Proposition I.2.2), envli(w ) is the
) C C E———

union of the osculating n -1 -1 planes of Cv and form the

duality of the osculating i bundle of C and n-i-1 bundle of

v

c” , it follows that envll(UC) and envln-i'1(UCV) are

dual with each other (Proposition II.2.1).

The structuré of the set degn(UC) is determined by
the various secant varieties of C , but the structure of
them seems to be less known even for simple space curves.

Section II .3 1is devoted to an introduction of
relations of the quasi group structure of C and the
geometry of the web UC ; and the Graf-Sauer's:theorem.

}In the last two sections Section I 4,5 , we report
4£he wes étructure for the exceptional cases- d = n,ntl for

Theorem II .1.3. PFirst in Section 4, we consider for
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the case that C C E’n is a non singular curve of degree
n , n+l, that is the rational or elliptic normal curve of
degree n or n+l , respectively.

The geometry of elliptic normal curve C of degree

n+1

nt1l has been histrically studued by many mathematicians.

We recall from the paper [H]l the Z symmetry of

XZn+1

n+1
C which is induced from the Shrodinger representation of

on mn+1 . Theorem II .1.3 suggests

n+1

Heisenberg group Hn+1

that MC may have a sironger topological symmetry than

n+1
x Z:n+1'

and Abel's theorem, we prove the semi direct

/4 Using the group structure of the elliptic

nt+l

curve Cn+1

product GL (2,Z) P(‘(ZDHXZZDH) ‘acts on anH as
homeomorphisms of E’n (Proposition II .4.4). The fact that

n+1l torsion points of C are hyper osculating points 1is

n+1

already known by Kato [K] énd the degree of envli(&/C )
n+1
is presented, as a consequence of a general formula by Piene

[el.

Any curve of genus 1 , 0 and degree n+l , n iﬁ E’m
is given by projecting the elliptic, rationél normal curve
of degree n+1 , n from a general center. This correspends,
in turn to their webs, to the restrictions of MC to n-m-1
plane dual to the center (c.f. Proposition II .1.4). This
might be of some use for the studyvof those curves.

By the duality of curves C and cY = envln—1(wc) ,

W, 1is reproduced from cY, so we can say envli(UC) all
have faithfull information of the original web UC . So we

are led to the geometry of Envl1(UC). From another point

. : \%
of view, we can regard P = as the parameter space of the
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deformation C + yY ,y € P , and then envl'(#,) is the
discriminant (bifurcation) set.

In Section I . 5, we list a result for singular plane

cubic curves,

Last of all the author would note that the motivation of
this paper was originally a topological classification of
non singular vector bundle mappings of bundles of rank n-1 to
'n . In another paper [NZ]’ the author proved that topological
structure of generic involutive mappings f:N - P of

involutive manifolds are determined by the differential

df:¥, = ¥ of the normal bundles of the fixed point sets

"

f:N > P

NCN ,PC?P, under a certain condition. The results in

Chapter II offer a partial auswer for this problem.
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Section 0. Preliminary in Web geometry.

Let M be a C' manifold of dimension m , £ =0,...,® or

w , l1.e., Teal or complex analytic. We call a b-tuple ¥
(FiseeesFy) of C¥ foliations of M of codimension 1 a

b web of M of codimension 1 , and we say & 1is non-

degenerate if Fi are in a general position. We call a

~

) a subweb of ¥ . Two b webs ¥ =

e
(71""’Fb) , W= (7{,...,Fg) are C° equivalent if there is

sub tuple (711,..., 5
a C° diffeomorphism h of M such that h(?i) = Fi for

i=1,...,b. Then we denote h(#) = W' .

Lemma I.0.1. (Dufour [D1,D2]). Let & , W' be non-

——

degenerate C' mt1 webs of a real C'-m manifold M of

codimension 1 and h be a homeomorphism of M such that

h(#) = ¥'. Then h is a CT¥ diffeomorphism of M for r =

© oW, This folds also for germs of m+1 webs.

A CT-b-web & is octahedral (hexagonal for m = 2) if

/ is everywhere 1ooa11yCr equivalent to a b web of R™® or
ch® by foliations with parallel hyperplanes as. leaves.

In other words, we can say that ¥ is’octahedral if W is
everywhere 1ocallyCO equivalent to the octahedral b web by
hyperplanes, for the real case of b > m+1 ,r~=« by.Dufour's
theorem (Lemma I.0.1). Although this equivalence of
definitions was already known in [BBJ). In the following

we introduce the classical results of web geometry along the

book [BBJ] and we restrict ourselves to the case n=2 .



Let & = (71,F be a nondegenerate C'-3-web of

29 3)
C'-2-manifold M defined by nonsingular cf-1-forms W s Ws
ws with w1-+w2i%m3 =0 and r = 3,...,°,w. Then we see

Q=w1/\w2 =w2/\w3 =w3/\m1

holds and @ is nonsingular. We define the functions hi by

fer i = 1,2,3. Then we see
Y = h3 wy —h2 wy = h1 Wy -h3 wy = h2 W, —h1 Wy

and

for i =1,2,3. We define the function k on M by
dy = k @ .

Then we see

By, -hy 3 = hy 3-h

=
]
o

= h 3,1 o,

2,1 3,2

where h 3/9x. h. .b

i,] J i
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It is easy to see that the 2-form dy = k @ 1is
independent of the choice of 1-forms Wy oy Wy ,w3 defining
the foliations 71 ,72 » ¥4 , but dependent only on the web ¥

3
(§6-8 in [B1)). We call k , 2 , dy=k @ as follows:

k ¢ web curvature of ¥

2 : surface element of ¥

dy = k¥ @ ¢ normalized surface element of ¥ .

Let x,y Dbe a local coordinates of M and Uy be a
local level C¥ functions defining Fi and W be a C'-

function such that
W(u,‘,uz,uB) = O .

Then we call W a web function of # (or Uy s Uy ,ku3).

Let wi,j'k

i,j,k = 1,2,3. Then k , dy , @ are éalculated as follows:

= 83/3u.3u.8u W and w. = W.-du. for
i"737 7k i i i

Q =W, W -du1 /\du2 = WZ\AIB'duzAdu3 = W3W1 . du3/\du1 ,

172
1 3 2 Wr

dy = = z =——=—-¢°10g — ¢du_Adu ’
2 r,s=1 Buraus ws T s

SN A R P
2 W
A, log —
i,] W W Jdu_Jdu W

/0
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r's r s r's s r
Theorem 1.0.2. Let & Dbe a nondegenerate Cr—B—web of a
cT-2-manifold M and T = 3,bye0.,2, 0 (real or complex

anzlvtic). Then & is hexagonal if and only if the

normalized surface element k Q (or the web curvature k) is

identically zero on M.

For the proof of this theorem, see e,g, [B1]. This

result was expanded by many authors (see [ BB,Ch]}).

The geometric meaning of the web curvature k is

explicitly explaned in the next section.

)
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Section 2. Maps associated with webs: Poincaré map.

The geometric structure of a web is translated into the
structure of the translation maps T%’i ‘between two leaves
along leaves possing through them transversally (see Fig. 2).

These translation maps yeald manu topological invariants.

In this section we study nondegeherate .analityc 3-webs
of an open neighbourhood [ of 0 € E2 , W = (FT;FZ,FB)
defined by level functions uy :(E2,O) + (CL,0) . We define
Usysp = u; » n €%Z, i=1,2,3 for a convention. Let Lp =
{pt €U ]ui(p’) =ui(p)} denote the leaf of 7, passing

through the point p!' € U. For a point q € L; ,and j,k#1i, the

translation map Td ok, (Lj,p) > (Lk,q) is defined by
- joirye] p q

ik - ky -1, j

Tp’q (ui | Lq) (uy | Lp) .

This construction of Tj'k is recovered by the geometry of

P,q
W T%:g(r) =g if L; é Lg = {s} , and assuming L; i
is connected, the germ T%’g at p 1is independent of the
4

Tj'k as Tj’k
PsP P

choice of level functions u:.L . We denote

Clearly we have

and

/2
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The local translation map A;:Lls{ = +;'k s . Figure 3,

/3



Next we define the germ (rotation map or Poincaré map)

as

1,j.k k,j i,k oi,] i i
plsd X - T7%9d o pdeX plsd . (g , > (L, ,
P P D p ( b p) ~> ( o p)
for a distinct triple (i,j,k). We denote P;,i+1,i+2

simply as P; . By the definition we see that

Pi,j,k c Pi,k,j = id
p P

and

141 o pi,it] | gi+3,i44 , pi

P i
p p p p

from which we have

141y piti 141y-1 _ i iy-1
(ug oIy Do Pt ey I L7 )7 = uy ypeppeluy L)
which we denote simply by
=i+2 ‘
P 7 s (Thuyn(p)) > (Byuyy5(p)) .

We define ﬁ;’j :(E,ui(p)) > (E,uj(p)) by
Tied = (u. ik o 1K ey, |nd) T .
(qu p) > (uy 5 |

p

Then we have

!4



i _ =i+1,i+2 Ti’i+1
p p P p

Next we introduce a local translation map in & the
range of us . Let s € © be small. Then leaves Lé and
u{1(ui(p)+s) have a unique intersection q <close to p for

i #j. We define the local translation map »Aiig :(E,ui(p))
> (C,u;(p)ts) by
i,k _ k,k -1 '
Ap+s(t) - ui ¢ Tp'q ¢ (ui,uj) (truj(P)) »

for k #i,j.(see Figure 3). We denote sometimes as

A;;E(t) =t 4 S .

