SATO'S PRINCIPLE FOR MICROLOCALIZATION AT THE BOUNDARY OF A CONVEX SET

リエーシュナ(理) - 東大(理) - LIEUTENANT Jean-Louis (*)

INTRODUCTION

Roughly speaking, Sato's fundamental microlocalization principle asserts that Pu=f implies for any partial differential operator P and any solution u, that one has the inclusion S.S.(u) \subset S.S.(f) \cup {(x,η): $\stackrel{\circ}{P}(x,\eta)=0$ } in the cotangential spherical bundle of the base space. Here, we are going to see that such a formula remains true if one considers a certain type of microlocalization at the boundary that allows to characterize the possible decompositions in sums of holomorphic functions in special imaginary conic domains admitted by a real analytic function or an hyperfunction defined over a convex set Ω of \mathbb{R}^n near a point $x\in\partial\Omega.$ To establish this fact, we are basically going to investigate the conditions under which the morphism induced by a linear differential operator with constant coefficients constitutes an isomorphism of the stalks of the microlocalization sheaf \mathcal{C}^b .

^(*) Senior Research Assistant of the Belgian F.N.R.S.

GEOMETRICAL BACKGROUND

From now, let Ω denote a <u>convex</u> open set of \mathbb{R}^n , F be its closure in the radial compactification $\mathbb{D}^n \simeq \mathbb{R}^n \cup S_{n-1}^\infty$ of \mathbb{R}^n and $\partial \Omega$ its boundary in \mathbb{D}^n . We denote by z=x+iy the points of $F+i\mathbb{R}^n$ and by $\zeta=\xi+i\eta$ the directions of \mathbb{C}^n , i.e. the elements of $\mathbb{C}^n\setminus\{0\}$. We identify \mathbb{C}^n provided with the hermitian product $\langle z,\zeta\rangle=\langle z_j\overline{\zeta_j}\rangle$ with the euclidean space \mathbb{R}^{2n} provided with the scalar product $\mathrm{Re}\langle z,\zeta\rangle$. We shall denote indifferently by P or P(D) the linear partial differential operator $\sum_{|\alpha|\leq m} c_{\alpha} D_{x}^{\alpha}$ over α with constant coefficients α or its natural extension to the complex domain α coefficients α of α where α is natural extension to the complex domain α coefficients α of α where α is natural extension to the complex domain α coefficients α of α where α is natural extension to the complex domain α coefficients α of α where α is natural extension to the complex domain α coefficients α of α in the denoted by

Char(P) =
$$\{\zeta \in \mathbb{C}^n \setminus \{0\} : \stackrel{\circ}{P}(\zeta) = 0\}$$
,

where $\overset{\circ}{P}$ is the principal part of the operator. Throughout this paper, we will also mean by ω any open subset of F whose intersection with Ω is convex, by S_{n-1} the unit sphere of \mathbb{R}^n and by S_{n-1}^* the unit cosphere of \mathbb{R}^n .

Let us now give a brief description of the sheaves of microlocalization we are going to deal with. If $\Gamma \supset \Gamma'$ are open convex cones of \mathbb{R}^n with vertex 0, we denote by $\Lambda(\omega,\Gamma,\Gamma')$ the $\frac{\text{profile}}{\text{profile}}\begin{bmatrix} U & \{x\} + i\Gamma \end{bmatrix}U \begin{bmatrix} U & \{x\} + i\Gamma' \end{bmatrix} \text{ and call a } \frac{\text{tuboid}}{\text{x} \in \omega \setminus \Omega} \\ \frac{\chi \in \omega \cap \Omega}{\Omega} & \chi \in \omega \setminus \Omega \end{bmatrix}$ of profile $\Lambda(\omega,\Gamma,\Gamma')$ any intersection of an open convex neighborhood of $\omega \cap \Omega$ in $\Omega + i\mathbb{R}^n$ with an open subset V of $\Lambda(\omega,\Gamma,\Gamma')$ such that, given any compact set $K \subset \Lambda(\omega,\Gamma,\Gamma')$, one can find $\rho_0 > 0$ such that $\chi + i\rho \gamma$ belongs to V for every $\chi + i\gamma \in K$ and every ρ in $0,\rho_0$. If A and 0 denote respectively the sheaf of real analytic functions over Ω and the sheaf of holomorphic functions

