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Tcpelogical types of

topologically finitely determined map-germs

TAKASHI NISHIMURA
G (T L)

§0. Introduction
In this article we investigate the following two problems.

Problem(i). Is finite—co—}<—determinacy a topological
invariant among analytic map-germs?

Problem(IL). Do the topological types of all finitely-
CO—}<—determined map-germs have topological moduli, i.e. do
they have infinitely many topological types with the cardinal

number of continuum?

n

Let K = R or C. Two map-germs f and g : (K, 0) ~» (Kp, 0)

A . . - .
are topvologically egquivalent or Co—ﬂ&requlvalent if there exist

germs of homeomorphisms h1 : (Kn, 0) - (Kn, 0) and h2 : (Kp, 0)

- (Kp, 0) such that g = hZOthT. A map-germ f is finitely-

Co—ﬁL—determined (or CofﬁL—finite for short) if there is an

integer k such that any germ g with jk(g) = jk(f) is Co-ﬁi-
equivalent to £f. This is the topological version of J.Mather's
¢&-equivalence and ﬂi:determinacy. We can also define éo—}:,
Co-gg, Co1li, CO-C, equivalence and their determinacies in a
similar way replacing diffeomorphisms in the c” version by

homeomorphisms.



We will give a precise definition of CO—)<—equivalence

at the end of Introduction..
Let Jé(n,p)‘ denote the set of all polynomial map-germs :

(Kn, 0) - (Kp, 0) with degree = k and let JE(n,p)CO_)< denote

the set of all finitely-co—}(—determined elements of Jé(n,p).

' k 0 . .
Let JK(n,p)CO_'}:/ C —ﬁi. denote the set‘of topological egulva—

lence classes of elements of Jé(n,p)co_}<. Then our main

results are

£, g : (¢, 0) - (¢, 0) be holomorphic

Theorem 1. Let

satisfving the fcllowings;

mapr-cerms
(1) £ is c%- Y -finite.
(2) £ and g are

Then g is also CO—)<—finite.

™
Hh
’_I
o]
'J
t
(]
n
(0]
t
-
(6]
[a

i,_..

. k 0
Theorem 2. Jc(n,p)CO_;</ c’-d

anv positive integer n, p, k.

finite set

I

-k 0 .
R(N/E)IO_y/ C -d s

1, 2, any positive integer n, k.

Theorem 3.

for p =
(2) Jg(n,p)co_k/ c®-d_ is an infinite set if n z 4, p z 4,
kz 12, In fact thev have topological moduli.




When we compare our theorem 2 and theorem 3(2) with the
results in T[31, [2] and [10], it is interesting that there is
a difference of cardinal numbers between the real case and the
complex case. Theorem 1 and 2, combined with the fact that
CO—}<—finiteness is a generic property, tell us that finitely-
CO—)<~determined holomorphic map-germs are fascinating objects
to study from the topological view point.

n

Definition. Two map-germs f and g : (K, 0) - (Kp, 0)

0 . . ) . s
are C - ¥-equivalent if there exist germs of homeomorphisms

h : (K7, 0) ~ (K7, 0) and H : (K"xkP, 0) > (K"xkP, 0) such

- 14

that the following diagram ccmmutes:

N T
&%, 0 7 E 7 (KHX/K% v 0
(®PxK?, K'x{0})
h H h
(K*kP, K'x{0}) |
. \V
&, 0) —Er BN @k, o) N, 0,
where (i, f)(x) = (¥, f(x)) and ﬂ1(x, V) = X.
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§1. Remarks/Related topics

(1) The following simple example shows that the real

version of theorem 1 does not hold.
3,
Example. f(x, yv) = xy, g{x, y) = x7vy.

Function f is finitely—co—;kﬁdetermined but g is not, although
f and g are topologically equivalent as real functions.

(2) Let %} be any of/Q&,/}{, &Q,&f, f:. Then the following

questions are more natural to be asked than our problems (I) and

(m).

oy . . .
Problem(II). Is finite C0—<j—aeterm1nacy a Co—gl—lnvarlant
among analytic map-germs?
Problem(IV). Is J&(n,p)co_g:/ Co—g; a finite set for

any positive integer n, p, k?

We have easily the following answers to these problems.

Problem (III) | @ =}2{_ }< @Q Oi/ é

K =R No No No No Yes
Answer
*)
K = C ? ? Yes ? Yes
*) This is a corollary of Theorem 1 (see the end of §3).



Problem (IV) el =5i_ }( }Q oZi‘r Ci

K =R finite . finite
, [12] ,
Answer finite tfinite finite
* %
K=cC | finite ) (6,71 2
*%) This is a corollary of Theorem 2.
(3) In his paper [11] in which his second isotopy;lemma

and his condition as were announced for the first time, Thom

gave an example of a family of polynomial mappings of 83 into R3

which contains continuously many topological types. Fukuda [3]
and Aoki [2] showed that every family of polynomial functions

2 2

of several variables or of polynomial map-germs of R™ into R

{or Czinto @2) has only finitely many topological types. Recently
Nakal [10] gave examples of families of polynomial map-germs
of R" into RP (or Clinto Cp) of degree k with n, p, kK 2 3 or
nz 3, pz 2, kz 4 which contain continuously many topological
types.