By an infinitesimal calculation we see that

ik - ’
Ap+s(ui(p)+t) ui(p) +t + s ¢ Rz(t) ,

where R2 denotes the remainder terms of order 2 2 .

Note that

i,k o i,k _ .
Ap+s Ap-s id

For a point p € U , we define the mapping C;

(C,u;(p)) » (C,u;(p)) by

7S



C;(t+ui(p)) = uy 0(uj,uk)_1(uj(ui,uk)—1(t+ui(p),O) ,

uk(uj,ui)'1(0.ui(p)+t))

and C;’J:(L%,p) > (L%,p) by

cled - (w1 )y Mo ctoqu, | LI .
o (u, | p) o (uy |Lp)

It is easy to see that ctsd is independent of the choisge of

the level functions ui .

By an infinitesimal ecalculation, we see that C; is of

the form:
i \ — H
Cp(ui(p)+t) = ui(p) + 2t + R, '(t) s

where R2‘ ~denotes the remainder terms of order 2> 2 .

6
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Section 3. Calculation of Poincaré map.

We study a non degenerate analytic 3-web of an open

neighbourhood U of 0 € Ez . Fiest we assume that the level

functions and the web function are of the following form:
(%) uy; = ox ,
u, =y ,
- — 2 2
u3(x,y) = w(x,y) = x +y + a(x“y-xy©) + Ré(x,y)
and
W(t1,t2,t3) = w(ty,t,) - tg R

where R denotes the remainder terms of order > 4 such

4
that RA(t,O) = RA(O,t) =t and RA(t,t) = 0., Then

I
L, = y-axis , L% = x-axis and Lg = {w(x,y)=0} .

Let (0,y) € Lg . By the normal form (%), we can easily

see that
Tg'z(o,y) = (y,0) .

Let Tg’B(y,O) = (y,yT). Then, by the equality

{7



94

L

W(u1,u2,u3) = w(u1,u2) -0

2 2
y +yqg talyTyy-yyy™) R (Gyuyy) =0,

we have
1= v - aly? () sy (7)) ¢RI
_ 2 \
= -y + 2ay”~ + RA(y) .
Clearly
T8'1(Y:Y1) = (O'Y1) ’
so we have
(a) Py’22(0,y) = (0,5 .

and similarly we have

P2’3’1(X,O) = (X1,0) ’

X, = =x + 2ax3

1 + Ri(x) ’

hence we have

Fg(t) = -t + 2att + RI(t) )
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Next we consider for a general uy and W .

Let ij_(O’O’O) = ai ’ i=1 .2.3 and {W=O} = {w(t1 ,t2)+3.3t3

0} with an analytic function w on 02 such that wi(0,0)

=a; i=1.2. Then

(%) Wity ty,ty) = £ty ,t,,t5) (wlty,t,) +agty)

with an analityc function f with £(0,0,0) =1 . Let ui(t)
= w(t,0) , ué(t) = w(0,t) and define the functions f' and

w! by the next commutative diagram:

£, w: @0 ——5 T
(u—frué:id) J’ ”

£, w': @0 — ¢ .

Then £'(0,0,0) =1 and w'(t,0) = w'(0,t) =1t .

Applying Poincaré's lemma to the function
(t,t) — w'(t,t) ,

we see that there is an analytic function germ h:(Z,0) ~+

(€,0) such that h'(0) =1 and

w'(h(t),h(t)) = h(2t) .

Define the functions f" and w" by the next

commutative diagram:

2
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f'l,w!' : 07 ——— (@
(h,h,h) l !
£, 2 00 — 5 .

Then f£"(0,0,0) =1 , w"(t,0) = w'(0,t) =t and w"(t,t) =

2t . We can replace the level functions us with
u = h e ul! ¢ u. for i = 1.2
i i i
n = -
uj h ( a3u3) .
and the web function W = f~(m4-33t3 )  with
W”(t1,t2,t3) = (m"(t1,t2) - t3
Then
(b) wu(u" a! u") = w"(ul,ult) - u =0
1, 2’ 3 b4 2 3 ?
aug/aui(o) =a; ,1-= 1,2 ,
1 = o
8u3/8u3(0) ay
and
W (b, ,6.) = b, + t, + altt,-t.t2) + R,(t,,t,)
1772 1 2 172 7172 471272 !

with a number a € © ., By (a), we have

2



iy o pi,itl,it2 S B
(up | L) ¢ Py o (u" [ L) (%)

= -t + 2at® + R! (%) ,

1
4,2(
i=1,2,3, 8 #1i. By this together with (b), we have
. L 54114 .
(u, [ L) o P AFT3*2 0 (y L1y~ T(4)

3

- 2
= -t + 2a aj t R) (%)

Therefore we proved that for any point (x,y) € U ,

i,i+1,1i+42

(X9Y) c (ug‘l L%XvY))-“(uQ'(X’y)-*-t)

() (ugl Lf,,yy) © P

= uz(x,y) -t + kl(x,y) t3 + Rg(t) .

where kl is a function on U , 2 # 1 . In the following

"we are calculate the function kg .

By a direct calculation with the form (*¥) , we see

that the web curvature of & (see Section 0) is

k(w)(0,0 ) = k(w+a3t3)(0,0 )

k(w +a3t3)(0,0.)

1]

k(w'+tazts) (0,0 )



Therefore we have, by (c),
_ 2 _ 2
k2<o,o)- = 2a ay = k(W)(0,0) - wy;(0,0,0) .

Summaryzing ‘these results above, we have

be level functions

+

Proposition I.2.1. Le
2

Uy s Us o, usg

of a 3-web W of and W be a web function. Then
i 1,141,142 i -1 .
(uz , L(X,y)‘)o P(X’y) e (uQ, l L(X,y)) (uz(X,y>+t)

= u (,y) - b KO0 G,5) WG (uy uy,ug) 87 + Ry (1)

for 2 # i , where R4 % denotes the remainder terms of

order > 4 .

Next we prove

Proposition I.2.2. If a nondegenerate 3-web of an open

neighbourhood U of 0 € EZ with level functions ug and a

web function W is not hexagonal, i.e. the web curvature k(W)

is not identitcally zero on U, then k(W)’Wi(u1,u2,u3) is

not constant restricted on a leaf L; for an i = 1,2,3.
Proof. "For simplicity w= suppose us and W are of the

normal form (*) and k(W)(0,0) =a =1 and k(W)-Wi(u1,u2,u3)

is constant restricted on each leaf L; for 1 =1,2,3.

Y
Y
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Then we have, on the leaf {u1=xo},

.2 , 2, |
k(w)(xoy.‘f)"'\"]»] (X'O5y:vw<xoyy)) :‘K(W) (XO,O)QW»] (XO’O’XO)

1

and on the leaf {u2=y0},

I}

k(W)(x,yo)'wg(x,yo,w(X.yO))

X(W) (x4,

0) ,

= k(W) (0,y,) :
from which we have
‘ W
1 ) 2
k(W) = o——enre log(—=) = 0 .
W1W2 9xdy W1

This is a contradiction to the supposition

Therefore we have proven the proposition.

23

k(w)(0,0)

k(W) (0,5) W3 (0,5 0,,)

a
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gection 3. Characteristic sets of two function germs on

(c,0) : stable and unstable sets.

Let P, C : (€,0) » (C,0) be germs of analytic
functions with Taylor expansion P(z) = z -k 2z’ + ... and
c(z) = 2z . We define the germ S(P,C) , U(P,C) at O € C

to be the direct limits of the truster sets as follows;

s(p,0) = 1ig { 1in O PP @D ev, 2z U
0OeU:open 120
j(i)y=> W as i —=> N
U(P,c) = 1lim { 1in A PP i P igyer, 2

JOeU:open 1=
jH)D 8 as 1K

} R
U } )

where C , P are respresentatives of C , P and J runs over

the set of all sequences of positive integers suchcthat J(i)—s & as

i 0 and the limit exists. Clearly this is we defined and
we have C(s(P,C)) £ s(p,C) , C(U(P,C)) = U(P;C) and
s te) =ue,0 , e o =s@,0 .

The purpose of this section is to prove

Proposition I .3.1. Let P(z) =2 -k 2>+ ... , C(z) =

2z be as above and assume k # 0. Then

1

s(p,c) = — R € ¢ ,
vk
V-1

u(p,c) =— R C ¢ ,
vk

where TR € @ denotes the real number field.



In the following we shall analyze the germs S(P,C)

and U(P,C).
3 +

First we suppose k =1, i.e., P(z) = 2 - z

and we analyze in the domain of convergence.

By the Taylor expansion

z .

—_——— =g - a;z3 + 3a zsa— 3¢5 a z7 + 3+57 a z9 ~ e
v 2
1+2az

we have
2 zZ
< z - z3 P ees < — ’
142857 C Y142b2°

for any sufficiently small real number z > 0 and a , b
with 0 < b <1 < a ., Define sequences of real numbers a.

bi and ¢, by

i
. a. ‘ b.
a 1 =____l__ R b..{-‘1 :__;l___ ’
i+ f——————s i ————s
1+2aai2 1+2bbi2
) _ 3
Ciyq = P(ci) =cy -c;” F .. ,

with sufficiently small ag = bO =cq 2 0. It is easy to
see that
1 1 1 1
;——2— = ———2— + 2ai ’ '1')'——2‘ .— 'b—é- + 2bi ’
i &0 i 0

by which with the inequality above, we have:
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(1) —— = a. < ¢, < b, = ——— .
/E_T—~T_ 1 * 1 Voo .. 1
a1+~—§ 2b1+——§
29 g
Next we claim
(2) Let zg €T -0, Ziy4q = P(zi) and suppose z, > 0
Then
2 1
lzil > Za3 ’
for i =0,1,... with some real number a > 1 .
Proof. By the definition of z. , z. =z, - z.3 + O(zé),
i i+1 i i i
we have
R o B N EAE N M E T L
Applying (1), we have
2, 1
Z . > ’
l —
v . . 1
23,(1—10)+——___§
Z; |
0

for an a' > 1 and a sufficiently large io and i zin ,

«v., from which we have (2).