over $\Omega+i\mathbb{R}^n$, we denote by \mathcal{O}_0 [resp. \mathcal{O}_1 , \mathcal{O}_2] the sheaf over SF:= F x S_{n-1} that associates to any SF \cap $\Lambda(\omega,\Gamma,\Gamma)$ the space $\lim_{N\to\infty} \mathcal{O}(V)$, where V runs through the family of tuboids of profile $\Lambda(\omega,\mathbb{R}^n,\mathbb{R}^n)$ [resp. $\Lambda(\omega,\mathbb{R}^n,\Gamma)$, $\Lambda(\omega,\Gamma,\Gamma)$]. The quotient sheaves $\mathcal{O}_1,0^{=0}_1/\mathcal{O}_0$ and $\mathcal{O}_2,0^{=0}_2/\mathcal{O}_0$ allow to define the sheaves \mathcal{C}^b , (k=1,2) which vanish over Ω x S*_{n-1} but, whose stalk at any point $(x_0,\eta_0)\in\partial\Omega$ x S*_{n-1} is defined by the formula

$$c_{(x_0,\eta_0)}^{b,k} = \lim_{\stackrel{\rightarrow}{m}} \frac{o_{k,0}[SF \cap \Lambda(\omega_m,\Gamma_m,\Gamma_m)]}{\delta_{j=1}^{m} o_{k,0}[SF \cap \Lambda(\omega_m,\Gamma_{j,m},\Gamma_{j,m})]}$$
(1)

with the following notations. The family ω_m ($m \in \mathbb{N}$) is a decreasing sequence of open neighborhoods of x_0 in F such that $\omega_m \cap \Omega$ is convex for any m, δ is the Čech coboundary operator (i.e. alternate sum of restrictions); if for any $\eta \in S_{n-1}^*$, we denote by E_η the open half-space $\{y \in \mathbb{R}^n : \langle y, \eta \rangle > 0\}$, then Γ_m and $\Gamma_{j,m}$ are defined by $\Gamma_m := \inf_{j=1}^n E_{\eta_{j,m}}$ and $\Gamma_{j,m} := \inf_{k \neq j} E_{\eta_k,m}$, where, for each $m \in \mathbb{N}$, $\{\eta_{1,m}, \dots, \eta_{n,m}\}$ is a set of linearly independant points of S_{n-1}^* verifying

$$\begin{cases} & \lim_{m \to \infty} \eta_{j,m} = \eta_{0}, \quad \forall \ j \in \{1, \dots, n\} \\ \\ & \{\eta_{0}, \eta_{1,m+1}, \dots, \eta_{n,m+1}\} \subset \gamma_{m} := \{\sum_{j=1}^{n} r_{j} \eta_{j,m} : r_{j} > 0\}, \quad \forall \ m. \end{cases}$$

It is then possible to define the morphisms ρ^k , σ^k and $\widetilde{\sigma}^k$ (k=1,2) making exact the rows of the commutative diagrams

$$0 \rightarrow \tau_{\star} 0_{0} \xrightarrow{\rho^{1}} \iota_{\star} A \xrightarrow{\sigma^{1}} \pi_{\star} c^{b}, 1 \rightarrow 0$$

$$\parallel \rho^{2} \downarrow \sigma^{2} \downarrow \sigma^{2} \downarrow \sigma^{2} \downarrow \sigma^{2} \rightarrow 0$$

$$0 \rightarrow \tau_{\star} 0_{0} \xrightarrow{\rho} \iota_{\star} B \xrightarrow{\sigma^{\star}} \pi_{\star} c^{b}, 2 \rightarrow 0$$

$$(2)$$

and

$$0 \rightarrow \ker \tilde{\sigma}^{1} \longrightarrow \pi^{-1} \iota_{\star} A \xrightarrow{\tilde{\sigma}^{1}} c^{b}, \stackrel{1}{\longrightarrow} 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \tilde{\sigma}^{2} \qquad \downarrow \qquad \qquad (3)$$

$$0 \rightarrow \ker \tilde{\sigma}^{2} \longrightarrow \pi^{-1} \iota_{\star} B \xrightarrow{\tilde{\sigma}^{2}} c^{b}, \stackrel{2}{\longrightarrow} 0 \qquad ,$$