The examples of Thom and Nakail motivate to consider what
will happen if we restrict objects of study within better map-

germs, for example finitely-co—}<—determined ones? Thus arise

our problems (I) and (II).
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§2. Proof of thecrem 1

Theorem 1. Let £, g :(Cn, 0) ~> (CP, 0) Dbe holomorphic
map-germs satisfying the followings; |

(1) £ is c%- K finite.

(2) ' f and g are CO—}irequivalent.

Then g is also CO-;H—finite.

proof. If n <p, all points x€c” are singular points

-1

of £. If £ is CO—}<~finite, f (0) = {O} by geometric character-

ization of CO-}¥~finiteness ([14]1). Hence by hypothesis (2),
g'1(0) is also {@ as germ. Therefore g is CO—)<—finite by
geometric characterization of Co—jk—finiteness.
Hence our interest is eésentialiy in the case n zp. By
the hypothesis (2), we can put
g = (h') lefohn
on a certain open neighborhood U of 0 in Cn, where h:(@n, o) -~ (Cn, ®)
and h':(Cp, 0) > (cP, 0) are germs of homeomorphisms.

Suppose that g is not CO—)<—finite. Then by geometric

characterization of CO—}<—finiteness,

sing(g)MN\e~ ' (0) - {0} d{0},

where Sing(g) = {x4e¢n : X is a singular point of g}. Since
f is CO—;kainite, for any zOEESing(g)[\g-1(®) - {0} which is
sufficiently close to 0, there exists a sufficiently small
positive number € such that for any positive number r(r<g)

h(r-Dzn) ( {regular point of f}

2n 0

where r.D is an open r-disk centered at z~ in U.
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We have

2n)

Lemma, 1. h(r-D is homeomeorphic to

2n

(f’1(h'(2'»f\h(r'D2n)) x £(h(r+D°7)) where h'’(z’)

2
0

arbitrary point in £(h-p°%)) - {o}.

We put £ = (f1l cty, fp)r g = (g1l ) gp)’

h’=(h’l ctcy hF,)) and Z":(Z-]'l ctty ZE;).

Since n > we may take z’ in lemma 1 such that 23 £ 0

P
and hﬂ(z') #0 for any J (1 <3 < p).

-1 ’
YNgy (z5))
= h(r-D") () (g7 ) ({2, -+, z 2!, 2 cee, 2 )
= . g 1 ’ 5-1"7 57 J+17 r Z
2, €C (i £ 3)))

2n

= h(z-D")N(£7 ) (h" ) ({zg, +-v, z 2!, z. cee 2

j=1" 73 j=1" T °p
ziECE (i # 3)}).

By lemma 1, this space is homeomorphic to

h(z-D*)NE™ " (((z,, ==+, 2z, ., hiz"), z
2, €C (i £3), hi(z’) # 0})
- h(r-Dzn)r\ij1(hj.' (z')).

In particular we have



Lemma 2. The homology of the fiber of Milnor fibration of
£, at h(zo) and the homology of the fiber of Milnor fibration
j 2t ot QL
of gj g;_zo are isomorphic for any j (1 = j £ p).
On the other hand, after a suitable coordinate transformation
we have
Lemma 3. (1) zo is a singular point of gj for a certain

i (1 53 s p) for zoézsing(g)[\g_1(0) - {0}.

(2)  hz’

) is a regular point of f. for any

(1

A
.
A

p).

3 any 3J

Lemma 2 and lemma 3 contradict to A'campo's result ([1]).

The map-germ g must be CO—}<-finite.i3

ot

Corollaryv. Le £,

(Cn, 0) > (Cp, 0) be holomorphic

mav-cerms satisfving the followings;

(1) £ is c°-

R-finite.

h

(2)

and g are CO—JQ—ecuivalent.

Then g is also CO—jQ-finite.

Proof of corollary.

In fact the above proof of theorem 1

n

shows that for all holomorphic map-germs £, g : (€, 0) - (Cp, 0)

such that f 1

+

h' : (<P, 0)

Sing(g) as germs at 0.

theorem 1 by geometric characterization of CO—}z—finiteness ([141). '3

(h') 'ogoh as germs at 0, where h : (€7, 0) » (€7, 0)

(Ep, 0) are germs of homeomorphisms, h(Sing(f)) =

Hence our corollary follows from

|‘|
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§ 3, Thom-Mather's stratification theory

Let X' and Y° be differentiable submanifolds of R having
dimension r and s respectively. We say the pair (X, 'Y) satisfies

Whitnev’s condition (a) at a point of Y if for any seguence

of points % of X such that X, > Y and the tangent space Tx (X)
_ i
to X at X, converge to some r-plane T(C:Rn), we have Ty(Y)C:T,

We say that (X, Y) satisfies Whitnev’s condition (b) at a point y

of Y if for any seguerces {xie X} and {YiE:Y} such that“xi # Yo
Y and Y, 7 v and such that'TX.(X) converge to some'r—plane
T(C;Rn) and the secants §Z§i joini;g X5 with yi converge to some
line 2( CR"), we have 2 C . Note that condition (b)‘is stronger
than condition (a).