Furthermore, -under the the same condition as (2), we

claim

$us
L



To prove the claim (3) we prove the following statements

(4) - (6).

1 2 4 5
(4) if zm < arg z; < 3T or §ﬁ < arg z; < g7 and ]zil
# 0 is sufficiently small. € 1 is sufficiently large )
then Izil < [zi+1!.
. _ 3 4
Proof. By the equality Zigq = 23 - zg0 * O(zi ) , we
have

25 41] 2 Izl

1
> lag] + 5 cos § <]zl
/...;.
= 23] + 22 a1
SR
for sufficiently large 1i .
(5) If 0<@ <arez, <3 and [z] #0 is
sufficiently small, then
LN 2
larg z;,4] < |arg Zil - o7 sin o - lzil .
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4

Proof. By the definition of By s We have

1)

log 2z, log (z, - zi3 - O(ZiA))

i+1

i

2 L3
log z, + log (1 - z,” + 0 (zi ))

- 2 n(, 3
log 2, - z; 0 (zi ) .
from which we have
l | = | 1 s4q]
arg z. = -Im log 2z,
it 27'“/—-_1— i+
1 5 1
= | Im log Zy - Im Zs +
2mv -1 2/ -1 2/ -1
1
1 . 2 3
< |larg z. =~ =— |sin 6] |z.]| + Im 0"(z.”)|
1 2T 1 2“_/71— R
< |arg zil - i% sin 6 - Izilz‘

61

Im O" (ziB)I

for sufficiehtly small Zi where we take the blanch of

log z such that 1log 1 = 0.

Similarly to (5) above, we can prove

m

(6) If 0< 9 < Iarg,zi - 7| < 3 and 1z #0 is
sufficiently small, then
larg a,,, - | < larg 2, - 1] - & |sin 8]+]z;]"
i4+1 i AT i

2y



By (4) and (5),(6), we see that if z; > 0 then

i a
0 < |arg zil <3 or 0% larg 2y - ] < 3 ,

for any sufficiently large i , and

. T 2_ 4
il_J;mw arg z; € [-3"§:[ v [é-n -3—1r] .

Now we prove the claim (3). We suppose arg z, > 6,

0<6 <2 . Then by (5) and (2), we have

3
1 .o 2
larg Zi+1! < |arg Zi' -7 sin 6 - Izil ,,
1 . 1
< larg zi] - 77 sim 5] 533 .
iy .
Since I sax T °  a8s i+ oo , it then follows that
k=10
arg zi[ +® agg i+ .
But this is a contradiction, so we have proven that 6 = 0 .
Similarly we can prove that if |arg zi] >0, 0%
le - w| < % , then 6 = m . This completes the proof of the

claim (3).



pProof of Proposition I.3.1. First we assume that %k = 1 .

By the claim (3)
i
arg P~ (z) 0 , ®m ,
if Pi(z) + 0 . Since the expansion C preserves arg P*(z),

we see that S(P,C) C RCC . To see that S(P,C) = R CC

is an easy exercise with the order of the convergence (1).

Using the coordinate ' =vV/-1T % , P , C are of the

forms:
P-1(z') = z' + 213 4 e

VT (2 - 22 + vua ) = /=T P'(3z)

C(z"') V-1 C(2) .

By this and the statement for k =1 , we have
U(P,C) = s(P71,c) = /ST S(P',C) =/T R C G .

For k #1 , 0, by the linear coordinate change h:l >
€, h(z) = vk t , we can normalize k =1 , i.e., hoPch-1(z)

=z - z3 + ... . Then by the ststement above for k =1 ,

1

h(s(P,C)) = S(hoePoh™ ' , hocoh'1)



i

1

= S(hePeh™ ,C)
=R C ¢ ,
and similarly we have
h(u(p,C)) = /-1 R ,
from which we have
s(p,0) =L R , u(p,0) =] m :
vk vk

This completes the proof of Proposition I.3.1.



Section 4. Proof of Theorem I.4.1.
In this section, we prove the theorem:

- (F T 1 = (F! )
Theorem I.4.1. Let W (f1""’fn+1) , W (f1,...,/n+1)

be gserms of nondegenerate analytic n+l1 -webs of " at 0 of

codimension 1 , and assume that for any i =1,...,n+1 ,

there are j , k # 1 such that the restriction of the subwebs

,F1) to the intersections of leaves

)

2 :
‘f.\ LO » (-\ L(')'Q' , OGL%,L'QO‘ . LQO' € FZ N L!Q‘ e F‘/‘QI

2£1,i,k L Ai,i,k

are not hexagonal. Let h be a germ of hemeomorphism of

(t",0) such that

n(W) = W' , i.e., h(#;) =% ,i=1,...,n¢1 .

Then h or the complex conjugate h 1is a complex analytic

o —

diffeomorphism of (T™,0).

Remark. The condition for & , ¥' 1in the theorem is too
strong. This is used only for the resuction for the case

n =2 .

Proof of the theorenmn. The ststement is for germs of
mappings and subsets at the origin O in ¢, But
throughout the proof, we suppose all mappings and subsets are
givem by their representativés in an open neighbourhoods cf
the origin, and we shall analyze the germs by those
representatives. For simplicity we denote sometimes the
germs ambiguously as subsets and mappings of t" when no

confasions occurs by the notations.

12
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Reduction for the case n = 2. Let us ui‘ be analytic
level functions for 7. , F.' . Then h( () LZ) =
i i g s 0
2 L#i,7,k
%(ﬁ\ LO' and h 1is a homeomorphism of nondegenerate 3-
LEL,j,k
z e z Fv' 7v 71 3 i
webs (fi,fj,fk) , (fi,fj,fk) to the intersections.
Applying the statement for n =2 +to these 3-webs, we sece
that the restriction of h or h to (r\ L% is an
R#i,i.k

analytic diffeomorphism and in particular this induces the
diffeomorphisms h2 of (€,0) so that the level functions

Uy ui are conjugate:

w, : (. OV LY 0 —— 5 (€,0)

Y e, 5,k O
: L ong
u! : ( 0OY L%',O) _—s (,0) commutes,
Q#i,j,k ‘
and h2 or Hg are analitic, for 2 = 1i,j,k.

Since h maps a leaf of 7, +to a leaf of 72' for 2
2 =1,...,n+1, the level functions uﬂgui are cuhjugate by

h and hQ :

u, : (t™,0) _— 3 (T,0)

(* ) h ] . J hy
ug @ (€%,0) —— (€,0)

commutes for £ = 1,...,n+t+1. The result that hi , hj R hk

or their conjugate are analytic holds for any choice of 1i,j,k

we see that hi or. hi are uniformly analytic. By the

diagram (*), we have

33
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6/
-1 '
h = (u%,...,uﬂ) (h1,..,,hn)(u1,,..,un) ,
so h or h is analytic.. This proves the implication cf

n =2 = n2>3 . Next we prove for the case n = 2 .

Froof for the case n = 2. First we suppose that the web
W , W' are of the normal form:defined by the following level

functions:with web functions:
(a) u, = u1' = X , u, = u2' =y ,
_ 2 2
u, = w(x,y) = x + y + k(xSy-xy~) + RA(x,y) ,

u3'= w'(x,y)=x +y + k'(xzy—xy2)+ Ri(x,y) ,
and

w(t1,t2,t3) = w(t1,t2) - t3 ,

t — ! g -
W (t1,t2,t3)- W (t1,t2) t3 ,

‘where R, , R} are the remainder terms of order > 4 such

4 b
that RA(t,t) = Ri(t,t)

0 and R,(t,0) = R, (0,8) =t ,
Ri(t,O) = Ri(O,t) = t . Then the leaves are Lé = L(')1 =

y-axis and Lg = Lé2 = x-axis 1in Ez.

We introduce two invariant germs of subsets associated

with the web ¥ :

3¢
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)2

SU) = 8(((uy 4 1Lg)°Pg (@) (uy 5 11g) ™

(uy_;1L5)e03 W) e (uy 4115 ™ )

_ =3-1i 2
= S((Pp ()= , ¢)
and

uiw) = TUE W, o) :
for p ¢ Lé , 1 = 1,2 , where S , U are the stable and
unstable sets, Pé'p(w) , Fi‘i(w) , C%’i(w) are the mappings
associated with the web # and C(z) = 2z (Note that Cé(z)
= 2z by the form of ¥ , so C2°(#)(0,2) = (0,2z) and
03'1(0)(2,0) = (22,0) , For the definitions, see Section 2).
Note here that Si(4) = So(#) and UL(W) = US(W) by the

definition.
First we assume the following condition (G):

(G) k-, k' # 0 and the function k(W)-Wz(x,O,x)

restricted on Lg = x axis is non singular at O .

Then arg k(W)-Wz(x,O,x) is non singular at O
restricted on the real lines S%“'or Ué = V-1 Sg as a real
valued analytic function, Here we assume the first case

(for the other case, the argument goes the same).

