Topological types of topologically finitely determined map-germs

TAKASHI NISHIMURA

面村尚史(旱稻田大·理工)

§0. Introduction

In this article we investigate the following two problems.

Problem(I). Is finite- C^0 - χ -determinacy a topological invariant among analytic map-germs?

Problem(Π). Do the topological types of all finitely- C^0 - \mathcal{K} -determined map-germs have topological moduli, i.e. do they have infinitely many topological types with the cardinal number of continuum?

Let K = R or C. Two map-germs f and g: $(K^n, 0) \rightarrow (K^p, 0)$ are topologically equivalent or $C^0 \rightarrow A$ -equivalent if there exist germs of homeomorphisms $h_1: (K^n, 0) \rightarrow (K^n, 0)$ and $h_2: (K^p, 0) \rightarrow (K^p, 0)$ such that $g = h_2 \circ f \circ h_1$. A map-germ f is finitely- $C^0 \rightarrow A$ -determined (or $C^0 \rightarrow A$ -finite for short) if there is an integer k such that any germ g with $j^k(g) = j^k(f)$ is $C^0 \rightarrow A$ -equivalent to f. This is the topological version of J.Mather's A-equivalence and A-determinacy. We can also define $C^0 \rightarrow K$, $C^0 \rightarrow$

We will give a precise definition of $C^0-\mathcal{K}$ -equivalence at the end of Introduction.

Let $J_{\mathbb{K}}^k(n,p)$ denote the set of all polynomial map-germs: $(\mathbb{K}^n,\ 0) \to (\mathbb{K}^p,\ 0) \text{ with degree} \leqq k \text{ and let } J_{\mathbb{K}}^k(n,p)_C{}^0 - \not \chi \text{ denote the set of all finitely-}{}^0 - \not \chi - \text{determined elements of } J_{\mathbb{K}}^k(n,p).$ Let $J_{\mathbb{K}}^k(n,p)_C{}^0 - \not \chi / C^0 - \not \Lambda$ denote the set of topological equivalence classes of elements of $J_{\mathbb{K}}^k(n,p)_C{}^0 - \not \chi$. Then our main results are

Theorem 1. Let f, g: $(\mathbb{C}^n, \mathbb{O}) \to (\mathbb{C}^p, \mathbb{O})$ be holomorphic map-germs satisfying the followings;

- (1) f is $C^0 \mathcal{L}$ -finite.
- (2) f and g are $C^0 A \underline{\text{equivalent}}$. Then g is also $C^0 - X - \underline{\text{finite}}$.

Theorem 2. $J_{\mathbb{C}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi / \mathcal{C}^{0} - \chi$ is a finite set for any positive integer n, p, k.

Theorem 3. $J_{\mathbb{R}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi / \mathbb{C}^{0} - \chi$ is a finite set for p = 1, 2, any positive integer n, k.

(2) $J_{\mathbb{R}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi / \mathbb{C}^{0} - \chi$ is an infinite set if $n \ge 4$, $p \ge 4$, $k \ge 12$. In fact they have topological moduli.

When we compare our theorem 2 and theorem 3(2) with the results in [3], [2] and [10], it is interesting that there is a difference of cardinal numbers between the real case and the complex case. Theorem 1 and 2, combined with the fact that $C^0 - \mathcal{X}$ -finiteness is a generic property, tell us that finitely- $C^0 - \mathcal{X}$ -determined holomorphic map-germs are fascinating objects to study from the topological view point.

<u>Definition</u>. Two map-germs f and g: $(\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ are $\underline{C^0 - \mathcal{K}}$ -equivalent if there exist germs of homeomorphisms h: $(\mathbb{K}^n, 0) \to (\mathbb{K}^n, 0)$ and H: $(\mathbb{K}^n \times \mathbb{K}^p, 0) \to (\mathbb{K}^n \times \mathbb{K}^p, 0)$ such that the following diagram commutes:

where (i, f)(x) = (x, f(x)) and $\pi_1(x, y) = x$.

§1. Remarks/Related topics

(1) The following simple example shows that the real version of theorem 1 does not hold.

Example.
$$f(x, y) = xy$$
, $g(x, y) = x^3y$.

Function f is finitely- C^0 - χ -determined but g is not, although f and g are topologically equivalent as real functions.

Problem(\mathbb{H}). Is finite $C^0 - \mathcal{J}$ -determinacy a $C^0 - \mathcal{J}$ -invariant among analytic map-germs?

Problem(IV). Is $J_K^k(n,p)_C = 0 - 3 / C^0 - 3 = 0$ a finite set for any positive integer n, p, k?

We have easily the following answers to these problems.

Problem (皿)		G = A	X	R	L	
Answer	IK = IR	No	No	No	No	Yes
	[K = €	?	ŗ	Yes*)		Yes

*) This is a corollary of Theorem 1 (see the end of §3).

Problem (IV)		9 = X	X	R	L	e
Answer	K = R	finite [12]	finite	finite [6,7]	finite	6::
	[K = C	finite**)			٠.	finite

- **) This is a corollary of Theorem 2.
- (3) In his paper [11] in which his second isotopy lemma and his condition a_f were announced for the first time, Thom gave an example of a family of polynomial mappings of \mathbb{R}^3 into \mathbb{R}^3 which contains continuously many topological types. Fukuda [3] and Aoki [2] showed that every family of polynomial functions of several variables or of polynomial map-germs of \mathbb{R}^2 into \mathbb{R}^2 (or \mathbb{C}^2 into \mathbb{C}^2) has only finitely many topological types. Recently Nakai [10] gave examples of families of polynomial map-germs of \mathbb{R}^n into \mathbb{R}^p (or \mathbb{C}^n into \mathbb{C}^p) of degree k with n, p, k \geq 3 or $n \geq 3$, $p \geq 2$, $k \geq 4$ which contain continuously many topological types.

The examples of Thom and Nakai motivate to consider what will happen if we restrict objects of study within better mapgerms, for example finitely- C^0 - \mathcal{L} -determined ones? Thus arise our problems (I) and (II).

§ 2. Proof of theorem 1

Theorem 1. Let f, g: $(\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$ be holomorphic map-germs satisfying the followings;

- (1) f is $C^0 \chi$ -finite.
- (2) f and g are C^0 -A-equivalent.

Then g is also $C^0 - \chi$ -finite.

<u>proof.</u> If n < p, all points $x \in \mathbb{C}^n$ are singular points of f. If f is $C^0 - \mathcal{X}$ -finite, $f^{-1}(0) = \{0\}$ by geometric characterization of $C^0 - \mathcal{X}$ -finiteness ([14]). Hence by hypothesis (2), $g^{-1}(0)$ is also $\{0\}$ as germ. Therefore g is $C^0 - \mathcal{X}$ -finite by geometric characterization of $C^0 - \mathcal{X}$ -finiteness.

Hence our interest is essentially in the case $n \ge p$. By the hypothesis (2), we can put

$$g = (h')^{-1} \circ f \circ h$$

on a certain open neighborhood U of 0 in \mathbb{C}^n , where $h:(\mathbb{C}^n,\ 0)\to (\mathbb{C}^n,\ 0)$ and $h':(\mathbb{C}^p,\ 0)\to (\mathbb{C}^p,\ 0)$ are germs of homeomorphisms.