We say (X, Y) satisfies condition (a) (resp. (b)) if it

satisfies condition (a) (reso. (b)) at every point y of Y.

A Whitney stratification of a subset E of R" is a family

S = {Xi} of connected smooth submanifolds of Rn, called strata
of S, such that the strata are pairwise disjoint, any pair (X, Y)
of strata of S satisfies Whitney’s condition (a) and (b), the
family S is locally finite and for any pair X and Y of strata
of S if XNY # ¢, then we have X DY.

A set with one of its stratification is called a stratified
set. - Let S(E) and S(F) be Whitney stratifications of sets
E((:Rn) and F((:Rp). A continuous mapping f : E > F is a

stratified mapping if it is extendable to a smooth mapping of

a neighborhood of E in ®"into RP and if for any stratam X of
S(E), f(X) is contained in a stratam Y of S(F) and f[X : X > Y

is a submersion.
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Let X and Y be smooth submanifolds of B" and let f : U » BRP
be a smooth mapping defined in a neighborhood U of XUY in r".
Suppose that the restricted mapping f|X : X-RBP and £|y : v » ®P
are of constant ranks. We say that the pair (X, Y) satisfies
condition ae if for any point ¥y of Y and for any sequence {xiéfx}

converging to y such that the sequence of the planes ker(d(flx) )

. -
converges to a plane K, we have ker(d(fIY)y)C:K. Where *

ker(d(f[X)X) denotes the kernel of the differential
. P
d(fIX)X D T (X) > Tf(x)(R )

of f|X at x.

A Thom mapping f : E + F is a stratified mapping such that

any pair of strata of S(E) satisfies condition ag-

Proposition 1. (Thom’'s local isotopyv lemma) et £ : E=>F
be a Thom mapping and let g : F -+ V be a stratified mapping
with respect to stratifications S(E), S(F) and {V}, where V

is a connected smooth manifold and E and F are locallv compact.

If points p and g of E belong to the same stratum of E, then

th e ictior N
e germ at p of the restriction fIAg(f(p)) Ag(f(p)) > Bg(f(p))

and the germ at g of the restriction £f|A >~ B

g(£(q)) Pgs(q)) T Ba(f(a))
(

(
0 ;Q . -1
are C -A -eguivalent, where = {(gef) (g{f(p))) and

Ry(£(p))
B (£(p)) = 9 (G(E(p)).

- 10 -
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Let A be a semi-algebraic set. Then a semi-algebraic

stratification of A is a Whiyney stratification of A such that

each stratum of A is a semi-algebraic set and the number of

these strata is finite.

Proposition 2. Let A, CiCRn and B, D(:Rp be semi-algebraic
sets such that ACC and B (D. Le £ : % > gP be a pdlvnomial

map with £(C) CD. Then there exist semi-algebraic stratifications

th

S(C) and S(D) such that the map f|C : C + D is a stratified

map and A and B are stratified subsets of C and D respectively.

Moreover given anv semi-algebraic stratifications S(C) and s(D),

there exist semi-algebraic refinements S’ (C) of S(C) and S’'(D)

of S(D) such that the map f|C : ¢ > D is a stratified map and

A and B are stratified subsets of C and D respectively.

For the proof of proposition 1, see [8] or [4] and

for the proof of proposiiton 2, see [3].
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§ 4, Proofs of theorem 2 and theorem 3(1)

We identify c"with Rzn.

We also identify Ji(n,p) not
only with the set of polynomial mappings of (K, 0) into (KP, 0) with
degree £ k, but also with an Euclidean space REpN of a suitable

dimension €pN (¢ =1 if K = R and € = 2 if X = €) as usual.

Under these identification the mapping

F i J8(n,p)xR"" — J5(n,p)xe"P

defined by F(f, %) = (f, f(x)) can be considered as a real
polynomial mapping, where féJE]i(n,p), xéRen ande= 1 1if K = R

ore= 2 if K = €.

Lemma 4. Ji(n,p)co_ 2: is a semi-algebraic subset in
5(n,p) = RPN,
Procf of lemma 4. By geometric characterization, for each

. k . . . k , .
f in JK(n,p), f is contained in JK(n,p)CO_ }< if and only if
there exists a neighborhood V of 0 in K such that
. -1 . . . -
VASing(£)MNf (0) - {0} = ¢, which is equivalent that there exists
neighborhood V of ¢ in X = such that

((£1xv) Nsing (AN (I (n,p))x(0}) - (£x0) = 6.

- 12 -



Clearly A(lRXREHXJ§(n,p)XREn comprising all gquadruplets
(t, v, £, x) with (£, x) €F"'(0)\Sing(F) - J5(n,p)*{0} and

|x-y] < t 1is semi-aljebraic. Now consider the following

polynomial projections;

P P Py
(®&"xT (n,p) RED — BRI (n,p) —2 RE™x3% (n,p) —> I (n,D)

Tarski-Seidenberg theorem implies

(R*™x3%(n,p) - by (RXR™x3E(n,p) - b, (2)NN\({0Ix35(n,p)

is semi-algebraic. This set is denoted by B.