J$
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By Proposition I.2.1, we have
(FZ. gy)2(8) = & = 2%(W)(x,0)-W3(x,0,x) > + R, (x,0) (%)
(x,0) - X, Six,0,x 4% ,

where k(W) is the web curvature of u; , W and
k(w)(o,o)ewz(o,o,o) = k(w)(0,0) = k , W, = aw/ati .

By Proposition I.3.1, we have

1

1 -
5(x,0) = 7 - R C T :
2k(W)(x,O)'W2(X,O,X)
U - V-1 R CC ,
(x,0) ~ >
2k(wW) (x,0) *W5(x,0,x)
and similarly we have
’
2
C
5(0,y) =7 - S '
2k(W) (o,y) -W3(0,y,y)
2 - V-1 C
U(O,y) = R C ‘

/2k(w)(o,y)-W$(O.y,y)

We define the following'real analytic mappings.

» 2
M,z (R x 52,(0,00) > (7,00
M, : (S§ x U1,(0,0)) » (T,0) ,
1 1
My (U] x 8,(0,0)) > (£,0) :

by

14



: A
Mo (A,x) = - , X € R, x €S

Y2k(W) (x,0) Wa(x,0,x)

onN

2, 1
MyGeuy) = x #5070y, (k00 €8],y ey

2,
MB(X’Y) =X +0 3 y ’ (X,O) € U% ’ y € SO »

where +§’3 is the lccal translation map of the range of Us

defined in Section 1, and we denote

1 2 1 3 _ 1
CX - M»](IR !X) » Cy - MZ(SO’Y) » Cy - M3(UOIY)

and G, , G, , G3 be the collections of manifolds

={c3 1
={cg |y € 53 .

3

ol 2 _ (R -
¢, = {c, | x € S5t G, = {cy |y € Ugt » G

Proposition I.4.2. Assume that the real valued function

arg k(W)(x,O)'Wg(x,O,x) restricted to the real line Sg(W)
2

is topologically non singular at 0 € T ., Then C-2 , G3
are_germs of real analytic foliations of G ==112 of

codimension 1 , and G1 forms a real analytic foliatiop of

codimension 1 on a germ of deleted neighbourhood U of

Sg - 0 in € at the origin 0 € T° , on which (€ 16,,G;)
forms a nondegenerate 3-web, where we mean by a germ of

deleted neighbourhood U a germ of a subset at 0 €& E2

represented by a set of the form U' - (Sg-O) such that U!

is an open neighbourhood of Sg -0 in € at the origin.
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Proof. Since Sg , Ug = V-1 S% are real lines and

dMi(O) =id : ToC 5T, for i = 2,3, M, , M, are gernms
of real analytic difféomorphisms‘and G2 ' G3 are germs of
nonsingular real analytic foliations of codimension 1, and
clearly G1 and G3 are in general position. So we
consider for G1 and G2 .

Since G, 1is real analytic, the singular point set

2= {(x,x) € Eb<S§]the leaf C; is not transversal to

the foliation G5 at M;(A,x) }
is real analytic. It is easy to see that if I = R x Sg
' 1 1 2
= &
then Cx SO for any x € SO . However

drgk(W)(x,O)'Wg(x,O,x) is topologically nonsingular at O
Sg » so My 1s an open map beside the subset O XAsg by

the form of M;. Therefore we see that I 1is a proper real
analytic subset and there is a germ of deleted neighbcurhood
U of (R-0)x0 in (R-0) xS5-Z% at 0x 0 and |
the foliations G1 ’ G2 are in general poéition on the germ
of deleted neighbourhood MT(W of Sé - 0 in ﬁ at 0 .

This proves Proposition I.4.2.

Now we prove Theorem I.4Z.1. The following is a part

the theoremn.

3&
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Proposition I1.4.3. Assume the condition G and other

assumptions above. Let h , hi be germs of homeomorovhisms

such that the following diagram commutes:

(%) u, : (€%,0) —s (¢',0)

o J ng

ui': (EQ.O) —_ (E1,O) ’

for i =1,2,3. Then hy =h, =hy; and h = (hy,hy) and

h , hi or their coniugatés h , Ei are complex analyvtic
diffeomorphisms.
Proof. It is clear that h1 = h, = h3 and h = (h1,h2)

hold by the normal form (a). We have only to prove h, is
complex‘analytic diffeomorphism at 0 T .

Recall that the real analytic 3-webs G = (G1,G2,G3) )
G' = (G{,Gé,Gé} of codimension 1 of € are constructed

by purely topological structure of the webs ¥ , #' , so we

see that
- t
hy(Gy) = Gy ’
for i = 1,2,3 and especially we have
(5], oy(W)) = 8 (W)
205(x,0) (n,(x),0) '

1 1 '
200,00 = Vw0, 0) (F)

and

y
el
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2 20y
hy(85(w)) = sglwr) ,

from which, with Proposition I1.3.1, we have

higk R
hy ) =
/2% (W) (x,0) -W5(x,0,x) Y25(W1) (h (x),0) +Wp%(h, (x),0,0, (x))
/TR /T R
h( ) =
21(W) (x,0) *W5(x,0,%) 2(W 1) (hy (x),0)*W5% (h, (x),0,h, (x))

for x € SS(W) C T . Since the real valued function

arg k(W)(x,O)°W§(x,O,x) restricted to the real line S%(W) C
C isbnonsingular at 0 €T , the function

arg k(W')(x,0)-W4%(x,0,x) restricted to S5(W') C T is
also topologically nonsingular at 0 € T for h2(G1) = G{ .
So, by Proposition I.4.2, (G1,G2,G3) , (G',Gé,Gé) form
‘nondegenerate real analytic 3-webs of codimension 1 on germs
of deleted neighbourhood U , U' of Sg(W) -0, Sé(W') -0
in T at ﬁhe origin. By Dufour's theorem (Lemma I.0.1) ,

h2 is a real‘analytic diffeomorphism restricted on the non-
empty set U N b3 (U!) .

By the diagram (#**), we have the following commutative

diagram:
(%) #2030 x (8,00 ——> (E,%)
h2 i & h2
+#2:2(01) hy(x): (€,0) ——> (T,hy(x)) :

for any point x € T . By this diagram, we see that

Yo



h2 is a real analvtic diffeomorphism of (T,0).

Since the homeomorphism h2 carries all right angls in T

formed by real lines Szx O)(W) and sz O)(W) =
eS| ng O)(w) passing through 0 € T for x € Sg to the
. 1 1
right angls of S (W') and U (W') at
(h,(x),0) “(h,(x),0)

0€lT , we see that h or the complex conjugate h2 is

2
conformal at 0 € T , respectively whether h2 is orientation
preserving or not, and agaiﬂ by the diagram (*¥%), we see

that h2 cr h2 is conformal on a neighbourhood of 0 € .
Then Reimann's theorem says that h2 or 32 is complex
analytic at 0 € T .

This completes the proof of Proposition I.4.3, which is
a particular case of Theorem I.4.1 for n = 2 and the

condition (G) holds. Next we consider for general case of

n =2,

Since the curvatureé k(W) , k(W') of & , W' are not
identitically zero on a neighbourhood of the origin 0 € m2 ;
by Theorem I.o.1 and the assumption of Theore I.4.1, there
is a point p € Ez sufficiently close to the origin such
that k(W)(p) , k(W')(h(p)) # 0 . By Proposition I.2.2,
k(W)fWi(uT,u2,u3) 'is not constant on a leaf Lé =
ui-1(ui(q)) fer a sufficiently small ui(q) and an 1 =
1,2,3 . So we may assume, in addition, that
k(W)-wg(u1,u2,u3) is nonsingular at p restricted‘cn L;.
This property inherits after refcrming the functions uy

to the normal form (a). Applying Proposition I.A.Bv for

4y
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[

the reformed webs, we see that h (h) is complex
analytic at p € T and hj (Ej) is complex analytic at

uj(p) € for j =1,2,3. Again by the diagram (***):

(%) +%’k u, (p) : (C,0) — (E,uj(p))
hj i i hj

+%,k ui(h(p)) : (T,0) — (E,uj(h(p))) ,

(we gave in the proof of Proposition I.4.3), we see that

hj (Hj) s jJ = 1,2,3 are complex analytic at O € T hence
_ ) -1 . —— . .

~h = (u1,u2) (h1,h2)(u1,u2) (or h) is complex analytic at

the origin O € Ez .

This completes the proof of Theorem I.4.1.

3
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Chapter II . Application to Projective geometry of

Projective space curves.

In this chapter we- study geometric structure of d-webs

UC generated by projective curves Cd C H’n of degree d.

UC is defined to be the collection of dual hyperplanes yv

= P

forms a complex analytic
4
n

v
CP.,y€C. Then 0,

d-web beside the algebraic singular locus Z(UC) CPp

n-1

The structure of Z(MC) is also studied in the descending

sections.
Section 1. Proof of Theorem II .1.3.

We say two webs MC » MC‘ generated by algebraic

curves C , C' C E’n are topologicallyvequivalent_ if there
is a homeomorphism h of E’n such that for any leaf xv ’
x € C of UC , the image h(xv) is a leaf x'Y for an x!
C' . Then we denote h:l/, > U , or h(UC) =Wy . Our |
problem is to classify all webs MC up to this equivalence
relation, which is a classification of projective curves C.
In this chapter, we denote by P(x1,...,xa) the

subspace spanned by XqreoerX, in E’n and denote by

UC(X1"”’Xa) the restriction of UC to P(x1,...,xa).