where t is the imbedding $\Omega+i\mathbb{R}^n\to F+i\mathbb{R}^n$, τ the projection $SF\to F$, π the projection $S^*F:=F\times S^*_{n-1}\to F$, the ρ^k 's are restriction morphisms, the σ^k 's decomposition morphisms and the $\widetilde{\sigma}^k$'s the compositions of the respective $\pi^{-1}\sigma^k$'s with the natural morphisms $\pi^{-1}\pi_*\mathcal{C}^b, k \longrightarrow \mathcal{C}^b, k$. We may then define the wave-front sets up to the boundary by W.F. $^b(f) = \operatorname{supp}_{\mathcal{C}^b,k}(\sigma^k f)$ for $f \in A$ if k = 1 and $f \in \mathcal{B}$ if k = 2.

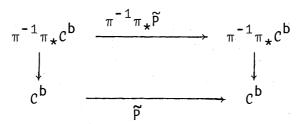
In what follows, we are going to develop the complete proofs only in the case of A and $\mathcal{C}^{b,1}$ (that we are going to denote now by \mathcal{C}^b for short). The case of hyperfunctions is entirely similar and the proofs even contain some simplifications related to the use of \mathcal{O}_2 instead of that of \mathcal{O}_1 .

SOME PRELIMINARY PROPOSITIONS

PROPOSITION 1. Any operator P induces an endomorphism \tilde{P} of C^b verifying $\tilde{\sigma} \circ P = \tilde{P} \circ \tilde{\sigma}$ (P denotes also the trivial extension of the original P as an endomorphism of $\pi^{-1}\iota_*A$). Moreover, \tilde{P} induces a surjective endomorphism of $C^b(\chi_0,\eta_0)$ for any point (χ_0,η_0) in S*F such that χ_0 admits a basis of neighborhoods $\{\omega\}$ verifying $PA(\omega \cap \Omega) = A(\omega \cap \Omega)$.

<u>Proof.</u> By the definition of $\mathcal{O}_{1,0}$, it is clear that P induces an endomorphism of this sheaf deduced from the usual action of a differential operator over holomorphic functions. The cohomological definition of \mathcal{C}^b in terms of derived categories allows to deduce from this morphism the endomorphism $\widetilde{\mathsf{P}}\colon \mathcal{C}^b\to \mathcal{C}^b$ by derivation of functors.

The equality $\widetilde{P} \circ \widetilde{\sigma} = \widetilde{\sigma} \circ P$ may then be verified only in the stalks. As the derivation of functors commutes with restrictions, it is clear that P coincides in the stalks with the application of P to elements of the numerator of (1). By commutativity of the diagram



and by the stability of the stalks under π^{-1} , we are lead to prove that $\sigma_{x_0} \circ P = (\pi_* \widetilde{P})_{x_0} \circ \sigma_{x_0}$ holds for any $x_0 \in F$. By use of Zech cohomology, it is possible to prove that the image under σ of any $f \in (\iota_* A)(\omega) = A(\omega \cap \Omega)$ [where ω is any neighborhood of x_0 such that $\omega \cap \Omega$ is convex] may be represented by a vector $(([f_1], \ldots, [f_{n+1}]))$ with the f_j 's sections of \mathcal{O}_1 over domains of SF whose projections over S_{n-1} are such that their polarsconstitute a covering of S_{n-1}^* for every x in ω . In the above representation, [] means the equivalence class for \mathcal{O}_0 , (())the equivalence class for Zech coboundaries and one has

We get therefore the equality $(\pi_*\widetilde{P}) \circ \sigma(f) = (([Pf_1], \dots, [Pf_{n+1}]))$. On the other side, the equality $Pf = \int_{j=1}^{n+1} Pf_j$ and the uniqueness of the decomposition (*) modulo Čech coboundaries gives also $\sigma \circ P(f) = (([Pf_1], \dots, [Pf_{n+1}]))$, which is enough.

(*)

 $f = \sum_{i=1}^{\infty} f_i$ over $\omega \cap \Omega$.