Suppose that g is not $C^0-\mathcal{X}$ -finite. Then by geometric characterization of $C^0-\mathcal{X}$ -finiteness,

Sing(g)
$$(0) - \{0\} \rightarrow \{0\}$$
,

where $\operatorname{Sing}(g) = \{x \in \mathbb{C}^n : x \text{ is a singular point of } g\}$. Since f is $C^0 - \mathcal{X}$ -finite, for any $z^0 \in \operatorname{Sing}(g) \cap g^{-1}(0) - \{0\}$ which is sufficiently close to 0, there exists a sufficiently small positive number ε such that for any positive number $r(r < \varepsilon)$

$$h(r \cdot D^{2n}) \subset \{\text{regular point of } f\}$$

where $r \cdot D^{2n}$ is an open r-disk centered at z^0 in U.

We have

Lemma 1. $h(r \cdot D^{2n})$ is homeomorphic to $(f^{-1}(h'(z')) \cap h(r \cdot D^{2n})) \times f(h(r \cdot D^{2n})) \qquad \underline{\text{where}} \quad h'(z') \quad \underline{\text{is an}}$ arbitrary point in $f(h \cdot D^{2n})) - \{\emptyset\}$.

We put $f = (f_1, \dots, f_p)$, $g = (g_1, \dots, g_p)$, $h' = (h'_1, \dots, h'_p)$ and $z' = (z'_1, \dots, z'_p)$. Since $n \ge p$, we may take z' in lemma 1 such that $z'_j \ne 0$ and $h'_j(z') \ne 0$ for any j $(1 \le j \le p)$.

$$\begin{split} & h((r \cdot D^{2n}) \cap g_{j}^{-1}(z_{j}')) \\ &= h(r \cdot D^{2n}) \cap (h)^{\circ}(g^{-1})(\{(z_{1}, \dots, z_{j-1}, z_{j}', z_{j+1}, \dots, z_{p}) : \\ &z_{i} \in \mathbb{C} \ (i \neq j)\}) \\ &= h(r \cdot D^{2n}) \cap (f^{-1})^{\circ}(h')(\{z_{1}, \dots, z_{j-1}, z_{j}', z_{j+1}, \dots, z_{p}) : \\ &z_{i} \in \mathbb{C} \ (i \neq j)\}). \end{split}$$

By lemma 1, this space is homeomorphic to

$$\begin{split} & h(r \cdot D^{2n}) \cap f^{-1}(\{(z_1, \cdots, z_{j-1}, h'_j(z'), z_{j+1}, \cdots, z_p) : \\ & z_i \in \mathbb{C} \ (i \neq j), \ h'_j(z') \neq 0\}) \\ & = h(r \cdot D^{2n}) \cap f_j^{-1}(h'_j(z')). \end{split}$$

In particular we have

Lemma 2. The homology of the fiber of Milnor fibration of f_j at $h(z^0)$ and the homology of the fiber of Milnor fibration of g_j at z^0 are isomorphic for any j (1 \leq j \leq p).

On the other hand, after a suitable coordinate transformation we have

Lemma 3. (1) z^0 is a singular point of g_j for a certain j (1 $\leq j \leq p$) for $z^0 \in \text{Sing}(g) \cap g^{-1}(0) - \{0\}$.

(2) $h(z^0)$ is a regular point of f, for any j (1 $\leq j \leq p$).

Lemma 2 and lemma 3 contradict to A'campo's result ([1]). The map-germ g must be C^0-X -finite. \Box

Corollary. Let f, g: $(\mathbb{C}^n, \mathbb{O}) \rightarrow (\mathbb{C}^p, \mathbb{O})$ be holomorphic map-germs satisfying the followings;

- (1) f is $C^0 \mathcal{R}$ -finite.
 - (2) f and g are $C^0 \Re$ -equivalent.

Then g is also $C^0 - R$ -finite.

<u>Proof of corollary.</u> In fact the above proof of theorem 1 shows that for all holomorphic map-germs f, g: $(\mathfrak{C}^n, \, 0) \to (\mathfrak{C}^p, \, 0)$ such that $f = (h')^{-1} \circ g \circ h$ as germs at 0, where h: $(\mathfrak{C}^n, \, 0) \to (\mathfrak{C}^n, \, 0)$ h': $(\mathfrak{C}^p, \, 0) \to (\mathfrak{C}^p, \, 0)$ are germs of homeomorphisms, h(Sing(f)) = Sing(g) as germs at 0. Hence our corollary follows from theorem 1 by geometric characterization of $C^0 - \Re$ -finiteness ([14]). \square

§ 3. Thom-Mather's stratification theory

Let X^r and Y^s be differentiable submanifolds of \mathbb{R}^n having dimension r and s respectively. We say the pair (X, Y) satisfies Whitney's condition (a) at a point of Y if for any sequence of points \mathbf{x}_i of X such that $\mathbf{x}_i \to \mathbf{y}$ and the tangent space $T_{\mathbf{x}_i}(X)$ to X at \mathbf{x}_i converge to some r-plane $\tau(\subset \mathbb{R}^n)$, we have $T_{\mathbf{y}}(Y) \subset \tau$. We say that (X, Y) satisfies Whitney's condition (b) at a point \mathbf{y} of Y if for any sequences $\{\mathbf{x}_i \in X\}$ and $\{\mathbf{y}_i \in Y\}$ such that $\mathbf{x}_i \neq \mathbf{y}_i$, $\mathbf{x}_i \to \mathbf{y}$ and $\mathbf{y}_i \to \mathbf{y}$ and such that $T_{\mathbf{x}_i}(X)$ converge to some r-plane $\tau(\subset \mathbb{R}^n)$ and the secants $\widehat{\mathbf{x}_i \mathbf{y}_i}$ joining \mathbf{x}_i with \mathbf{y}_i converge to some line $\ell(\subset \mathbb{R}^n)$, we have $\ell(\tau)$. Note that condition (b) is stronger than condition (a).

We say (X, Y) satisfies <u>condition</u> (a) (resp. (b)) if it satisfies condition (a) (resp. (b)) at every point y of Y.

A <u>Whitney stratification</u> of a subset E of \mathbb{R}^n is a family $S = \{X_i\}$ of connected smooth submanifolds of \mathbb{R}^n , called <u>strata</u> of S, such that the strata are pairwise disjoint, any pair (X, Y) of strata of S satisfies Whitney's condition (a) and (b), the family S is locally finite and for any pair X and Y of strata of S if $\overline{X} \cap Y \neq \emptyset$, then we have $\emptyset X \supset Y$.

A set with one of its stratification is called a <u>stratified</u> <u>set</u>. Let S(E) and S(F) be Whitney stratifications of sets $E(\mathbb{CR}^n)$ and $F(\mathbb{CR}^p)$. A continuous mapping $f:E \to F$ is a <u>stratified mapping</u> if it is extendable to a smooth mapping of a neighborhood of E in \mathbb{R}^n into \mathbb{R}^p and if for any stratam X of S(E), f(X) is contained in a stratam Y of S(F) and $f(X:X \to Y)$ is a submersion.

Let X and Y be smooth submanifolds of \mathbb{R}^n and let $f:U\to\mathbb{R}^p$ be a smooth mapping defined in a neighborhood U of X \bigcup Y in \mathbb{R}^n . Suppose that the restricted mapping $f|X:X\to\mathbb{R}^p$ and $f|Y:Y\to\mathbb{R}^p$ are of constant ranks. We say that the pair (X,Y) satisfies condition a_f if for any point y of Y and for any sequence $\{x_i \in X\}$ converging to y such that the sequence of the planes $\ker(d(f|X))$ converges to a plane κ , we have $\ker(d(f|Y)_y) \subset \kappa$. Where $\ker(d(f|X)_x)$ denotes the kernel of the differential $\det(f|X)_x:T_x(X)\to T_{f(x)}(\mathbb{R}^p)$ of f|X at x.

A Thom mapping f : E \rightarrow F is a stratified mapping such that any pair of strata of S(E) satisfies condition a_f .