A minor computation verifies that
TE(n,p)0_ Y = Ji(n,p) - py(B)
E{ 7 c _k’ E( 14 3 7

which is also semi-algebraic. n

Now we ccnsider the following sequence;

1 F m
350, p xR — 35 (n,pxRP — 3% (n,p)
K “K 'K

where m is the canonical projection. Since F and 7w are polyromial

mappings, by proposition 2 and lemma 4 there exist semi-algebraic

e . k k
stratifications S(JK K

with which F and 7 are stratified mappings and Jé(n,p)x{@},

€En

(n,p)R"%), S(I5(n,p)*R"P) and S(33(n,p))

k .
JK(n,p)X{m} and Jé(n,p)co_}f are startified subsets of J&(n,p)xmen,

Jm]z(n,p)XlREp and J&(n,p) respectively.

- 13 -
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Remark that Sing{(F) is a stratified subset of the set

JK(n,p)stn. Then for each stratum 2 of S(Jk(n,p) 0 ), the
K K c-x'r -
sequence of restricted mappings,

(%) ZxRET — zxg®P L. g

is also a seguence of stratified maps with the ceanonically induced
. . e s en €D, __ 1 ¢ c
semi-algebraic stratifications S(ZxXR ), S(ZXR %) and {2z} from
S(J?(n,p)XRgn), S(Jé(n,p)XRgp) and S(Jg(n,p)) respectively,
where F and 7 in (*) stand for F]ZXREn andTﬂszEp respectively.

We use this sequence (*) to prove theorem 2 and theorem 3(1).



Proof cf theorem 2.

Theorem 2, Jé(n,p)co_;</co—?L-iS a finite set

for any positive integer n, p, k.

Proof, We consider the stratified seguence (*). We want to
state that for each stratum Z of S(Jé(n,p)CO_JK) there exists
1 semi-algebraic stratification S’(Z) of Z such that for each
stratum W of S’ (Z) there exists a semi-algebraic neighborhood
o of Wx{0} in mezn and the restricted mapping
U, £, wxg?P

.5 a Thom mapping with respect to the canonically induced semi-algebraic
tratifications S((Wxﬁzn)f\Uw), S(WXRZP).

By geometric characterization, any mapping £ &Z has the
onditicn that Sing(f)f\f-1(®) - {0} = ¢ as germs. It is well-
nown that if Sing(f)f\f—1(®) - {0} = ¢ as cerms then there

. _-.n . . C o
xists a neighborhood U of 0 in € such that the restriction

. ; — P
flUf\Sing(f) P UNSing(f) C

s proper and finite to one. As Sing(F) = {(f, Sing(f))lf(&JE(n,p)},
2 can deduce that there exists a semi-algebraic stratification

"(Z) of Z such that for any stratum W cf S'(Z) there exists
semi-algebraic neighborhood UW of wx{0} in WﬂRzn and the

astricted mapping

, F 2p
Uw[\Slng(F) — WXR

<

3 proper and finite to one.



151

Also the restricted mapping
F
U, — W g 2P

is a stratified mapping with respect to the canonically induced
semi-algebraic stratifications S((WXRzn)f\Uw), S(WXRZP) and
Uwf\sing(F) is a stratified subset of (Wxﬁzn)[ﬁvw.

For any point (f, x)ét%ﬂﬁSing(F), as the restricted mapping

1y
Uwf\Sing(F)‘% WXRzp is proper and finite to one, ker(d(F|X)
2n

(f,x)

= 0, where X is a stratum of the startification S((WXR )(\U )

W
which contains (£, x). For any pair of non-singular strata

2n

(X,Y) such that X, Y& S(WxR )(\Uw) and X DY, where non-singular

means that for any point (£, x)EY (f,=) EEUW[\Sing(F), the pair
(X, Y) always satisfies condiiton ag.

These obser vations show that the restricted mapping

U, E, wxg?P

is a Thom mapping with respect to the canoniczlly induced semi-

2p

algebraic stratifications S((WXRzn)f\U S(WxR“%).

W)

Now the proof of theorem 2 follows from proposition 1.

L



Proof of theorem 3(1).

Theorem 3(1). Jg(n,p)CO_'X/CO—SL-iS a finite set for

p =1, 2, and for any positive integers n, k.

Proof. In the function case, that is p = 1, for any positive

§

integers n, k, our theorem is contained in the local ca;% of
Fukuda's théorem [31. So we prove our theorem only in the
case p = 2.
Consider the stratified sequence (*). Let X, Y be
strata of S(zxR") such that X - X Dzx{0}, ¥ - ¥ Dzx{0} and X DY,
where f denotes the closure of X in ZxR". Let §i ?fbe strata
—~ o~

of S(ZXRZ) such that F(X)(liiand F(Y) CEZ In the case X = Y,

strata shows

h

the existance theorem of tubular neighborhoods o
that the pair (X, Y) satisfies condition ag (see [81).

dimensions of a pair of strata

Hh

There are three possibiliti

(]
n

@]

N N . N | M Qr—x/'v :
(X, ) when X # Y and X OY as follows, where X denotes the closure

> 2
of X in ZXR".

dim¥X dim¥
2 + dimZ 1T + dimZ
2 + dimZz 0 + dimz
1 + dimZ 0 + dimZz




(1) The case (dimX, dim¥) = (2 + dimz, 0 + dimZ) or
(1 + dimZ, 0 + dimZ).