We define two singular sets envl(wc) and degn(UC)

as follows:

€3
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envl(ldc) = {x € IPX | %Y has a contact with C at a
smooth point or <Y n (C) # 9§}
= {x € H’Xl mx,(xy,C) > 2 for an x!' € XY}
= {x ¢ H°§| the geometric number of points of
x¥A C is less than 4 } ,
_ v Y . . vV o_
degn(wc) = {x € H’nl x' N C is degenerate in x = TP __
where "degenerate' means that

some distinct n points X4 5 e ,}&16 XV/\ C are
coplanner.in. x. , i.e., XqnoeesX does not span =

The variety envl(wc) i1s known as the dual valiety of C

defined similarly to the dual plane curve (see [L,W]).
The detailed structure of Z(UC) are investigated in

the next section. First we offer the following proposition.

Proposition I .1.1. Z(MC) = degn(MC) v envl(MC)

Proof} Let the multiplicity be m (xV
: i
Xv N C. Then the geometric number of points of the

,C) = m. for x. €
i i
intersection thﬁ C is d' =4 - Z(mi—1) . This shows that
just d' leaves of MC are passing through x . So we have
envl(wc) 'd Z(MC)
_ 4
let x ¢ envl(wc). Then m, =1 for any x; € x 0 C

and xv meets transversally to C at distinct d pecints

224
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x1.;..,xd and the germs (C,Xi) generate germs of

ncnsingular foliations Fi at x , which form a

nondegenerate d-web of codimension 1 if and only if XV C C
is nondegenerate in xV = H)n—1 . This proves the
proposition.
Proposition I .1.2. et C , C' C H’n be projective

| v

curves and h a homeomorphism of the dual space;wﬂ’n such

Then h induces the homeomorphism

vy

that h(wc) =W
v

cr °

h C > C' by h(x = hv(x)y for x € C , which possesses

the proverties h(P(X1,...,xn_2)Y) = P(h(x1),}..,h(xn_2))v

and h(wc(x1""’xn-2)) = MC'(hy(x1),...,hv(xn_z)).

Y

is a continuous map of C into C!' ,

and (h"N)V¥ e n¥ = 14 holds by definition. So hY is a

v

homeomorphism. Since P(X1,...,Xn_2)y N x' =

Proof. Clearly h

P(x1,...,xn_2,x) for x € C , and h(P(x1,...,xn_2,X)) =
v .
P(h(xq),.e0sn’(x _5),0"(x)) , we have h(Wy(x;,.un,x, 5)) =

W (h¥(xy)yee o, nY(x 5)) .

Now we state our main theorem in this chapter.

1y
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Theorem I .1.3. Let C , C'C P be algebraic curves in

the orojective n-svace (n > 2) of degree d and, Wo v Wy

be the d-web generated by C , C' , respectively, and h bLe

a homeomorphism of the dual space E’g

such that h(wc) =

W

If C , C' are irreducible and nondegenerate, i.e.,

ct
are not contained in a hyperplane, and d >2n + 2 , then h

or the complex conjugate h 1is a projective linear

transformation of H’; and in particular c' 1is

isomorvhic to C or the conjugate C : the induced

-1
homeomorphism hY is nY = (th)—1 : C > C' or (tﬂ) :
c+C'~»>cC!

Proof Let eV - $(¥.) and (x x.} =vYnc
- Y n C precerXgt TV

and T : E’n-e P 5 be the projection with the center H)n—B
= P(x1,...,xn_2) to P(x1,...,xn_2)V * , where ¥ denotes
the dual projective space of itself as I’2 not in H’n .
The closure of the image m(C - X1”"’Xn-2) C P, is again
an irreducible and nondegenerate algebraic curve of degree

d - (n-2) , which we denote by C(x1,...,xn_2) . Since
d>n+ 2 , we have d - (n-2) > 4

Now we prove

Proposition I .1.4. The restriction UC(X1,...,Xn_2) is

a web of TP, = P(x1,...,xn_2)v generated by the algebraic

curve C(xy,...0x ) NP, = P(XT""’Xn-Q)V* (dual space).

Proof. The leaves P(x1,...,xn_2)vlﬁ XY =

v
P(x1,...,xn_2,x) , x € C of Uc(x1,...,xn_2) are the



intersections of the dual hyperplane of mn(x) in E’n with
P(X1,...,Xn_2) . So we see that UC(X1,...,XH_2> =
UC(x x ) - This proves the proposition.

1 n-2

Therefore we can apply Graf-Sauer's theorem to the
algebraic plane curve C(X1,...,Xn_2) and the generated

. . _ . "4
d - (n-2) -web of the intersection ﬂ’z T'P(X1""’Xn—2) C.E’n

of leaves xy', and consequently we see that any 3-subweb of
UC(X1""’Xn-2) is nowhere hexagonal beside the singular set
Z(MC(Xq»""Xn-2))'

Since Z(MC) = degn(wc) is defined pure topologically,
h(Z(UC)) = Z(MC,) holds. Therefore we can apply
Theorem I.4.1, and consequently we see that h or the
conjugate h is complex analytic beside the singular set
Z(UC), which is a proper subvariety of E’; for C 1is
nondegenerate. By Hatog's extension theorem, h or h
must be a~complex analytic automorphism of E’Z hence a
projective linear transformation of E’: .

The othen statement is easy to see. This completes the

proof of Theorem II .1.4.

Using the usual langage»in algebraic geometry, the

theorem can be rephrased as follows.

)
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. gorollary I .1.5. Let C , C' be Reimann surfaces and

E , g be linear systems of effective divisors vof:degree d

\%

with_no base points such that the associated morphisms [:C~>E,

E

E
v .
N , :Cl— E'" are birational and d-2 2 dim E = dim el 2 2
Supvose that there is a homeomorphism h : C > C' such t

hat

= ! 3 . = . - 1 :
h(E) = E' , i.e., h(Za,x ) fa;*h(x;) € B' for any fa x; €

E. Then h : C +C' 1is holomorphic or anti-holomorphic

diffeomorphism respectively whether h 1is_orientation

preserving or not.

Proof. We identify the complete linear system |D| , D € E
P (1°(c,0(|D])) by Za,x, € [D] s € 8%c,0(]D])) with

-1 _ -

s~ '(0) = La;x; , and we suppose E C |p| = Piim D] -

1 4

The morphism [E:C-9 EY is defined by x € C » H; ,» wWhere

H = {fa;x, €E | x, = x for an i} € E . Then the image

TczrY

of C 4dis a nondegenerate curve of degree d which

generates the d-web dﬁ;’ on E by the leaves HX , X €C
The homeomorphism h : C > C!' rpreserves the linear

systems E , E' so h induces a hcemeomorrhism W : E > B

. . !
which maps a leaf HX , X € C to a leaf Hh(x) , h(x) € ¢c' ,

therefore -hv(wg) = . Then applieing Theorem I .1.3,

G !
we see that hY  or the complex conjugate hY is a
projective linear transformation and (Yt or (WY)T
is a transformation of %’ to 'E' , which 1ifts to an
isomorphism of C to C' that is the criginal homeomorphism

h .

This completes the corollary.

o

as
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Riemann-Roch theorem says that dim |[D|] =4d + 1 - g
+ dim |K-D| , where X is the canonical divisor and g is
the genus of C. So, if d > g + 2 +then dim |D| 2 2
and a linear system E of dimension 2 (net) exists. So
roughly to say, a complex structure of a Riemann surface C
of genus g 1is determined by a 2-dimensional family of
linearly equivalent g+? (gZ=2) or 4 (g=1) peint subsets

of C .

“p



Section ‘2. Structure of the envelope set envl(wc): the

dual space Curves and the dual webs.

In this section, we turn into study of the envelope set

envl(wc) C E’X of the web ¥, generated by the projective

C

curve C C E’n .

et ¢ : 0 » C be the normalization and & = (¢O,...,

n+1

¢+ C > C -0 be a local 1ift of ¢ , and suppose that &

n

is nondegenerate i.e., the Wronskian W(¢O,...,¢n) is not

~

identically zero on C , or in other words, C 1is not

contained in a hyperplane.  Let Creg = 6 - sing C., CO =

c - oW (0)) and C. =0 - Ww(0)

reg i 0

Let 21”"’1(00) C envl(wc) C E’X be the set of points
y of which dual hyperplane yy has a contact with Cj of

. i
order > i + 1 , and envll(wc) = 21""’1(MC) (closure ).