Proposition 1. (Thom's local isotopy lemma) Let $f: E \to F$ be a Thom mapping and let $g: F \to V$ be a stratified mapping with respect to stratifications S(E), S(F) and $\{V\}$, where V is a connected smooth manifold and E and F are locally compact. If points P and P of the restriction P = P and P is a connected smooth manifold and P and P are locally compact. If points P and P of the restriction P = P and P of the restriction P = P and the germ at P of the restriction P = P and the germ at P of the restriction P = P and the germ at P of the restriction P = P and the germ at P of the restriction P = P and P and P and P are P of the restriction P and P and P are P of P and P and P are P of P and P are P and P are P and P are P and P are P are P and P are P and P are P are P are P and P are P and P are P are P are P are P are P and P are P and P are P and P are P

Let A be a semi-algebraic set. Then a <u>semi-algebraic</u> stratification of A is a Whiyney stratification of A such that each stratum of A is a semi-algebraic set and the number of these strata is finite.

Proposition 2. Let A, C(\mathbb{R}^n and B, D(\mathbb{R}^p be semi-algebraic sets such that A(C and B(D. Let f: $\mathbb{R}^n \to \mathbb{R}^p$ be a polynomial map with f(C)(D. Then there exist semi-algebraic stratifications S(C) and S(D) such that the map f|C: C \to D is a stratified map and A and B are stratified subsets of C and D respectively. Moreover given any semi-algebraic stratifications S(C) and S(D), there exist semi-algebraic refinements S'(C) of S(C) and S'(D) of S(D) such that the map f|C: C \to D is a stratified map and A and B are stratified subsets of C and D respectively.

For the proof of proposition 1, see [8] or [4] and for the proof of proposition 2, see [3].

§ 4. Proofs of theorem 2 and theorem 3(1)

We identify \mathbb{C}^n with \mathbb{R}^{2n} . We also identify $J_{\mathbb{K}}^k(n,p)$ not only with the set of polynomial mappings of $(\mathbb{K}^n,\,\mathbb{O})$ into $(\mathbb{K}^p,\,\mathbb{O})$ with degree $\leq k$, but also with an Euclidean space $\mathbb{R}^{\epsilon pN}$ of a suitable dimension ϵpN ($\epsilon = 1$ if $\mathbb{K} = \mathbb{R}$ and $\epsilon = 2$ if $\mathbb{K} = \mathbb{C}$) as usual.

Under these identification the mapping

$$F : J_{K}^{k}(n,p) \times \mathbb{R}^{\epsilon n} \longrightarrow J_{K}^{k}(n,p) \times \mathbb{R}^{\epsilon p}$$

defined by F(f, x) = (f, f(x)) can be considered as a real polynomial mapping, where $f \in J_K^k(n,p)$, $x \in \mathbb{R}^{En}$ and E = 1 if $K = \mathbb{R}$ or E = 2 if $K = \mathbb{C}$.

Lemma 4. $J_{K}^{k}(n,p)_{C}^{0} - \chi$ is a semi-algebraic subset in $J_{K}^{k}(n,p) = \mathbb{R}^{\epsilon pN}$.

Proof of lemma 4. By geometric characterization, for each f in $J_K^k(n,p)$, f is contained in $J_K^k(n,p)_C^0$, if and only if there exists a neighborhood V of 0 in K^n such that $V \cap Sing(f) \cap f^{-1}(0) - \{0\} = \emptyset$, which is equivalent that there exists a neighborhood V of 0 in K^n such that

$$(\{f\}\times V) \cap Sing(F) \cap F^{-1}(J_{K}^{k}(n,p))\times \{0\}) - \{f\times 0\} = \phi.$$

Clearly $A \subset \mathbb{R}^{\times} \mathbb{R}^{\times} J_{\mathbb{K}}^{k}(n,p) \times \mathbb{R}^{\times} \mathbb{R}^{\times}$ comprising all quadruplets (t, y, f, x) with (f, x) $\in F^{-1}(0) \cap Sing(F) - J_{\mathbb{K}}^{k}(n,p) \times \{0\}$ and |x-y| < t is semi-aljebraic. Now consider the following polynomial projections;

$$(\mathbb{R} \times \mathbb{R}^{\varepsilon n} \times J_{\mathbb{K}}^{k}(n,p)) \times \mathbb{R}^{\varepsilon n} \xrightarrow{p_{1}} \mathbb{R} \times \mathbb{R}^{\varepsilon n} \times J_{\mathbb{K}}^{k}(n,p) \xrightarrow{p_{2}} \mathbb{R}^{\varepsilon n} \times J_{\mathbb{K}}^{k}(n,p) \xrightarrow{p_{3}} J_{\mathbb{K}}^{k}(n,p) \ .$$

Tarski-Seidenberg theorem implies

$$\big(\mathbb{R}^{\epsilon n} \times J_{\mathbb{K}}^{k}(n,p) - p_{2}(\mathbb{R} \times \mathbb{R}^{\epsilon n} \times J_{\mathbb{K}}^{k}(n,p) - p_{1}(\mathbb{A})) \big) \cap (\{\emptyset\} \times J_{\mathbb{K}}^{k}(n,p))$$

is semi-algebraic. This set is denoted by B. A minor computation verifies that

$$J_{\mathbb{K}}^{k}(n,p)_{C^{0}} = J_{\mathbb{K}}^{k}(n,p) - p_{3}(B),$$

which is also semi-algebraic.

Now we consider the following sequence;

$$J_{\mathbb{K}}^{k}(n,p) \times \mathbb{R}^{\varepsilon n} \xrightarrow{F} J_{\mathbb{K}}^{k}(n,p) \times \mathbb{R}^{\varepsilon p} \xrightarrow{\pi} J_{\mathbb{K}}^{k}(n,p)$$

where π is the canonical projection. Since F and π are polynomial mappings, by proposition 2 and lemma 4 there exist semi-algebraic stratifications $S(J_{\mathbb{K}}^k(n,p)\times\mathbb{R}^{\epsilon n})$, $S(J_{\mathbb{K}}^k(n,p)\times\mathbb{R}^{\epsilon p})$ and $S(J_{\mathbb{K}}^k(n,p))$ with which F and π are stratified mappings and $J_{\mathbb{K}}^k(n,p)\times\{\emptyset\}$, $J_{\mathbb{K}}^k(n,p)\times\{\emptyset\}$ and $J_{\mathbb{K}}^k(n,p)_C^0$ are startified subsets of $J_{\mathbb{K}}^k(n,p)\times\mathbb{R}^{\epsilon n}$, $J_{\mathbb{K}}^k(n,p)\times\mathbb{R}^{\epsilon p}$ and $J_{\mathbb{K}}^k(n,p)$ respectively.

Remark that Sing(F) is a stratified subset of the set $J_{K}^{k}(n,p) \times \mathbb{R}^{\epsilon n}. \quad \text{Then for each stratum Z of } S(J_{K}^{k}(n,p)_{\mathbb{C}^{0}}- \chi^{)}, \text{ the sequence of restricted mappings,}$

$$(*) Z \times \mathbb{R}^{\varepsilon n} \xrightarrow{F} Z \times \mathbb{R}^{\varepsilon p} \xrightarrow{\pi} Z$$

is also a sequence of stratified maps with the canonically induced semi-algebraic stratifications $S(Z \times \mathbb{R}^{\epsilon n})$, $S(Z \times \mathbb{R}^{\epsilon p})$ and $\{Z\}$ from $S(J_{\mathbb{K}}^{k}(n,p) \times \mathbb{R}^{\epsilon n})$, $S(J_{\mathbb{K}}^{k}(n,p) \times \mathbb{R}^{\epsilon p})$ and $S(J_{\mathbb{K}}^{k}(n,p))$ respectively, where F and π in (*) stand for F $|_{Z \times \mathbb{R}} \epsilon n$ and $\pi|_{Z \times \mathbb{R}} \epsilon p$ respectively. We use this sequence (*) to prove theorem 2 and theorem 3(1).