In this case, by geometric characterization and Sing(F) =
{(f, Sing(f)) ]fe&Jg(n,p)}, there exists a semi-algebraic
neighborhood U, of zx{0} in zxR" such that the pair
(Xr\UZ, Yf\UZ) is a non-singular pair. Hence the pair

(Xf\UZ, Yf\UZ) satisfies condition ac-

(1) The case (dimX, dimY) = (2 + dimZ, 1 + dimz).

It is sufficient to consider only the case Y (Sing(F).
In this case there exists a semi-algebraic neicghborhood UZ of
zx{0} in 2zxR"™ such that for each point (fO, xo)e;Y(\Uz ,

rankF at (fo, xO) is 1 + dimJg(n,Z). By suitable analytic

il

coordinate transformations we can assume that F(f, %)

(£, Xy gl(f, Xir "0y xn)) in a sufficiently small neighborhood
0 0, . -

V(fO'xO) cf (£, x7) in UZ’ where x = (x1, , Xn) and
g V,-.0 0, » R is an analytic function.

(£7,x7)

We set xo = (x?, e, xg) under this coordinate chart,
We also set

D= {(f, x\)EV,.0 0, | x, =x0, £=1£%

! (£, x7) 1 1 r

D = {(f, Y-‘II Yz)éleR l (f, Y1I Y2)6F(V(f0, XO))' Y»} = X1}-

-1 0 0
We may assume that g (g(f’, x ))(\V(fo' Xo) = Yy N\Dp'.

- 18 -
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In the sufficiently small neighborhood V ;0 _0, of (£2,%%)
. 7

in UZ' we can assume that the stratum Y is transversal to the
submanifold D. Since the mapping g : V(fo,xo) + R 1is a.
function, the existance theorem of a good stratification implies
that there exists a stratification S(Y/\D) such th?t the

.
restricted function v

gi(XUY)mD : (XUY)ND ~» (X UY)ND

is a Thom mapping with respect to the stratifications {xNp, S(YN\D)!}
and {X/D, YND} (see [5) or [31]).

We also see that in the sufficiently small neighborhood

0

v..0 0. of (£%,x

(g9, <Y ) in Uy the restrlcted mapping

F]XuY : XUY > XUY

is considered as an analytically trivial unfolding of the restricted

function

slixuy)Ap @ XYDIND > (XUHND.

Therefore the restricted mapping

(XUYINY 0 0 + (XUY)

F | 1 X)

(X UY)mV(fO,XO)

is a Thom mapping with respect to the canonically extended

stratifications from {X(\D, s(Y\D)} and {XND, Y \D}.



By the above (I) and (II), we see that for each stratum

Z of S(Jg(n,Z)CO_)<) there exist a neighborhood UZ of 0 in ZXRn
and stratifications S"(ZXRn), S"(ZXRz) such that the restricted

mapping

is a Thom mapping with respect to the canonically induced

stratifications S"((ZXRn)[\UZ), S"(ZXRZ).

Now the proof of theorem 3(2) follows from proposition 1.

- 20 -
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§5. Thom's example

)
"

n P o N
Let X=Ror € and let f, g : ¥% > g bpe C (for X = R) or

holomorphic (for X = ¢) mappings. We say f and g are topologically
equivalent if there are homeomorphisms h : ™ > g and

h' : gP > P such that f = (h')_1ogoh.

In [11], Thom considered the following one-parameter real
polynomial mapping family P(k) : R3 - R3, where k is a real
parameter, and he proved that if any two fixed real numbers

k1, k2 are not equal then P(kq) and P(kz) are not topologically

eguivalent.
2 . 2
X = [x(x2+y2-a2)—2ayz]“[(x+ky)(x2+y2—a2)—2a(y-kx)2]
P(k):{ Y = x2+y2—a2
Z = z
where (x, vy, z), (X, Y, Z) are coordinates of the source space

and the target space respectively, a is a non-zero fixed

real number and k is a real parameter.

In this section, we recall quickly Thom's idea of proof,

which is used in the proof of theorem 3(2).

Thom's idea of proof.
Let ko be a fixed real number. We consider the following

surface H(ko) and circle C(ko).



Hikg) = [(x, v, z) & |

[x(x2+y2-a2)—2ayz]2[(x+koy)(x2+y2—a2)—2a(y—kox)z]2 = 0}

{(x, v, 0) €:R3 | X2+y2—a2 = 0}

C(ko)

Then C(ko)(:H(kO) and C(kO)CZSing(P(kO)).

We also consider the following two surfaces H1(k0) and Hz(ko).

H

(k {(x, v, Z)ER3 | x(x2+y2—a2)—2ayz = 0}

1(kg)

Then E(k,) = H (ky) UH;(ky) and H (kj) NE,(ky) = C(kO)U{(O, 0, z)ER"}.