. . i
The osculating i-plane Osc C¢(t) of C at ¢(%) Co
is the i-plane TP . which has a ccntact with C at o(t)

of order > i + 1 , which is i-space spaned by the pcints

i-1

¢(x),...,¢(i'1)(t) if rank (¢O""’¢n )(t) =1 or
n

B ene st
especially W(¢O,...,¢n)(t) # 0 . The osculating i-planes

give the i-bundle: Osct ¢ » G over C , which we call the

osculating i-bundle of C , and we denote the restriction

~ i
over CO by Osc GO .

i
By the definition, we see that 21""'1(wc) ,

1 C ,

envll(wc) are the unoin of the dual spaces of Osc X

x € CO » C , respectively, and we have
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n-1

Tyeeayd -
(UC) 2 ... R

V 0 1
P 5 (wc) D5 (wC) 2... D¢

Y 0 1 n-1 o)
H’n envl (UC) D envl (MC) D ... Denvl (UC) cee

i
In the later we will find that dim 21""’1(MC) =n ~-1i,
i=1,...,n0. The varieties envl1(UC) , envln_T(MC) are

known as the dual varicty and the dual curve of C ,

respectively, so we denote encln_1(UC) = CV which is given
by the local mapping:
¢V = (Wylo o )te..tW (o 6.))
O O’-oo,no-o.on Oyao-,n ’

_ i
where wi(¢c,‘.-,¢n) = (—1) W(¢O,o-o,¢i_1p¢i+1’--oy¢n)c

By an easy calculation we have

n
z ¢§k)-w§2) =0 , O0<k+2<n -1
i=0
z ? ¢(k)-w(2> = (-1)2W(o o) k + 8 =
12 4 i 2% ’ =0,

from which we have
W(o0s e o) (W W) o= (-D)Neu(o 5 )
O,aol’ n O,oo-’ n O’coo, n ’
so we see that
W(ogseensd )(t) = 0 <> W(Wg,...,W )(t) =0

and by Cramer's rule, we have
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b. W (H W) = (-0 ew, (w W)W (o 5 )
RTC IS RUIS preeeit )

This shows the duality of the correspondence of space curves:

0(C) = ¢ =—> c¥ = YD) ,
and bundles

(osc‘i C)V = Oscn-i_v CY
over C and

envli(wc) = PV(Oscn';'i-1 cY) ,

where PV denctes the natural projection intc the dual space

rY.
n
Since the projection pY . (0sc® CO)V = 0sc?! Cg‘: Y > E>Z
has everywhere rank > n - 1 , pY  has only singularities of
k
1,.0.,1

type A%, x = 0,1,... (=Morin I singularity).

By the singular type, 7y is filterated by subsundles as:

. n-1
PYxdoy=2%0Yoe@)o... Ty L,

1,.1.,1(pY) is the set of points where PV is of

where I
1,-“2.,1 . .
type 2 -type , j 2 1 .
. . v n-i-1 .V v . .
The projection P Osc CC”% E’n is locally given

by the mapping:



8o

t
W, LW
(u,t) € P x C > (t) u
wén-i-1) L y(p-1-1)
n

so we see by an easy induction, that

i
21,...,1(PV) = PV(Oscn—1—1 Cg) s
i i+
s(Vertr e T(3Y) - B o) = lreees T (pY) ’
i i
PY(Z1,0'-,1(PV) - P/(Oscn"l-1 Cg) - 21..",1(&}0)
i+1 i+1
and P‘(Z1""’1(Pv)) = 21""’1(UC) is the envelope set of
i .
pre 2T (w,) foliated by fibres of 0se” 171 ¢ .

Conversely we have also
P?(Oscn—i~1 CV) = Tan env11+1(wc)

i+1 i
- Tan PV(E‘I,...,‘I(PV)) = PV(E1,¢-GI1(PV))

= envli(UC) ,

where Tan X denotes the tangent varicty of X which is
the closure of the union of tangent spaces of ‘X at
nonsingular points.

Summarizing +the fact above, we can see the following

proposition.



Proposition II 2.1, We _have seguences:
H’Z = envlo(wc) D env11(UC) ... 0D envln~1(wc) = CV
0 , a1 n-1 o
IP_ = envl (WU, v)Denvl (V.v) ... 2D envl (W v) =C
n C C C
and
envll(UC) = Tan env11+1(wc) = (Tan)n-i“1 Cy
= PV(Oscn_1 Cv)
and
envlT(¥.) LA envln"i_1(W'.) ,
C C
for i =1,.c.,n-1.

Next we prove

Proposition I .2.2.

n

envl(wc) envl1(MC) V (sing C)v

(’I‘an)n_2 ¢V v (sing C)v

Tan(Tan( .;.(Taﬁ CV))...) v (sing C)V



Proof. The fnclusion envl(wc) ) env11(Uc)!J (sing C)V
is clear. Suppose x € envl(MC) - (sing C)v . Then the

dual hyperplane has a contact with Creg of crder > 2 at

(t)

6(t). Since the matrix by aeeerdy has rank 2 ,

o1, el

x 1is in the dual space of the line spanned by ¢(t) , ¢(1)(t).
The closure of thé union of those dual spaces 1is presicely

the set env11(UC) . S0 the converse cf the inclusion holds.
The other part of the statement follows from Proposition

IIT.2.1.

" The structure of z(wc) Nn(c - CO)V is more complecated
depending on the degeneracy of W(¢O,...,¢n). But here we
will not discuss furthermore.

We remark that all singular subsets abcve are defined
» , W

only by the topological properties of the web ¥ e »

C
because order of contact of subspace with C , CV is a
topological quantity which can be recovered by the

topological structure of UC ’ MC. .

Finally to analyze the whole singular set Z(UC) =

degn(wc) in a similar way to abcve, we define the secant

variety:

Sec”(C) = {P(X1,...,xn)lxiej C are all distinct and

dim P(X»!,...,Xn) ;n—Z }
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Then by the definition we have

degn(wc) = envl(wc) V (Sec” C)V
Of course we can define a filteration of Sec' C by
the degree of degeneracy in the same manner as envli(wc) .
However, the author does not know whether there exists any
duality like Proposition I .2.1, 2.2, Dbetween subsets of
n C)V

degn(UG) and degn(UCV) nor what the set (Sec is .

For a pecint op € P, -0C, the normal bundle of the
rrojection m, of C from p is

—— . ———

Np = npw Tﬂ’n_1 / TC .
The structure of ”p is completely translated into the
georetry of the hyrerplane section -pv . UC . A purely
georwetric approach might helpful to understand ”C . In the
papers [E1,E2,Hj , very interesting problems are discussed

on N_ .
P

5t
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Section 3. Graf-Sauer's theorem, Quasi product.

In the following sections, we consider the case that
the curve C C P~ is of degree < n + 1 . This is
exceptional in Theorem II .1.3.

Here we refer the following theorem.

Theorem I .3.1. (Graf-Saure [BB,GS]). Let (Ci,xi) 0

i=1,2,3 be germs of nonsingular projective curves in E’n

and xi X* all distinct and & be the 3-web generated by

(Ci,xi) , 1 =1,2,3. Then & is hexagonal if and only if

(Ci,xi) are germs of the same cubic curve C .

The proof and the beautiful picture of the hexagonal

3-webs of the cubic curves are found in [BB] or [GS].

This theorem alludes that the web structure of UC of
cubic curves is everywhere homogeneous off the singular set
Z(UC) ; so may admit many topological symmetry other from
their projective symmetries. v

In another point of view, its known that cubic curves,
possiblly singular, admit group structure on their smooth
parts. This structure is, as well known, intrinsically
implied by Abel's theorem, which implies also the
hexagonality of the webs. These relations are summulized
and generalized in [ccl. Now we récall some results on these

subjects, which is a preliminary for the forthcoming sections.

£7
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A symmetric guasigroup is a set E with a binary

composition law E X E » E : (x,y) * x ¢ y with the

condition:
X0y =y606x , xo(xecy) =y .

In other words, the law is defined by a subset of relation LE
E x E X E invariant tinder the permutations of three

entrie, such that the projections Pi : LE - E x E

forgetting i-th factors are bijective, by x ¢ y = 3 if

(x,y,z) € LE . If E is an analytic manifold and LE is an

analytic hyper surface then we say E an amalytic guasigroup.

We introduce a new composition law . defined by
xsy=ueoe(xecy) ,
for a base point (unit) ukeﬁE . Then
(x,y,2) € Lp ¢ X * (y = 2) =(x*y) ez2=uco°u.

We call E an Abelian symmetric quasigroup if the new

composition . makes E an Abelian group. Then, for any
u! € E , the corresponding composition is again abelian

(see [ M]).

Let CC TP be a irreducible cubic curve in the

2

projective plane and Creg be its smooth ‘part. The
3

relationv LC C Creg is defined as

s



9

(x,y,z) € Lo €@ %,¥,z € Creg are collinear

We will see that LC is nonsingular surface if C 1is
nonsingular curve, i.e., an elliptic curve. The group

.

structure of the cubic curves Creg is defiﬁed as abov
with this symmetric quasi group.

If C 4is redusible, i.e. contains a line L as a
irreducble component, then x o y is not defined for a
x , ¥y €L. However we can define the group structure

it. (For a space curve C C E’n of degree n + 1 , we

define n-nary symmetric quasi product.)

The web structure of cubic curve is equivalent o
symmetric quasigroup structure of the curve, which is
geometry of the surface LC c C

coordinate lines in C 3
reg

reg

which forms a 3-web of

codimension 1 on LC .

§

e

ny
on

can

the

3, folliated by the



Section 4. Nonsingular curves of degree n , n + 1 .

In this section we study the strtucture of thg web UC
for the case that C 1is nonsingular curve of degree n , n+i
in projective n space.

It is known that such a curve is a rational or an
elliptic curve. In general, any curve in E)n' is obtained
by projecting a normal curve in projective space of dimension
>n . By a generalization of Proposition I . 1.1 , 1.2,
the web generated By the projection is given by the
plane section of the web of the normal curve. So, in this

section, we restrict ourselves to the case of rational or

elliptic normal curves in projective n space.

bo



94

A. The rational normal curve.

This curve is projectively transformed to the twisted

curve which is imbedded by the Veronese imbédding:

v(t) = (1:45:452:,..:1;‘1):1?1 <> P_ .