Proof of theorem 2.

Theorem 2. $J_{\mathbb{C}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi^{/\mathbb{C}^{0}} - \chi$ is a finite set for any positive integer n, p, k.

Proof. We consider the stratified sequence (*). We want to state that for each stratum Z of $S(J_{\mathbb{C}}^k(n,p)_{\mathbb{C}^0}-\chi)$ there exists a semi-algebraic stratification S'(Z) of Z such that for each stratum W of S'(Z) there exists a semi-algebraic neighborhood J_W of W×{0} in W×R²ⁿ and the restricted mapping

$$U_W \xrightarrow{F} W \times \mathbb{R}^{2p}$$

s a Thom mapping with respect to the canonically induced semi-algebraic tratifications $S((W \times \mathbb{R}^{2n}) \cap U_W)$, $S(W \times \mathbb{R}^{2p})$.

By geometric characterization, any mapping $f\in Z$ has the ondition that $\mathrm{Sing}(f) \cap f^{-1}(0) - \{0\} = \emptyset$ as germs. It is well-nown that if $\mathrm{Sing}(f) \cap f^{-1}(0) - \{0\} = \emptyset$ as germs then there xists a neighborhood U of 0 in \mathbb{C}^n such that the restriction

$$f|_{U \cap Sing(f)} : U \cap Sing(f) \longrightarrow \mathfrak{C}^p$$

s proper and finite to one. As $Sing(F) = \{(f, Sing(f)) | f \in J_{\mathbb{K}}^k(n,p)\}$, a can deduce that there exists a semi-algebraic stratification '(Z) of Z such that for any stratum W of S'(Z) there exists semi-algebraic neighborhood U_W of W×{0} in W×R²ⁿ and the estricted mapping

$$U_{W} \cap Sing(F) \xrightarrow{F} W \times \mathbb{R}^{2p}$$

3 proper and finite to one.

Also the restricted mapping

$$U_{W} \xrightarrow{F} W \times \mathbb{R}^{2p}$$

is a stratified mapping with respect to the canonically induced semi-algebraic stratifications $S((W \times \mathbb{R}^{2n}) \cap U_W)$, $S(W \times \mathbb{R}^{2p})$ and $U_W \cap Sing(F)$ is a stratified subset of $(W \times \mathbb{R}^{2n}) \cap U_W$.

For any point $(f, x) \in U_W \cap Sing(F)$, as the restricted mapping $U_W \cap Sing(F) \xrightarrow{F} W \times \mathbb{R}^{2p}$ is proper and finite to one, $\ker(d(F|X)_{(f,x)}) = \emptyset$, where X is a stratum of the startification $S((W \times \mathbb{R}^{2n}) \cap U_W)$ which contains (f, x). For any pair of non-singular strata (X,Y) such that $X, Y \in S(W \times \mathbb{R}^{2n}) \cap U_W$ and $\overline{X} \cap Y$, where non-singular means that for any point $(f, x) \in Y$ $(f, x) \notin U_W \cap Sing(F)$, the pair (X, Y) always satisfies condiiton a_f .

These observations show that the restricted mapping

$$U_W \xrightarrow{F} W \times \mathbb{R}^{2p}$$

is a Thom mapping with respect to the canonically induced semialgebraic stratifications $S((W \times R^{2n}) \cap U_W)$, $S(W \times R^{2p})$.

Now the proof of theorem 2 follows from proposition 1.

Proof of theorem 3(1).

Theorem 3(1). $J_{\mathbb{R}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi/\mathbb{C}^{0} - A$ is a finite set for p = 1, 2, and for any positive integers n, k.

<u>Proof.</u> In the function case, that is p = 1, for any positive integers n, k, our theorem is contained in the local case of Fukuda's theorem [3]. So we prove our theorem only in the case p = 2.

Consider the stratified sequence (*). Let X, Y be strata of $S(Z \times \mathbb{R}^n)$ such that $\overline{X} - X \supseteq Z \times \{0\}$, $\overline{Y} - Y \supseteq Z \times \{0\}$ and $\overline{X} \supseteq Y$, where \overline{X} denotes the closure of X in $Z \times \mathbb{R}^n$. Let \widetilde{X} , \widetilde{Y} be strata of $S(Z \times \mathbb{R}^2)$ such that $F(X) \subseteq \widetilde{X}$ and $F(Y) \subseteq \widetilde{Y}$. In the case $\widetilde{X} = \widetilde{Y}$, the existance theorem of tubular neighborhoods of strata shows that the pair (X, Y) satisfies condition a_f (see [8]). There are three possibilities of dimensions of a pair of strata $(\widetilde{X}, \widetilde{Y})$ when $\widetilde{X} \neq \widetilde{Y}$ and $\widetilde{X} \supseteq \widetilde{Y}$ as follows, where \widetilde{X} denotes the closure of \widetilde{X} in $Z \times \mathbb{R}^2$.

dimÃ	dimŶ		
2 + dimZ	1 + dimZ		
2 + dimZ	0 + dimZ		
1 + dimZ	0 + dimZ		

(I) The case $(\dim \widetilde{X}, \dim \widetilde{Y}) = (2 + \dim Z, 0 + \dim Z)$ or $(1 + \dim Z, 0 + \dim Z)$.

In this case, by geometric characterization and Sing(F) = $\{(f, \operatorname{Sing}(f)) \mid f \in J_{\mathbb{R}}^k(n,p)\}, \text{ there exists a semi-algebraic neighborhood } U_Z \text{ of } Z \times \{\emptyset\} \text{ in } Z \times \mathbb{R}^n \text{ such that the pair } (X \cap U_Z, Y \cap U_Z) \text{ is a non-singular pair. Hence the pair } (X \cap U_Z, Y \cap U_Z) \text{ satisfies condition } a_f.$

(II) The case $(\dim \widetilde{X}, \dim \widetilde{Y}) = (2 + \dim Z, 1 + \dim Z)$.

It is sufficient to consider only the case Y (Sing(F). In this case there exists a semi-algebraic neighborhood U_Z of $Z \times \{0\}$ in $Z \times \mathbb{R}^n$ such that for each point $(f^0, \mathbf{x}^0) \in Y \cap U_Z$, rankF at (f^0, \mathbf{x}^0) is 1 + $\dim J^k_R(n,2)$. By suitable analytic coordinate transformations we can assume that $F(f, \mathbf{x}) = (f, \mathbf{x}_1, g(f, \mathbf{x}_1, \cdots, \mathbf{x}_n))$ in a sufficiently small neighborhood $V_{(f^0, \mathbf{x}^0)}$ of (f^0, \mathbf{x}^0) in U_Z , where $\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$ and $g: V_{(f^0, \mathbf{x}^0)} \to \mathbb{R}$ is an analytic function.

We set $x^0 = (x_1^0, \dots, x_n^0)$ under this coordinate chart.

We also set

$$D = \{(f, \mathbf{x}) \in V_{(f^0, \mathbf{x}^0)} \mid x_1 = x_1^0, f = f^0\},$$

$$D' = \{(f, x) \in V_{(f^0, x^0)} \mid x_1 = x_1^0\}$$
 and

$$\widetilde{D} = \{(f, y_1, y_2) \in \mathbb{Z} \times \mathbb{R}^2 \mid (f, y_1, y_2) \in \mathbb{F}(V_{(f^0, x^0)}), y_1 = x_1^0\}.$$

We may assume that $g^{-1}(g(f^0, x^0)) \cap V_{(f^0, x^0)} = Y \cap D'$.

