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A Remark on Solving the Set-Partitioning Problem

by Dual All Integer Algorithm

Kakuzo Iwamura
Mathematics
Josai University

Sakado, Saitama

Abstract
A careful consideration when one solves the set-partitioning problem
by dual all integer algorithm is presented.

It saves both computing time and memory size.
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{1]. Intxoduction
a Set-PartJ.tJ.onnxg Problem,
minimize X = %ﬁcjxj
subject to 21 X -l(L:L_.m), ..bmary(l <ign), (1.1)
where S5 positive mteger, aij=0 or 1 can be solved by Dual All Integer
Algorithm([l,2]. Salkin & Koncall[4,5,6] transformed this problem to the Set-
Covering Problem,

maximize u.= .Z’. (c.+Ih.) (—x.)

0 j=1
Sy <. 2 i 9
subject to J"‘l 15 3 l(l<1<m), j.bmax.y(1<j n), (1.2)
where integer L is greater than ?_Ilcj hJ =12 13 [, 3] ‘and solved the original

Set—Partn.tJ.mmg Problem successfully.

Sett::.ng X x;-1(1igm), they applied Dual All Integer Algoritim

N+l 3-'1 ij 3
to thé dual feasible all integer tableau as follows[l,2];

1 -Xq MRy e e . Xy

u, 0 cl-l-Ihl c2+1.h2 « s o cn-i-I.hn

Xl -1 :all‘ -Qaln

*Xn+2 -1 @
o= (1.3)

*ntm -1 31 “¥m

Maximm tableau size could grow as large as (mtn+2) (n+l) including a cut xow.
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[2]. Another Transformation

1et’s consider ancther transformation which transforms (1.1) to

maximize vg= -2 cix,
subject to j=laij?<j=l (L£ig m) X352 0, integer(lgj<n), (2.1)

where v0= -xo.

Let M be any integer greater than the minimal value x, of (1.1), for example
M= j'%lcjﬂ" then we see that
v(2.1) > M (2.2)

as v(l.1) = -v(2.1), where v(P) denotes the optimal value of the 0-1 integer
programming problem (P). |
Consider one more problem such as
maximize wg= = 55C4%5 = M {SiXng

subject to -jéllaij;xj - %44 l0gigm, x, 20 integer(lg igme) (2.3)
We easily see that the following properties hold.

Property a; (2.3) has a dual feasible integer solution xj'--O(lg jgn), x =1

(1£igm) with the same dual feasible all integer tableau as (1.3), uy, L

replaced by w,, M.

Property b; (2.1) has a feasible integer solution if and only if (2.3)

has a feasible integer solution whose cbjective function value w, is
greater tban_ ~M.

Property c; v(2.3) & - 3=1%5 - M
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From these properties, we can cbtain an optimal integer soluticn of (2.3)
after finite iterations of Dual All Integer Algorithm. Moreover we have,
v(2.3) () - M iff every optimal integer soluticn of (2.3) is an optimal
integer solution of (2.1) & v(2.3) = v(2.1),
< - M iff (2.3) is infeasible,
so that we get the next Procedure d.
Procedure d; Every time any variable x (n+l< ug nim) becomes nonbasic
in the course of dual pivoting, we can drop X, and its corresponding colum
from the tableau. |
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[3]. Example
I quote Dual All Integer Algorithm from [1].
Step 0; (Preparation) Prepare simplex tableau,

=y, + T yss(=x:), (0% igim) (3.1)
*8, Y10 Ser 33" ’

where xBO = X, = cbjective function value, X (1£ i< m) are basic variables,
5 _

Xy (J€R) are nonbasic variables. A vector v # 0 is called lexicographically

positive if its first nonzero component is positive. We use notation v > 0
to demote v lexicographically positive. We use Y5 to denote the j-th
colum of the simplex tableau (3.1). Simplex tableau (3.1) is called

dual feasible if ngo for all j€R, all integer if y;;(0Sigm, 0£3&n) are
all integers. [u] denotes the largest integer less than or egual to u.

Step 1:(Initialization) Begin with a dual feasible all integer tableau (3.1).
GQ to Step 2.

Step 2:(Test for optimality) If the solution is primal feasible, it is optimal

to (3.1). STOP. If not, go to Step 3.

Step 3: (Cutting and pivoting) Choose a source row(d # 0) in the tableau with
¥;0<0: say i=r. The topmost row with yi0<0 must be chosen at least periodically.
Select the lexicographically smallest colum with Yr.j< 0, say j=k, as the
pivot colum. Campute h by

R= min —L

jer, Yrj
where R. ={ jeRf yr.j<°} ’ _Mk=-l,_ ﬁjqnin{uiyjiuyk 15 0, u mteger} for jeRr\{k} R
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If h=l, execute cne dual simplex iteration with pivot element y o~
If h<1, adjoin the cut

s=[hy] + jie’i[ hy, ;1 (x5)
with h = h, to the bottom of the tableau. Execute a dual simplex iteration
with s as the departing variable and ¥ as the entering variable. In any case,
if * is a slack from a cut, delete the xk row. Retum to Step 2.

To see the power of Procedure d, we take the Example from [1, page 315].

minimize 3xl+7x2 +5x3+8x4+10x5 +4x6+6x7 +‘3x8

X+ X, =1
Xqt Xt Xe =1
| X +'x6+x7 =1

x.’ + x8 =1
X, + Xy ‘+x6_ =1

We start with dual feasible all integer tableau (3.2) which is cbtained

g
through replacing u,, L by W, M=2cj +1 = 53.
=1
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L =x) =%y X3 "Xy "Xg ~Xg ~Xq ~Xg
Wy 265 56 113 58 114 116 110 112 62

r)Xq -1 @ -1

x, -l -1 -1 -1

xq = -1 -1 -1 -1 (3.2)
X, 1 o S

x5 L -1 -1 -1

=1, R, ={l,2} . k=1, Fll= -1, —M2= -2, ¥4= ~l(circled) gives h=1. pivoting on
Yri makes Xy basic, *g nonbasic so that we may drop Xg colum fram the new
tableau (3.3).

&
1) %3 "%y X5 X5 X Xy
Wy 209 57 58 114 116 110 112 62

%y 1 1

)%y, 1 @ -1 -1
Xpq = -1 -1 ~1 =1 (3.3)
Xy3 -1 -1 -1 -1

=2, k=2, ﬁf -1, ﬁ3== -1, M= -2, Y= ~1llcircled) gives b=1. Pivoting on y &
makes X4 basic, X0 nonbasic so that we may dxop X109 colum from the next
tableau (3.4).
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1 -x) ~X4 ~Xg =X %, g
Wy 151 57 56 58 110 112 62

Xy 1 1
) 1 1 1
™ X1 = -1 @ -1 -1

Doing in this way, i.e.,

Xg basic, Xy1 nonbasic drop X1 column;

X, basic, X5 nonbasic drop X5 oolam;

Xg basic, Xq14 nenbasic drop X3 column;
X4 basic, Xg nonbasic drop ncne,
we get final tableau (3.5) which is optimal.

1 “Xy ~Xg ~Xg
Wy <17 1 4 4
X 1 1
Xq 0 -1 2 -1
Xy = 1 1 -1 1
Xy 1 1

0 1 -1
Xg

(3.4)

(3.5)
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As v(;.S)f--"—l7> -53, we see that x)=x,=x;= 1, xy= O(otherwise), x; = 17 is an

0
optimal solution. Final tableau size is half as large as the original. We also

do away with needless calculations for the deleted colums.
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