Let ti s, 1 =1,...,n be distinct points. Then the
n
intersection of the dual hyperplanes W(t) = [ v(t)v
i=1 '
E’; is the dual of the image of the matrix

*
L]

of which n X n minors gives the plucker coordinates of the

image. We can caluclate this as

v = ( g Il On_1n P eese o H ) »
where I(t) = I (t,-t.) and o. is the basic
i <j & 3 i

b1



symmetric polynomial Oi(t) = I ts1."°-tsi , where
{31,...,81} runs over all i point subsets of {1,...,n}.
By this form we see that vV E’? -4 > P  extends
analytically to a mapping VV:E)? > E’n as v =

: ... :04:1) (the quotient map) ,so that
v n _ _ iV A\
v({t1,...,tn)€IP1Iti—ti'.‘})—v(ti) cP, .

So W, 1is octahedral.
A homeomorphism of UC lifts to an invariant

nomeomorphism of I’? preserving the octahedral n-web by

. = > n = ' 1 i =
leaves Lti {(t1""’tn) € P, ]ti ti} , ti €P, ,1
1yeeesn , so of the form h x .., x h with a homeomorphism

h of F‘I'
Conversely, any homeomorphism h of H’1 induces a
homeomorphism n®  of E”? hance a homeomorphism of the

quatient space (H’n,wc). By this correspondence, we have

Proposition I .4.1. Let C C B’n be a rational normal

curve in vnroiective n-space. Then

Homeo(wc) = Homeo(ﬂ’1)‘

[
o]
Q

Homeo(wc) O PGL(n+1,C) = Aut(]P1) ,

where Homeo(MC) denotes the group of homeomorphism of UC.
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Let
At = {(tT""’tn) € E’?[i+1 of ti's are the same} ¢ P -,

Then we have

vv(Ai) = envll(UC) » irreducible for i = 0,...,n-1
vialy = envi(w)) = s(w) ,

C C
vV(An_1) =c¢¥Y : qual curve .

Since vV = (1:01:...:0n) » the restriction VVlAn-1 is
Voernese imbedding. So the dual curve CY is again the

rational normal curve.

In the following we refer the result by Piene [P] N

Proposition II .4.2. Let C C E’n be the

rational normal curve. Then envll(UC) is an irreducible

variety of dimension n - i and

degree envli(UC) = (i+1)(n-i) .

for i =0,...,n-1.
Proof. The degree is presented in.[P]. The other

statements are seen in above.

{3
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B. The elliptic normal curve of degree n + 1 (nonsingular

curve of degree n + 1 with genus 1 ).

This curve is projectively transformed to the elliptic
normal turve cannonically imbedded in P, . First we recall
a classical result on the elliptic curve.

The elliptic curve C 1is a complex manifdld given by
the quationt of T by a nondegenerate lattice A = (w1 R wz)
The complex structure of C 1is determined by the well
known j invariant:

dO2 ok 1)

j(A) = s A=
27 A(x - 1)%

and an imbedding of C +to E’n is given by doublly
periodic functions. Here wekrefer from the paper by Hulek
[HJ , an explicit construction of imbedding of C with
degree n+1 :

The Weierstrass o function is defined by

o(z) =2+ I (1 - =) e .
w € I'=0 w

Withrespect translation by Wy s Wy the following

fundamental formulas hold:

W,
(z + 5=)
o(z + wi) = - eni i < s0(z) ’

where ny is the priod constant of the Weierstrass ¢ -

function.

(4
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Case n > 2 , even. For p, q € Z , define
pw, tquw
o (z) = o(zg - — 2
P4 n + 1
and
_Np Moy MY
b .o 72 g - 2
and
m Z
g m.m. 1 L ] *® -
xm(z) w 0 e Gm,O(Z) .o Gm,n(z)
Case n > 3 , odd.
N pLy *tquy w5
o (z) = o( 2z - - o0 w, + ==%2) ) ’
P,q n 1 2 1 n+
—1—(nw+nw)
AL b b
and
2 .m N. 2
"“~m.m. 1 P - .~
xm(z) =0 *0 e Om,O(Z) .es Su,n (z)
Then we see xn+1+m(z) = xm(z) , for any integer m and

Xg » »-- » X are basis of F(OC(6n+1)O)) and the map

= . . . = vV .
v = (xo.....xn).c S>P = E’F(OC((n+1)O)) is a
nondegenerate normal imbedding of degree n + 1.

21 -1
Let € = e nt+l . Then the followings 'hold:

s
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(1) x,(-z) = (-0 x_(2)
w
(2) x; (2 --;f;> ~ x;44(2)
W, ' .
(3) : Xi(z + ;T) T~ el-xi(z) ’

where <~ means that equality holds up to a common nowhere
vanishing function independent of i . Then, by (2),(3),

the action of the group Zin+1 X Zin+1 by translation of
w w
1, 2
wF  BH

generated by

is compatible with the action on C =8 / A

(xgzeveix ) ——— (x ixgieecix _q)

n

(xO:...:xn) —> (xo:ex1:...:€ xn) ,

and by (1) the involution
(xO:...:xn)i——~———a (XO:X_1:...:X_n)

induces the involution 2z + -z on C =1 / A .

The inversion of the imbedding v 1is given by the

abelian integral
zZ
v(z) ——— S 8 dz = z (mod A) .

Then Abel's theorem says that two divisors

l¢
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n n

™
<
N
©
p—
-
™~

\ .
( v(bi) are linearlv equivalent
i=0 i=0

if and only if

a = b bi (mod 7).

nLet I)n-1 = {XO=O} C E’n and v(C) - HDn-? =

z v(pi) » P; € C =T / A . Then this theorem is
i =
rephrased as:

V(Zi) s 1 = 0,...,n are coplanner

if and only if

p. (mod A).

™
A

i
™

By the explicit form of xm(z), we Ssee

l()..)2
P; = 793 €cC n : even
1w w
2, 1 2
arr fale ) nieda

so, in any case, we have

0 (mod A) .

=
It~
o
ol
fde
Hi

Therefore we have proven that:
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v(zi) y Zs ¢c=208/A,3i=20,...,n are coplanner if and

0 (mod A) .‘

o
1

i=0 *

Then we denote the hyperplane P _ ., with P __, + v(C) =
Vv

V(ZO% + ...+ V(Zn) by P(ZO""’Zn) and v (zo,...,zn) =

_(] v(zi)k = P(ZO,...,zn)v .

i =20

Let

_ n+1 - n+1
L = {(zo,...,zn) C | = a; = 0 mod A} € C
and

At = {(ZO,...,zn)G Cn+1|i+1 of zi's are the same}

(Then A" O L consists of (n+1)2 points). Clearly we see

that:
P(zp,e.0,2,) has a contact with Copq = v(C) of
order > i + 1 if and only if (zg,...,z ) € A™,

and the map v —9ﬂ>; possesses the following properties:

(1) v is an n+l-sheated covering with branch locus AT

(the quotient map by the symmetry group).

(5



(2) v z;=a ) = v(a)¥
(3) MC is octahedral off the singular set I(& )
n+1 ' Cn+1
(4) waly - envli(wc ) , irreducible
n+1
(5) VV<An—1) = the dual curve of C
n+1
(6) vv(An) = (n+1)2 singular points of VV(An-T)
= duals of hyperosculating hyperplane of Cn+1

at n+1 torsion points

(7) envl1(ldC ) = Z(MC ) (for the n+1 web of L

n+1 n+1
is nowhere degenerate).

Here we refer again a result from the paper [PJ.

Proposition I .4.5. Let Cp 41 C E’n be the elliptic

normal curve of degree n+l. Then envll(UC) is an

irreducible vriety of dimension n - i and

degree envl' (W) = (i+1)(n+1) .

Proof. The degree is presented in the paper [P]. The other

statements are seen in above.
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Now we consider the topodogical symmetry of the web
of E’Z .
nt+1
Let A = (w1 ,wz) , A = (w{ ,wé) be nondegenerate

rattices of G and Cn+1 ’ Cﬁ+1 be the correspondeng

normal elliptic curves cannonically imbedded in E’n as

previlusely, and suppose that generated n+1 webs UC , MC'
n+1 n+1
are topologically equivalent by a homeomorphism h of E’X .
. : v,
Then h 1inducés a homeomorphism h 'Cn+1 > C£+1 such that

hVn+1:L > L is a homeomorphism and (n+1)-hy(0) =0

A A
mod A' (Proposition II .1.2). Compositing the translation
T:(C/A,0) > (T/A',0) , To nY becomes an isomorphism of

v have to be

/A to /A" as topological groups. Then T ¢ h
a real linear isomorphism of the torus group T2, which we
identify naturally with an element of GL (2,7%Z )

acting on the lattice Z x Z

E{Z =C . So hY is a composition of T © hV € GL(2,%Z)
with T , T—1(O) € Z 4 *% 4 C T2, These compositions form a
lattice Z5n+1 X Zﬂn+1 preserving subgroup G of the

affine transformation group of T2, Note that the group G

: ’
is a extension of GL (2,%Z ) ’by Z5n+1 x Z:n+1:

0 » Z x Z > G > GL (2,Z) =+ 0 .

n+1 +1

From now on we denote G by a semi direct product

GL (2,Z) x (szr1 X ZZHH) .

Conversely any linear isomorphism hV:E/A > T/N

preserving the lattice Z5n+1 x Z .4 induces a

70
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homeomorphism h of H’Y such that h(# ) =W, .
n C C:
n+1 +1

Summarizing the result above, we have

Proposition I .4.3. For any elliptic normal curves OC ,

C' C E’n of degree n+1 , the generated n+l1 webs MC , MC‘

are topologically eaquivalent.