In the sufficiently small neighborhood $V_{(f^0,x^0)}$ of (f^0,x^0) in U_Z , we can assume that the stratum Y is transversal to the submanifold D. Since the mapping $g:V_{(f^0,x^0)}\to\mathbb{R}$ is a function, the existance theorem of a good stratification implies that there exists a stratification $S(Y\cap D)$ such that the restricted function

$$g|_{(X \cup Y) \cap D} : (X \cup Y) \cap D \rightarrow (\widetilde{X} \cup \widetilde{Y}) \cap \widetilde{D}$$

is a Thom mapping with respect to the stratifications $\{X \cap D, S(Y \cap D)\}$ and $\{X \cap D, Y \cap D\}$ (see [5] or [3]).

We also see that in the sufficiently small neighborhood $V_{(f^0, x^0)}$ of (f^0, x^0) in U_Z , the restricted mapping

$$F|_{X \cup Y} : X \cup Y \rightarrow \widetilde{X} \cup \widetilde{Y}$$

is considered as an analytically trivial unfolding of the restricted function

$$g|_{(X \cup Y) \cap D} : (X \cup Y) \cap D \rightarrow (\widetilde{X} \cup \widetilde{Y}) \cap \widetilde{D}.$$

Therefore the restricted mapping

$$F \mid_{(X \cup Y) \cap V_{(f^0,x^0)}} : (X \cup Y) \cap V_{(f^0,x^0)} \rightarrow (\widetilde{X} \cup \widetilde{Y})$$

is a Thom mapping with respect to the canonically extended stratifications from $\{X \cap D, S(Y \cap D)\}$ and $\{X \cap D, Y \cap D\}$.

By the above (I) and (II), we see that for each stratum Z of $S(J_{\mathbb{R}}^k(n,2)_{\mathbb{C}^0}-\chi)$ there exist a neighborhood U_Z of 0 in $Z\times\mathbb{R}^n$ and stratifications $S''(Z\times\mathbb{R}^n)$, $S''(Z\times\mathbb{R}^2)$ such that the restricted mapping

$$F|_{U_Z}: U_Z \rightarrow Z \times \mathbb{R}^2$$

is a Thom mapping with respect to the canonically induced stratifications $S"((Z\times \mathbb{R}^n)\bigcap U_Z)$, $S"(Z\times \mathbb{R}^2)$.

Now the proof of theorem 3(2) follows from proposition 1 .

§ 5. Thom's example

Let $K = \mathbb{R}$ or \mathbb{C} and let $f, g : \mathbb{K}^n \to \mathbb{K}^p$ be C^∞ (for $K = \mathbb{R}$) or holomorphic (for $K = \mathbb{C}$) mappings. We say f and g are topologically equivalent if there are homeomorphisms $h : \mathbb{K}^n \to \mathbb{K}^n$ and $h' : \mathbb{K}^p \to \mathbb{K}^p$ such that $f = (h')^{-1} \circ g \circ h$.

In [11], Thom considered the following one-parameter real polynomial mapping family $P(k):\mathbb{R}^3\to\mathbb{R}^3$, where k is a real parameter, and he proved that if any two fixed real numbers k_1 , k_2 are not equal then $P(k_1)$ and $P(k_2)$ are not topologically equivalent.

$$P(k): \begin{cases} X = [x(x^{2}+y^{2}-a^{2})-2ayz]^{2}[(x+ky)(x^{2}+y^{2}-a^{2})-2a(y-kx)z]^{2} \\ Y = x^{2}+y^{2}-a^{2} \\ Z = z \end{cases}$$

where (x, y, z), (X, Y, Z) are coordinates of the source space and the target space respectively, a is a non-zero fixed real number and k is a real parameter.

In this section, we recall quickly Thom's idea of proof, which is used in the proof of theorem 3(2).

Thom's idea of proof.

Let \mathbf{k}_0 be a fixed real number. We consider the following surface $\mathbf{H}(\mathbf{k}_0)$ and circle $\mathbf{C}(\mathbf{k}_0)$.

$$H(k_0) = \{(x, y, z) \in \mathbb{R}^3 \mid [x(x^2+y^2-a^2)-2ayz]^2[(x+k_0y)(x^2+y^2-a^2)-2a(y-k_0x)z]^2 = 0\}$$

$$C(k_0) = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2+y^2-a^2 = 0\}$$

Then $C(k_0) \subset H(k_0)$ and $C(k_0) \subset Sing(P(k_0))$. We also consider the following two surfaces $H_1(k_0)$ and $H_2(k_0)$.

$$\begin{split} & \text{H}_1(k_0) = \{(x, y, z) \in \mathbb{R}^3 \mid x(x^2 + y^2 - a^2) - 2ayz = 0\} \\ & \text{H}_2(k_0) = \{(x, y, z) \in \mathbb{R}^3 \mid (x + k_0 y)(x^2 + y^2 - a^2) - 2a(y - k_0 x)z = 0\} \end{split}$$

Then $H(k_0) = H_1(k_0) \cup H_2(k_0)$ and $H_1(k_0) \cap H_2(k_0) = C(k_0) \cup \{(0, 0, z) \in \mathbb{R}^3\}$. Furthermore we have

$$P(k_0)(H_1(k_0) \cap \{(x, y, z) \in \mathbb{R}^3 \mid \ell_{x+my} = 0\})$$

$$= \{(0, Y, Z) \in \mathbb{R}^3 \mid m_{Y+2} = 0\}$$

$$P(k_0)(H_2(k_0) \cap \{(x, y, z) \in \mathbb{R}^3 \mid \ell x + my = 0\})$$

$$= \{(0, Y, Z) \in \mathbb{R}^3 \mid (m - k_0 \ell) Y + 2a(\ell + k_0 m) Z = 0\}$$

for any two real numbers ℓ , m such that $\ell^2 + m^2 \neq 0$.

Now if there exist homeomorphisms h, h': $\mathbb{R}^3 \to \mathbb{R}^3$ such that $P(k_0) = (h')^{-1} \circ P(k_1) \circ h$ for any two fixed non-zero real numbers k_0 , k_1 ($k_0 \neq k_1$), then we have the following.

Lemma 5. (1) $h(H(k_0)) = H(k_1)$.

- (2) $h(C(k_0)) = C(k_1)$.
- (3) For any germ of continuous curve q(t) at any point $p \in C(k_0)$ (resp. $C(k_1)$) in $H(k_0)$ (resp. $H(k_1)$), $P(k_0)$ (resp. $P(k_1)$) maps $q(t) \text{ to a germ of continuous curve at } (0, 0, 0) \in \{(0, Y, Z) \in \mathbb{R}^3\}$ in $\{(0, Y, Z) \in \mathbb{R}^3\}$ and this germ of curve has a tangent line at (0, 0, 0).

By this fact, if k_0 , k_1 are both non-zero, then the restricted homeomorphism $h|_{C(k_0)}: C(k_0) \to C(k_1)$ must have the property that for any two points \mathbf{x} , $\mathbf{y} \in C(k_0)$ such that $\mathrm{angle} \angle \widehat{\mathbf{x}} \widehat{\mathbf{y}} = \mathrm{Tan}^{-1}(k_0)$ angle $\angle \widehat{\mathbf{h}}(\widehat{\mathbf{x}})\widehat{\mathbf{h}}(\widehat{\mathbf{y}}) = \mathrm{Tan}^{-1}(k_1)$. But this contradicts to Van Kampen's theorem in [13].