Furthermore we have

3

P(ky) (B (ko) N{(x, v, z) €™ | Ix+my = 0})
= {(0, Y, Z)ER3 | my+2a2z = 0}

P(k,) (Hy (ko) N\ (x, v, 2) ER’ | Lxsmy = 0})
= {(0, ¥, 2) €R° | (m-ky2)¥+2a(L+kym)Z = O}

2 10.

for any two real numbers £, m such that 22+m

Now if there exist homeomorphisms h, h' : R3’+ R3 such

that P(ko) = (h')-1oP(k1)oh for any two fixed non-zero real

numbers kO’ k. (ko £ k;), then we have the following.
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Lemma 5. (1) h(H(kO)) = H(k1).
(2) h(C(kO)) = C(k1).
(3) For any germ of continyoys curve gq(t) at any point Pfic(ko)

(resp. C(k1))_ip H(ko) (resp. H(k1)77 P(ko) (resp. P(kT)) maps

4(t) to a germ of continuous curve at (0, 0, 0)& {(0, Y, Z) éR?}
in Uo, v, Z)E§R3} and this germ of curve has a tangent line
ﬂ(or Or O).

By this fact, if ko, k, .are both non-zero, then the restricted

1

homeomorphism h] C(ky) » C(k,) must have the property

C(kn)
0
that for any two points x, yégc(ko) such that angle4§§§ = Tan_1(ko)
NN -1 .
angle:ﬁh(x)h(y) = Tan (k1). But this contradicts to Van Kampen's

theorem in [13].

Remark. It is easily seen that if we change the one-parameter
real polynomial mapping family P(k) : R3 > R3 to P(k) : R3 > R3
as follows, then we also have the property that if kO # k, then

P(ko) and P(k1) are not topologicallykequivalent.

[x(x2+y2—a2)—yZ]2[(X+kY)(X2+Y2-82)—(Y—kX)Z]2

3
n

2 2
x“+yT-a

o)
~
e
I

g

Z
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§6. Proof of theorem 3(2)

Theorem 3(2). JR

nz 4, pz 4, kz 12. In fact they have topological moduli.

k(n,p)co_;</co—?§.is as infinite set if

Proof. We divide the conditions on dimensions into the

following three cases.

(Case 1) n =4, pz 4.
(Case II) n £p, n >4
(Case 1I) n>p, pz 4.
- ~ s ~
Proof in case I, Let Q(k) : (R4, 0) » (R4, 9) be a one-

parameter polynomial map-germ family defined as follows;

[x(x2+y2—u2)—yz]2[(x+ky)(x2+y2—u2)—(y—kx)z]2

X =
2 .2 2
Y = x"+y -u
~
Q(k)
Z =z
U = u2

where (x, y, z, u), (X, ¥, 2, U) are coordinates of the source and

the target spaces respectively and k is a real porameter. Let P'(k)

be a one-parameter polynomial map-germ family defined as follows;

Py : (RY, 0) » (P, 0)

~

PAk)(x, v, z, u) = (Q(k), 0).

0’ quo)-T({®}) = {0}. So P«ko) is a CO—

}(—finite polynomial map-germ by geometric characterization of

For any fixed k

CC-)<—finiteness.

- 24 -



164

] [} 1 1 .
Let H1<k0)’ Hz(ko), H (ko) and C (ko) be as follows;

By (ko) = {(x, v, z, w)&€RY | x(x%4y?-u?)_yz = 03,
Hé(ko) = {(x, v, z, u)€§R4 ' (x+koy)(x2+y2-u2)-(y-k0x)z = 0},
H'(ko) = H{(kO)LJHé(kO),
C'(ko) = {(x, v, 0, u)EER4 l x2+y2—u2 = 0}. \
Then we have
P’(ko)(H{(ko)[\{(x, v, 2, u)ER4 | Lx+my = 0})
= {(0, v, z, U, 0)ERP | my+2z = 0},
Blko) (Hy(x )V (x, v, 2, 1) €R? | tx+my = 0})

{(0, Y, 2, U, 0)ERP | (m-koz)m‘(mkom)z = 0},

for any two real numbers % m such that £°2+m2 # 0.

4 4
1f there are germs of homeomorphisms h : (R-, 0) + (R", 0),

h' : (R%, 0) > (8%, 0) such that P'(ky) = (n')”!

oP'(k1)0h as
germs at 0 for any two fixed non-zero real numbers ko, k1 (ko # kT)’

then we have the following lemma like lemma 5 in §6.
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Lemma 6. (1) h(H'(ky)) = H'(k;) as germs at 0.
(2) h(C'(ky)) = C'(k;) as germs at 0.

, e )T
(3)  h(C'(ky) NP (k)
c' (k)R (k)

at 0 for any real number U close to zero and ha i he forth

((OI OI OI uol 0))) =

((Or 01 OI h&((or Or 0, uol 0))), 0)) _s'germs

component function of h' (see Figure I).