Let C=¢C' , i.e., A = A" , Then above
correspondence of the group G with homeomorphisms of
MC s to MC’
Homeo(E’n). It is easy to see that G M PGL(n+1,T) =

gives a representation of G to the group

X Z3n+1) , where Z ., is the cyclic subgroup of

GL(2,Z ) generated by (g “é) (i=4) if A is square, (? —})

Z. X (z
i n
{(i=6) if N 4is t¥iangular, and (61m$) (i=2) for otherwise.
Finally we summarize as follows:

Proposition II .4.4. Let C C E’n be an elliptic normal

of degree =n + 1 . [Then the generated nt+l web MC is

hexagonal off the singular set Z(UC) = envl1(wc).. Then

Homeo(&/c) = GL(2,%Z ) % (ZHH X zznﬂ)

Homeo(&/c) O PGL(n+1,T) = Z ; K (ZZn+1 X Znﬂ) ,

where i =4 Aif C is square, i = 6 if C is triangular.

———— o

and 1 = 2 for otherwise, and K denotes the semi direct product.

71
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gection 5. Singular cubics.

By projective transformations, a cubic plane curve is
jsomorphic to one on the normal»form in the table (Table 1).
We will see the web structure of the curves there by using
their ggqoup structure. The case (1) is the simplest case
of the elliptic normal curves in Section 4, and the case (2),

(3) are almost the same as (1).
Case (4): Conic and 1line, x(x2+y2-22)=0.

This curve is a union of the conic C1 = P1 =

{X2+y2-22=0} and the line C, = P, = {y=0}. We take their
parametrizations: '

1—t2 -2t

t -1
F1(t) = (1+t2:1+t2:t) R Fz(t) = (517:0:1) ,

t €P and we put a group structure C¥* X 232 on C =

1? reg

¢,V Gy

We can easily see that

- (41:0:1) as follows:

F1(a) , F?(b) . Fj(c) are collinear

if and only if a b c =1 .

Then we define the symmetric quasi product o (see Section 3)

by

Fi(a) o Fy(b) = Fyle)
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and the multiplication =+ on Crev by

o

F1(a) . F1(b} F1(1) ¢ (F1(a) °c F1(b)) € C,

F1(a) « Fy(b) F1(1) e (F1(a) o F,(b)) € C,
Fo(a) = Fy(b) = (Fy(a) ¢ F (1)) o (Fy(b) o F, (1)) € Cqe

By computation, we see the fomulas

F,(a) » Fy(b) = F,(adb) ,

Fy(a) « Fyo(b) = Fy(ab) R

il

Fz(a) . Fg(b) F1(ab) ’

which makes Creg the group C¥ x Ziz , and we see that

Pps,q, T € Creg are collinear

if and only if p * q = r = F1(1) .

Let MC be the 3-web generated by C and h be a

homeomorphism of MC. Since the group structure of C is

recovered by the symmetric quasiproduct, h induces a

homeomorphism Y oof ¢ = C1 v C, such that

hY3(L) = L, L = ((a,b,c) € (0*xZ ,)3|abe=1}) .

bon g
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So nY:o* x 232 > L% x ZZZ is a two copy of a homeomorphism

W' of ©* such that

n¥13 (L) = L', L' = {(a,b,c) € 0% | abe=1}

Then hV'(‘l)3 = 1 and hv‘(1)—1 ﬂv' C* » T* is a greup
homeomorphism.
Conversely a composition T 6 h : T* » T% , T3 =1,

h € Aut(T*) extends to a homeomorphism nY of ¢ = C,V e,

\'

preserving the collinear relation. So h induces a

homeomorphism h of VMC . This shows that
Homeo(wc) = Auttop(C“) x ZIB = R* x 233
For the other cases (5) - (7), we can analyze similary
with the group structures.

In the following, we refer the table of the group

Homeo(wc) C Homeo(ﬂ’z).



‘(v 1 zowpﬂmogo.um osT®B o988)

ronpoad 908JTP TWeS oYl $630U8D x pue ¢ aepeo Jo dnoad otajeumdls syg ST mo, B £107:)

seutl oTdTIy (6)

mﬁs.quum mﬁrﬁﬁvomaom - peqsadea suo SSUTT OM3} (8)
€ « %D €0 x (q2)1o mum,x o) SUTT JU8JIINOU0d 80ayy (L)
to x £ o x £ x s ©Z x x ®T3urTa}  (9)
%1 (d2)1o o ox o1 qrueduwy pu® OTUOD  (§)
. .
¢ z z &
/74 Z x x M Z x xQ 9UTT pu® oTuod (V)
mN m,\.N X %t Twg/d = %D : . 9Tqndo TBpou (g)-
{0#Y ] ( w mvw = %0 ("ez)1o 0 otqno Teptdsno (Z)
*9STMIOY30 J0F g = T pu® ‘aB[nduBtIy ST y JT 9 = T ‘eaenbs sT y JT % = T oasynm
‘ Ammﬂxmmvx ﬂN Am.mxm_viA“N.Nv TH v/ (eaano opqdTITe) OoTqnd Jerndursuou ()
(D‘2)15d Cﬁosvomsom Aoévoosom sanjonats dnoald

*soTqQno Jernduts | OTq®BJ

103




103

References.

[4]

[Ax]

[ AG]

(Bl

[Ba]

V.I. Arnol'd: Ewolution of wave fronts and equivariant
Morse lemma. GComm. Pure Appl. Math., 29 (1976), 557-582.
M.A. Akivis: Webs and almost grassmannian structures.
Soviet. Math. Dokl. Vol.21 (1980) No.3.

M.A. Akivis, V.V. Gol'dberg: On the four webs and local
differentiable quasi-group defined by a fdur of surfaces
of codimension two. Izvextiya.Vysshich Uchebnylch
Zavedenii Mathematika, Vol.18, No.5, pp.12-24, 1974.
N.A. Baas: Structural stability of composed mappings:

I - IOI. Preprint.

Hﬂ Bartsch: Ubertragung der Achtfachgewebeigenshaften
auf Hyper flochengewebe der n-dimensionalen Raumes.
Abhandl. Math. Semin. Univ. Hamburg, Vol.17, No.T,

pp.1-22.

[B1] W. Blaschke: Einfuhrung in die Geometrie der Waben,

Birkhauser, 1955.

IBBJ W. Blaschke, G. Bol: Geometrie der Gewebe. Spronger

[ca]

[ch]

[cal

Berlin 1938.

M.J.D. Carneilo: Singularities of envelopes of families
of submanifolds in R Y. Ann. Sc. Ec. Norm. Sup.,

4% série, t.1, 1983, p.173 4 192.

S.S. Chern: Web geometry. Bulletin of the Am. Math.
Soc. Vol.6, Nom.1, Jan. 1982.

S.38. Chern, P.A. Griffith: Abel's theorem and webs,

Jahr. der deut. Math. Math. Ver.80 (1978), 13-110.

74



134

[D1]

[1,]

ED3J

[DA]

=]

[E,]

[cx]

[H]

[L]

J+.P. Dufour: Une limite aux extensions du theoreme de
préparation. GC.R. Acad. Sc. Pris, t.282 (26 janvier
1976).

: Sur la stabilité des diagrammes
d'applications differentiables, Ann. Scint. Ec. Norm.
Sup., 4 éme série, 10 (1977), 153-174.

: Triplete fonctions et stabilité des

‘envelopes, C.R. Acad. Sc. Paris, T.293 (16 Novembre

1981) Série I, 509-512.

Familles de Courbes Planes Differentiables,
Topology, Vol.22, No.4, pp.449-474, 1983.
D. Eisenbud, A. Van de Ven: On the normal bundles of
smooth rational Space Curves. Math. ann. 256, 453—463
(1981); v

: On the Variety of smooth

rational space curves with given degree and normal
bundles. Invent. Math., 67, 89-100 (1982).
P.A. Griffith, J. Harris: Principle of algebraic geometry.
Wiley Interscience, 1978.
K. Hulek: Projective geometry of Elliptic curves, Lec
Lecture Mote in Math., 997, Springer, Verlag.
A, Kato: Singularlities of Projective Embedding
(Poiﬁts of order n on an elliptic curves). Nagoya Math.
J. Vol.45 (1971), 97-107.
K. Lamotoke: The topology of complex projective

varieties after Lefschetz. Topology Vol.20, pp.15-51,

1981,

77



[ul
(n,]

[w,]

[r]

L]
[w]

(el

[n]

(Br]

111

Yu.I. Manin: Cubic forms: Algebra; Geometry,
Arithmetic, North-Holland, Amstredam (1974).
I. Nakai: Structural stability of composed amppiﬁgs:
I -II . Preprint. |

: On topological structure of smooth involutive
and relative mappings; Topological unstability and
unstabilization theorems. Preprint.
R. Piene: Numerical characters of a curve in projective
n-space. Real and Complex singularities, ed. P. Holme,
North-Holland, Amsterdam (1976).
R. Thom: Sur la theorie des envelopes. J. Math. Pure

et Appl. t.XL, fasc.2, 1962.

A H. Wallace: Tangency and duality over arbitrary fields,

Proc. London Math. Soc., 6 (1956), 321-342.
H. Weyl, J. Wely: Meromorphic functions and analytic

curves. Princeton University Press, 1943.

J. Damon: The unfolding and determinacy theorems. for
subgroups of A , K , Proceeding of Symposia in Pure
Mathematics Vol 40 (1983), Part 1, pp.233-254.

J.W. Bruce: Envelopes, Duality and Contact structures,
Proceedings of Symposia in Pure Mathematics Vol 40

(1983), Part 1, pp.195-202.

Isao Nakai

Department of Mathematics
Faculty of Science

Kyoto Univérsity

Kyoto, Japan

0k