<u>Remark.</u> It is easily seen that if we change the one-parameter real polynomial mapping family $P(k): \mathbb{R}^3 \to \mathbb{R}^3$ to $P(k): \mathbb{R}^3 \to \mathbb{R}^3$ as follows, then we also have the property that if $k_0 \neq k_1$ then $P(k_0)$ and $P(k_1)$ are not topologically equivalent.

$$\sum_{P(k):} \begin{cases} x = [x(x^2+y^2-a^2)-yz]^2[(x+ky)(x^2+y^2-a^2)-(y-kx)z]^2 \\ y = x^2+y^2-a^2 \\ Z = z \end{cases}$$

§6. Proof of theorem 3(2)

Theorem 3(2). $J_{\mathbb{R}}^{k}(n,p)_{\mathbb{C}^{0}} - \chi/\mathbb{C}^{0} - \chi$ is as infinite set if $n \ge 4$, $p \ge 4$, $k \ge 12$. In fact they have topological moduli.

<u>Proof.</u> We divide the conditions on dimensions into the following three cases.

(Case I) n = 4, $p \ge 4$.

(Case II) $n \leq p, n > 4$.

(Case m) $n > p, p \ge 4$.

<u>Proof in case I.</u> Let $\widetilde{Q}(k)$: $(\mathbb{R}^4, 0) \rightarrow (\mathbb{R}^4, 0)$ be a one-parameter polynomial map-germ family defined as follows;

$$\widetilde{Q}(k): \begin{cases}
X = [x(x^2+y^2-u^2)-yz]^2[(x+ky)(x^2+y^2-u^2)-(y-kx)z]^2 \\
Y = x^2+y^2-u^2 \\
Z = z \\
U = u^2
\end{cases}$$

where (x, y, z, u), (X, Y, Z, U) are coordinates of the source and the target spaces respectively and k is a real porameter. Let P'(k) be a one-parameter polynomial map-germ family defined as follows;

$$P'(k) : (\mathbb{R}^{4}, 0) \rightarrow (\mathbb{R}^{p}, 0)$$

$$P'(k)(x, y, z, u) = (\widetilde{Q}(k), 0).$$

For any fixed k_0 , $p'(k_0)^{-1}(\{\emptyset\}) = \{\emptyset\}$. So $p'(k_0)$ is a C^0 - \mathcal{K} -finite polynomial map-germ by geometric characterization of C^0 - \mathcal{K} -finiteness.

Let
$$H_1'(k_0)$$
, $H_2'(k_0)$, $H'(k_0)$ and $C'(k_0)$ be as follows;

$$\begin{split} & \text{H}_{1}^{\prime}(k_{0}) = \{ (x, y, z, u) \in \mathbb{R}^{4} \mid x(x^{2} + y^{2} - u^{2}) - yz = 0 \}, \\ & \text{H}_{2}^{\prime}(k_{0}) = \{ (x, y, z, u) \in \mathbb{R}^{4} \mid (x + k_{0}y)(x^{2} + y^{2} - u^{2}) - (y - k_{0}x)z = 0 \}, \\ & \text{H}^{\prime}(k_{0}) = \text{H}_{1}^{\prime}(k_{0}) \cup \text{H}_{2}^{\prime}(k_{0}), \\ & \text{C}^{\prime}(k_{0}) = \{ (x, y, 0, u) \in \mathbb{R}^{4} \mid x^{2} + y^{2} - u^{2} = 0 \}. \end{split}$$

Then we have

$$P(k_0)(H_1'(k_0) \cap \{(x, y, z, u) \in \mathbb{R}^4 \mid lx+my = 0\})$$
= \{(0, y, z, u, 0) \in \mathbb{R}^p \ | my+lz = 0\},

$$P'(k_0)(H_2'(k_0)) \{ (x, y, z, u) \in \mathbb{R}^4 \mid \ell_{x+my} = 0 \})$$

$$= \{ (0, Y, Z, U, 0) \in \mathbb{R}^p \mid (m-k_0\ell)Y + (\ell+k_0m)Z = 0 \},$$

for any two real numbers ℓ , m such that $\ell^2 + m^2 \neq 0$.

If there are germs of homeomorphisms $h: (\mathbb{R}^4, 0) \to (\mathbb{R}^4, 0)$, $h': (\mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$ such that $P'(k_0) = (h')^{-1} \circ P'(k_1) \circ h$ as germs at 0 for any two fixed non-zero real numbers k_0 , k_1 ($k_0 \neq k_1$), then we have the following lemma like lemma 5 in §6.

- Lemma 6. (1) $h(H'(k_0)) = H'(k_1)$ as germs at 0.
- (2) $h(C'(k_0)) = C'(k_1)$ as germs at 0.
- (3) $h(C'(k_0) \cap P'(k_0)^{-1}((0, 0, 0, u_0, 0))) = C'(k_1) \cap P'(k_1)^{-1}((0, 0, 0, h_4'((0, 0, 0, u_0, 0)), 0))$ as germs at 0 for any real number u_0 close to zero and h_4' is the forth component function of h' (see Figure I).
- (4) For any germ of continuous curve q(t) at any point $p = (x, y, 0, u) \in C'(k_0) \text{ } (\underline{resp. C'(k_1)}) \text{ } \underline{in} \text{ } H'(k_0) \text{ } (\underline{resp. H'(k_1)}),$ $p'(k_0) \text{ } (\underline{resp. P'(K_1)}) \text{ } \underline{maps} \text{ } q(t) \text{ } \underline{to} \text{ } \underline{a} \text{ } \underline{germ} \text{ } \underline{of} \text{ } \underline{continuous} \text{ } \underline{curve}$ $\underline{at} \text{ } (0, 0, 0, u^2, 0) \in \mathbb{R}^p \text{ } \underline{in} \text{ } \{(0, Y, Z, U, 0) \in \mathbb{R}^p\} \text{ } \underline{and} \text{ } \underline{mop'(k_0)}(q(t))$ $(\underline{resp. mop'(k_1)(q(t))}) \text{ } \underline{is} \text{ } \underline{a} \text{ } \underline{germ} \text{ } \underline{of} \text{ } \underline{continuous} \text{ } \underline{curve} \text{ } \underline{at} \text{ } (0, 0, 0) \in \mathbb{R}^3$ $\underline{in} \text{ } \{(0, Y, Z) \in \mathbb{R}^3\} \text{ } \underline{and} \text{ } \underline{this} \text{ } \underline{germ} \text{ } \underline{of} \text{ } \underline{curve} \text{ } \underline{has} \text{ } \underline{a} \text{ } \underline{tangent} \text{ } \underline{line}$ $\underline{at} \text{ } (0, 0, 0), \text{ } \underline{where} \text{ } \pi : \mathbb{R}^p \to \mathbb{R}^3 \text{ } \underline{is} \text{ } \underline{a} \text{ } \underline{natural} \text{ } \underline{projection}$ $(x, y, z, U, v_1, \cdots, v_{p-4}) \text{ } | \to (x, y, z).$

The proof of lemma 6 is analogous to lemma 5 and we omit it.

By this lemma, we have a contradiction to Van Kampen's theorem as same as Thom's proof.