(4) For any germ of continuous curve q(t) at any point

p = (x, v, 0,‘u)E§C'(kO) (respo. C'(k1)) in H’(ko) (resp. H'(k1)),

P'(ko)‘(resp. P'(K1)) maps q(t) to a germ of continuous curve
2

t (0, 6, 0, u*, 0) €r® in {(0, ¥, 2z, U, 0) ERP} and moP' (k) (g(t))

(resp. ﬂoP‘(k1)(q(t))) is a germ of continuous curve at (0, O, O)é§R3

in {(0, ¥, Z)EiR3} and this germ of curve has a tangent line

(0, 0, 0), where 1 : RP - R3 is a natural projection

|Q’
s

(X, ¥, 2, U, Vo =0, v ) | > (%, ¥, 7).

1'

The proof of lemma 6 is analogous to lemma 5 and we omit it.
By this lemma, we have a contradiction to Van Kampen's

theorem as same as Thom's proof.
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EEEE in case 1. Let P'"(k) be a one-parameter polynomial

pmap-germ family as follows;

n

P"(k) : (R, 0) ~ (R, 0)

P"(k)(xl Ye 2, 41, V1l cctcy Vn_4) = (Q(k)(x, Y 2, u), V1r"'l

where (x, vy, z, u, v,, ***, v__,) is a coordinate of the source
space and Q(k) is as before.

For any fixed k,, B"(k) ' ({0}) = {0}. So P"(k,) is a
co—}<—finite polynomial map-germ,

Let H”(ko) and C”(ko) be as follows;

H”(ko) = {{x, v, z, u, vy, "°°, vn_4)€ERn’
2 2 2 .
[x(x2+y2—u2)—yz][(x+koy)(x +y T -u )—(y—kox)zj = 03,
" 2 2
C"(ky) = ((x, v, 0, u, vy, ", vn_4)ggm“|x2+y —u? - 0.

B0) » (RT, 0)

If there are germs of homeomorphisms h : (R
ht : (RP, 0) > (P, 0) such that P"(x,) = (h')_TeP"(kO)oh as germs
at 0 for any two fixed real numbers ko, k1 (kO # k1), then we

have the following lemma, which is analogous to lemma 6.

Lemna 7. (1) h(H”(kO)) = H"(k1) as germs at 0.
(2)  h(C"(k,)) = C"(k,) as germs at 0.
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3

(3)  h(C"(kINP" (k)" (0, 0, 0, u®, v}, -+, v2 ,, 0))) = ‘
C"(k1)f\P”(k1)—1(h'((O, 0, 0, uo, v?, e, vg_4, 0))) as germs at ¢ ‘%
for any real numbers uo (z0), v?, cee, vg_4 sufficiently close

to zero.

(4) For anv germ of continuous curve g(t) at any_point

P = (X, vy, 0, u, vy =7, Vn_4)<£C"(kO) (resp. C"(k1)) LQ_H"(kO)

(resp. H"(k1)), P”(ko) (resp. P"(k1)) maps g(t) to a germ of

. 2
continuous curve &t (0, 0, 0, u™, Vi

0) € RP

.I vn_4l

in {(Or Y, z, U, V-], °tcy Vn_4l Q)ERP} and TTOP”(kO)(Q{(t))
(resp. WoP"(kO)(q(t))) is a germ of continuous curve at (0, O, O)€5R3

in {(0, Y, Z)GER3} and this germ of curve has a tangent line at

(0, 0, 0), where 7 : RP - R3 is a natural projection

(X, ¥, 2, U, Vyy, =00, Vo )X, ¥, 2).

The proof of this lemma 7 is almost as same as one of lemma 6
and we omit it.

This lemma 7 yields a contradiction to Van Kampen's theorem.

Q
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proof in case III. Let.f}ﬂc) be a one—parameter polynomial
Proot in case 1.

map-germ family as follows;

k) ®REPHY, 0y > (RY, 0)

2 2 2 .2 2 2
X = [x{(x"+y -u -V —vn_p)—yz] x
[(x+ky)(x2+y2—u2~v$—'-'—vi_p)~(y—kx)z]2
. 2 .2 2 .2 2 ‘
Eﬁk). Y = xT+yTout-vi- _Vn—p
Z = z
2 -2 2
U=u +v1+ +vn_p
where (x, v, 2z, u, Vir Tt vn_p), (X, Y, Z, U) are coordinates

of the source and the target spaces respectively and k is a parameter.

Let P" (k) be a one-parameter polynomial map-germ as follows;

P" (k) : (R", 0) » (&P, 0)
P"(k)(x,y, 2z, u, V1r T, Vv ' w1r Tty Wp_4)

FAN
= (Q(k)(xl Y 2, 4, V1I Tttty Vo )' wj' Ty wp_d)'

For any fixed k, P"'(ko)—1({®}) = lo}.  so p"(ky) is
c’-X-finite.