(FIGURE I)

 \underline{proof} \underline{in} \underline{case} \underline{II} . Let P''(k) be a one-parameter polynomial map-germ family as follows;

$$\begin{split} & \text{P''}(\textbf{k}) \; : \; (\mathbb{R}^n, \; 0) \; \rightarrow \; (\mathbb{R}^p, \; 0) \\ & \text{P''}(\textbf{k})(\textbf{x}, \; \textbf{y}, \; \textbf{z}, \; \textbf{u}, \; \textbf{v}_1, \; \cdots, \; \textbf{v}_{n-4}) \; = \; (\widetilde{\textbf{Q}}(\textbf{k})(\textbf{x}, \; \textbf{y}, \; \textbf{z}, \; \textbf{u}), \; \textbf{v}_1, \cdots, \; \textbf{v}_{n-4}, 0) \end{split}$$

where (x, y, z, u, v_1 , ..., v_{n-4}) is a coordinate of the source space and $\widetilde{Q}(k)$ is as before.

For any fixed k_0 , $P''(k_0)^{-1}(\{\emptyset\}) = \{\emptyset\}$. So $P''(k_0)$ is a $c^0 - \chi$ -finite polynomial map-germ.

Let $H''(k_0)$ and $C''(k_0)$ be as follows;

$$\begin{split} \mathtt{H''}(\mathtt{k}_0) &= \{(\mathtt{x}, \ \mathtt{y}, \ \mathtt{z}, \ \mathtt{u}, \ \mathtt{v}_1, \ \cdots, \ \mathtt{v}_{n-4}) \in \mathbb{R}^n \, | \\ & \quad [\mathtt{x}(\mathtt{x}^2 + \mathtt{y}^2 - \mathtt{u}^2) - \mathtt{y}\mathtt{z}][(\mathtt{x} + \mathtt{k}_0 \mathtt{y})(\mathtt{x}^2 + \mathtt{y}^2 - \mathtt{u}^2) - (\mathtt{y} - \mathtt{k}_0 \mathtt{x})\mathtt{z}] \, = \, 0\}, \\ \mathtt{C''}(\mathtt{k}_0) &= \{(\mathtt{x}, \ \mathtt{y}, \ \mathtt{0}, \ \mathtt{u}, \ \mathtt{v}_1, \ \cdots, \ \mathtt{v}_{n-4}) \in \mathbb{R}^n \, | \mathtt{x}^2 + \mathtt{y}^2 - \mathtt{u}^2 \, = \, 0\}. \end{split}$$

If there are germs of homeomorphisms $h:(\mathbb{R}^n,\,\mathbb{0})\to(\mathbb{R}^n,\,\mathbb{0})$ $h':(\mathbb{R}^p,\,\mathbb{0})\to(\mathbb{R}^p,\,\mathbb{0})$ such that $P''(k_0)=(h')^{-1}\circ P''(k_0)\circ h$ as germs at $\mathbb{0}$ for any two fixed real numbers k_0 , k_1 $(k_0\neq k_1)$, then we have the following lemma, which is analogous to lemma 6.

<u>Lemma</u> 7. (1) $h(H''(k_0)) = H''(k_1)$ <u>as germs</u> <u>at</u> 0.

(2) $h(C''(k_0)) = C''(k_1)$ as germs at 0.

- (3) $h(C''(k_0) \cap P''(k_0)^{-1}((0, 0, 0, u^0, v_1^0, \cdots, v_{n-4}^0, 0))) = C''(k_1) \cap P''(k_1)^{-1}(h'((0, 0, 0, u^0, v_1^0, \cdots, v_{n-4}^0, 0)))$ as germs at 0 for any real numbers u^0 (\geq 0), v_1^0 , \cdots , v_{n-4}^0 sufficiently close to zero.
- (4) For any germ of continuous curve q(t) at any point $p = (x, y, 0, u, v_1, \cdots, v_{n-4}) \in C''(k_0) \text{ (resp. } C''(k_1)) \text{ in } H''(k_0)$ (resp. $H''(k_1)$), $P''(k_0)$ (resp. $P''(k_1)$) maps q(t) to a germ of continuous curve at $(0, 0, 0, u^2, v_1, \cdots, v_{n-4}, 0) \in \mathbb{R}^p$ in $\{(0, Y, Z, U, V_1, \cdots, V_{n-4}, 0) \in \mathbb{R}^p\}$ and $\pi \circ P''(k_0)(q(t))$ (resp. $\pi \circ P''(k_0)(q(t))$) is a germ of continuous curve at $(0, 0, 0) \in \mathbb{R}^3$ in $\{(0, Y, Z) \in \mathbb{R}^3\}$ and this germ of curve has a tangent line at (0, 0, 0), where $\pi : \mathbb{R}^p \to \mathbb{R}^3$ is a natural projection $(x, Y, Z, U, V_1, \cdots, V_{p-4}) \mapsto (x, Y, Z)$.

The proof of this lemma 7 is almost as same as one of lemma 6 and we omit it.

This lemma 7 yields a contradiction to Van Kampen's theorem.

<u>proof in case III.</u> Let $\widehat{Q}(k)$ be a one-parameter polynomial map-germ family as follows;

$$\widehat{Q}(k) : (\mathbb{R}^{n-p+4}, 0) \to (\mathbb{R}^4, 0)
X = [x(x^2+y^2-u^2-v_1^2-\cdots-v_{n-p}^2)-yz]^2 \times
[(x+ky)(x^2+y^2-u^2-v_1^2-\cdots-v_{n-p}^2)-(y-kx)z]^2
Y = x^2+y^2-u^2-v_1^2-\cdots-v_{n-p}^2
Z = z
U = u^2+v_1^2+\cdots+v_{n-p}^2$$

where $(x, y, z, u, v_1, \cdots, v_{n-p})$, (X, Y, Z, U) are coordinates of the source and the target spaces respectively and k is a parameter. Let P'''(k) be a one-parameter polynomial map-germ as follows;

$$\begin{split} & P'''(k): (\mathbb{R}^n, \, \, 0) \, \rightarrow \, (\mathbb{R}^p, \, \, 0) \\ & P'''(k)(x, \, y, \, z, \, u, \, v_1, \, \cdots, \, v_{n-p}, \, w_1, \, \cdots, \, w_{p-4}) \\ & = \, (\widehat{\mathbb{Q}}(k)(x, \, y, \, z, \, u, \, v_1, \, \cdots, \, v_{n-p}), \, w_1, \, \cdots, \, w_{p-4}). \end{split}$$

For any fixed k_0 , $P'''(k_0)^{-1}(\{\emptyset\}) = \{\emptyset\}$. So $P'''(k_0)$ is $C^0 - \chi$ -finite.

Let $H'''(k_0)$ and $C'''(k_0)$ be as follows;

$$\begin{split} \mathtt{H'''}(\mathtt{k_0}) &= \{(\mathtt{x}, \mathtt{y}, \mathtt{z}, \mathtt{u}, \mathtt{v_1}, \cdots, \mathtt{v_{n-p}}, \mathtt{w_1}, \cdots, \mathtt{w_{p-4}}) \in \mathbb{R}^n \mid \\ & [\mathtt{x}(\mathtt{x}^2 + \mathtt{y}^2 - \mathtt{u}^2 - \mathtt{v_1^2} - \cdots - \mathtt{v_{n-p}^2}) - \mathtt{yz}] \times \\ & [(\mathtt{x} + \mathtt{k_0} \mathtt{y})(\mathtt{x}^2 + \mathtt{y}^2 - \mathtt{u}^2 - \mathtt{v_1^2} - \cdots - \mathtt{v_{n-p}^2}) - (\mathtt{y} - \mathtt{k_0} \mathtt{x})\mathtt{z}] = 0\}. \end{split}$$

$$C^{"'}(k_0) = \{ (x, y, 0, u, v_1, \dots, v_{n-p}, w_1, \dots, w_{p-4}) \in \mathbb{R}^n \mid x^2 + y^2 - u^2 - v_1^2 - \dots - v_{n-p}^2 = 0 \}.$$

If there are germs of homeomorphisms $h: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, $h': (\mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$ such that $P'''(k_0) = (h')^{-1} \circ P'''(k_1) \circ h$ as germs at 0 for any two fixed non-zero real numbers k_0 , k_1 ($k_0 \neq k_1$), then we have the following lemma, which is analogous to lemma 6 and lemma 7, hence we give no proof of it.