Let Hm(ko) and C”(ko) be as follows:

n
H'"(ko) = {(X, Yy 2, U, V,], tety, Vn_pr W»‘l ttty Wp_4)€IR I

[x(x2+y2~u2—v2—-~-—v )-vZIx
1 n-p’ '
5

n-p

[\S)

[(x+koy)(x2+y2-u2—vf—-~-—v )—(Y—kox)z] = 0}.
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C"'(ko) = {(XI Y OI ua, V—]I *tcy, Vn_pl W1r °tty \Wp_4)éRn ]

2 .2 2 2 2

x“+yT-u ~v1~"'—vn_p 0}.

n

If there are germs of homeomorphisms h : (R%, 0) > (R", 0),

h' : (®P, 0) > (RP, 0) such that P"(k,) = (h') 0 R"(k,)oh as
germs at 0 for any two fixed non-zero real numbers ko, k1 (ko # kT)'

then we have the following lemma, which is analogous to lemma 6

and lemma 7, hence we give no proof of it.

Lemma 8. (1) h(Hm(kO))= Hm(k1) as germs at 0.

(2) h(Cm(kO))= Cm(k1) as germs at 0.

(3) For any real numbers uQ (z0), w?, s, wg_4 sufficiently close
" 1 —1 O O 0

t_O zero, h(cl (kO)nP“(kO) ((Or Or Ol u ., w1l ...I Wp_4))) =

C'"(k,] )ﬂP’“(k.‘)-“ (hl(o’ O, O, uO’ w?' ...' wg_4)) __§ germs _1_:. mo

(4) For any germ of continuous curve g{(t) at anv point

p = (x, v, 0, u, V1I e ’ W1r *tcy Wp_4)6cm(k0) ‘(resp. Cm(k.]))

\'2
’ n-p

(=N
o]

in H'"(ko) (resp. H'"(k1)), P'"(ko) (resp. P'"(k1)) maps q(t)

a germ of continuous curve at (0, 0, O, u2+ vi, Wir Tty wp_4)f§Rp'

o

in {(0, ¥, 2, U, Wy, **°, W _,)}€R® and moR™(kj)(q(t))
3

(resp. FOPm(k1)(q(t)) is a germ of continuocus curve at (0, 0, 0)&ER
in {(0, Y, Z)E{R3} and this germ of curve has a tangent line
at (0, 0, 0), where 7T : RrP - R3 is a natural projection

(X, ¥, 2, U, W, =, wp_4)l ~(X, Y, 2).
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n 1 -1 0 0 0 .
As C' (ko)(\P"(kO) ((0, 0, 0, u’, Wi, T, wp_4) is a

space J;6-51XJ;6' nP o yr 0 > 0, the restriction of the homeo-

morphism h "to J;O"1 /Pa n-p maps J_B *S xJ—b n-p to

*S
J;b.s1x/;6-sn—p, where uO = ha(o, o, 0, uO, W?' Tty Wg-4)'

pefinition. In the space JE'S1XJE'Sn—p =
{(x, ¥y Uy vy, 00, vn_p)é}Rn—p+3 | x2+y2 = s vi = constant ¢ (>0)},

n-p+3

the spaces {(x, y, u, Vir TV ) ER X = const., y = const.},

Uy Vyg ottty Vpg const.} are
called longitude spheres, meridian circles respectively.

{(x, ¥y uy vy, mo, vn_p)eran‘p* 1

To conclude the proof in case (II), we need the following

lemma.

" -1 0o .0 0
Lemma 9. In each C"(k )/ \P"(ky)™ ((0,0, O, u"y wy, ===, W__,))

= JFB'S1XJ;6'Sn_p for u0(>0) close to zero, each longitude

sphere is mapped to a longitude sphere in

e (k DR™ (k)T (R ((0, 0, 0, uw®, W], re, W) ) = Ja0- 87 20"

by the restriction of the homeomorphism h of the source space.

Proof of lemma 9. We take any germ of continuous curve q(t) at
0 0 0 . 0 0 0
(O, 0, Op u ’ W‘]l ."l wp_4) in {(OI YI Zl u1l W1, ."’ Wp_4)€Rp}
0 0 0

which has a tangent line at (0, 0, 0, u’, Wir 0Ty wp_4). Then
Pm(ko)—1(q(t))is homeomorphic to s"Px 1 with a certain longitude

sphere in Hm(ko)as its center, where I is an open interval.
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If the inverse image of this longitude sphere by the

homeomorphism h of the sourcs space is not a longitude sphere, then

P”(k1)(h—1(P”(ko)—1(q(t)) is not a germ of continuous curve
at h'(o, 0, 0, uo. w?, "'; wg_4). This is a contradiction
to the commutativity P"'(ko) = (h')_TOP"'(k1)°h with homeo-

morphisms h, h'.

O

logitude sphere

meridian circle

(FIGURE II)
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By this lemma 9, we have the following.

Lemma 10. For any Cm(ko)[\Pm(ko)-1((O, 0, 0, u’, w?, see, wp“4))

= J;b'S1XJ;6'Sn_p for any positive number uo close to zero,

the image of anv-meridian circle by the restriction of homeo-

morphism h is isotopic to any meridian circle in

ek n' (0,0, 0, u®, w], o+, wd 1)) by an isotopy

with (x, v)-coordinates preserving.

Now lemma 8 and lemma 10 yield a contradiction to

Van Kampen's theorem as same as we see in case (I) and (II).

O
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