- <u>Lemma</u> 8. (1) $h(H'''(k_0)) = H'''(k_1)$ as germs at 0.
- (2) $h(C'''(k_0)) = C'''(k_1)$ as germs at 0.
- (3) For any real numbers u^0 (\geq 0), w_1^0 , ..., w_{p-4}^0 sufficiently close to zero, $h(C'''(k_0) \cap P'''(k_0)^{-1}((0,0,0,u^0,w_1^0,...,w_{p-4}^0))) = C'''(k_1) \cap P'''(k_1)^{-1}(h'(0,0,0,u^0,w_1^0,...,w_{p-4}^0))$ as germs at 0.
- (4) For any germ of continuous curve q(t) at any point $p = (x, y, 0, u, v_1, \cdots, v_{n-p}, w_1, \cdots, w_{p-4}) \in C'''(k_0) \text{ (resp. } C'''(k_1))$ in H'''(k_0) (resp. H'''(k_1)), P'''(k_0) (resp. P'''(k_1)) maps q(t) to a germ of continuous curve at (0, 0, 0, $u^2 + v_1^2$, w_1 , \cdots , $w_{p-4}) \in \mathbb{R}^p$ in $\{(0, Y, Z, U, W_1, \cdots, W_{p-4})\} \in \mathbb{R}^p$ and $\pi \circ P'''(k_0)(q(t))$ (resp. $\pi \circ P'''(k_1)(q(t))$ is a germ of continuous curve at (0, 0, 0) $\in \mathbb{R}^3$ in $\{(0, Y, Z) \in \mathbb{R}^3\}$ and this germ of curve has a tangent line at (0, 0, 0), where $\pi : \mathbb{R}^p \to \mathbb{R}^3$ is a natural projection $(x, Y, Z, U, W_1, \cdots, W_{p-4})| \to (x, Y, Z)$.

As $C'''(k_0) \cap P'''(k_0)^{-1}((0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0))$ is a space $\sqrt{u^0 \cdot s^1} \times \sqrt{u^0 \cdot s^{n-p}}$ if $u^0 > 0$, the restriction of the homeomorphism h to $\sqrt{u^0 \cdot s^1} \times \sqrt{u^0 \cdot s^{n-p}}$ maps $\sqrt{u^0 \cdot s^1} \times \sqrt{u^0 \cdot s^{n-p}}$ to $\sqrt{u^0 \cdot s^1} \times \sqrt{u^0 \cdot s^{n-p}}$, where $u^0 = h_4'(0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0)$.

To conclude the proof in case (III), we need the following lemma.

Lemma 9. In each $C'''(k_0) \cap P'''(k_0)^{-1}((0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0))$ $= \sqrt{u^0 \cdot S^1} \times \sqrt{u^0 \cdot S^{n-p}} \quad \text{for } u^0(>0) \quad \text{close to zero, each longitude}$ $\frac{\text{sphere is mapped to a longitude sphere in}}{C'''(k_1) \cap P'''(k_1)^{-1}(h'((0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0)))} = \sqrt{u^0 \cdot S^1} \times \sqrt{u^0 \cdot S^{n-p}}$ $\frac{\text{by the restriction of the homeomorphism h of the source space}}{(10,0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0)} = \sqrt{u^0 \cdot S^1} \times \sqrt{u^0 \cdot S^{n-p}}$

Proof of lemma 9. We take any germ of continuous curve q(t) at $(0, 0, 0, u^0, w_1^0, \cdots, w_{p-4}^0)$ in $\{(0, Y, Z, u_1^0, w_1^0, \cdots, w_{p-4}^0) \in \mathbb{R}^p\}$ which has a tangent line at $(0, 0, 0, u^0, w_1^0, \cdots, w_{p-4}^0)$. Then $P'''(k_0)^{-1}(q(t))$ is homeomorphic to $S^{n-p} \times I$ with a certain longitude sphere in $H'''(k_0)$ as its center, where I is an open interval.

If the inverse image of this longitude sphere by the homeomorphism h of the source space is not a longitude sphere, then $P'''(k_1)(h^{-1}(P'''(k_0)^{-1}(q(t)) \text{ is not a germ of continuous curve at } h'(0, 0, 0, u^0. w_1^0, \cdots, w_{p-4}^0). \text{ This is a contradiction to the commutativity } P'''(k_0) = (h')^{-1} \circ P'''(k_1)^{0} h \text{ with homeomorphisms } h, h'.$

(FIGURE II)

By this lemma 9, we have the following.

Lemma 10. For any $C'''(k_0) \cap P'''(k_0)^{-1}((0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0))$ $= \sqrt{u^0 \cdot s^1} \times \sqrt{u^0 \cdot s^{n-p}} \quad \text{for any positive number } u^0 \quad \text{close to zero},$ the image of any meridian circle by the restriction of homeomorphism h is isotopic to any meridian circle in $C'''(k_1) \cap P'''(k_1)^{-1}(h'(0,0,0,u^0,w_1^0,\cdots,w_{p-4}^0)) \quad \text{by an isotopy}$ with (x, y)-coordinates preserving.

Now lemma 8 and lemma 10 yield a contradiction to Van Kampen's theorem as same as we see in case (I) and (II). $\begin{tabular}{ll} \hline \end{tabular}$

REFERENCES

- N.A.A'Campo: Le nombre de Lefschetz d'une monodromie.
 Ind. Mat. Proc. Kon. Ned. Akad. Wet. serie A 76 (1973),
 113-118.
- 2. K.Aoki and H.Noguchi: On topological types of polynomial map-germs of plane to plane. Memoirs of the School of Science & Engineering Waseda University NO. 44 (1980), 113-156.
- 3. T.Fukuda: Types topologique des polynomes. Publ. Math. I.H.E.S. 46 (1976), 87-106.
- Gibson et al.: Topological stability of smooth mapping.
 Springer LNM NO. 552 (1976).
- 5. H.A. Hamm and Lê Dũng Trang: Un theorème de Zariski du type de Lefschetz. Ann. scient. Éc. Norm. Sup. 4^e série t. 6 (1973), 317-355.
- 6. H.King: Topological types of isolated critical points.
 Ann. of Math. 107 (1978), 385-397.
- 7. H.King: Topological type in families of germs. Invent. Math. 62 (1980), 1-13.
- 8. J.N.Mather: Notes on topological stability. Lecture Notes
 Harvard University (1970).
- 9. J.Milnor: Singular points of complex hypersurfaces.
 Ann. Math. Stud. 61 (1968).

- 10. I.Nakai: On topological types of polynomial mappings.
 Topology 23 (1984), 45-66.
- 11. R.Thom: La stabilite topologique des applications polynomiales. L'Enseignement Math. 8 (1962), 24-33.
- 12. R.Thom: Local topological properties of differentiables mappings. In Colloquium on differential analysis (Tata Inst.), pp. 191-202. Oxford University Press (1964).
- 13. Van Kampen: Topological transformations of curve. American Journal of Math. 57 (1935), 142-151.
- 14. C.T.C.Wall: Finite determinacy of smooth map-germs.
 Bull. London Math. Soc. 13 (1981), 481-539.

Takashi Nishimura

Department of Mathematics

School of Science

and Engineering

Waseda University

Shinjuku, Tokyo

Japan