The surjectivity of $\widetilde{P}_{(x_0,\eta_0)}$ when $PA(\omega \cap \Omega) = A(\omega \cap \Omega)$ holds for a basis of neighborhoods of x_0 is then a trivial consequence of the exact sequence of microlocalization (3).

<u>Proof.</u> As convex neighborhood of $\omega_0\Omega$ that will allow to define V', let us consider the intersection of the convex complex neighborhood of $\omega_0 \cap \Omega$ that defines V with $\omega + i\mathbb{R}^n$. From now, let us also denote for short by V and V' the other two open sets whose intersections with the neighborhoods of $\omega_0 \cap \Omega$ and $\omega \cap \Omega$ we just mentionned constitute the tuboids of the statement.

Let us denote by η and $\eta_{j,m}$ the traces on the cosphere of $\{\lambda \Sigma \eta_j \colon \lambda < 0\}$ and $\{\lambda (\eta_j + m^{-1}\eta) \colon \lambda > 0\}$; it is direct to verify that for any $m \in \mathbb{N}$ larger than 1, the $\{\eta_{1,m}, \ldots, \eta_{n,m}\}$ still constitute bases of the dual of \mathbb{R}^n and that the cones $\gamma_m := \int_{j=1}^n E_{\eta_j,m}$ verify $\psi \gamma_m = \Gamma$ as well as $\gamma_m \subset \gamma_{m+1} \subset \ldots \subset \Gamma$ for every $m \geq 2$.

For any $r_m>0$, we have $\bigcap_{j=1}^n\{y\in\mathbb{R}^n\colon |y-r_m|\eta_{j,m}|< r_m\}\in\gamma_m$ and therefore, it is straightforward to prove the existence of a sequence of positive numbers r_m that decreases to 0 and such that one has:

$$(\alpha) \qquad \qquad \mathsf{B}_{m} := \overline{\omega} + \mathsf{i} \quad \mathop{\cap}_{\mathsf{j}=1}^{\mathsf{n}} \ \{ \mathsf{y} \in \mathbb{R}^{\mathsf{n}} \colon \ \big| \, \mathsf{y} - \mathsf{r}_{\mathsf{m}} \mathsf{n}_{\mathsf{j},\mathsf{m}} \big| < \mathsf{r}_{\mathsf{m}} \} \subset \mathsf{V}, \quad \forall \ \mathsf{m} \geq 2.$$
 Let us now also prove the following two relations:

(β)
$$\forall K \subset \overline{\omega} + i\gamma_m$$
, $\exists \rho > 0$ s.t. $\{x + i\rho'y : x + iy \in K, 0 < \rho' \leq \rho\} \subset B_m$

$$(\gamma)$$
 $\exists \delta_{m} > 0 \text{ s.t. } \{x + iy \in B_{m} : \langle y, \eta \rangle > -\delta_{m} \} \subset B_{m+1}.$

If (β) does not hold, we can find $x_q + iy_q \in K$ such that $x_q + iq^{-1}y_q$

does not belong to \boldsymbol{B}_{m} , hence such that

$$|y_q|^2 \ge 2 r_m q inf \{ \langle y, \eta_{j_0, m} \rangle : x + iy \in K \}$$

holds for at least one $j_0 \le n$. As this lower bound is strictly positive, we get a contradiction by making $q \to \infty$. If (γ) does not hold, we can find $x_q + iy_q \in B_m \setminus B_{m+1}$ verifying $\langle y_q, \eta \rangle \ge -q^{-1}$. As we have $y_q \in \gamma_m \subset \Gamma$ for every q, as up to a positive coefficient independant of q we also have $\sum\limits_{j=1}^n \langle y_q, \eta_j \rangle \le q^{-1}$ and as up to the choice of a subsequence we may also suppose $x_q + iy_q \to x_0 + iy_0 \in \overline{\omega} + i\overline{\gamma}_m$, we get $0 \le \lim_{q \to \infty} \langle y_q, \eta_j \rangle = \langle y_0, \eta_j \rangle \le \sum\limits_{j=1}^n \langle y_0, \eta_j \rangle = 0$ for every j which implies $y_0 = 0$. Considering now the compact set $K := \{x_q + iy_q \mid y_q \mid ^{-1}: q \in \mathbb{N}\} \subset \overline{\omega} + i\overline{\gamma}_m \subset \overline{\omega} + i\gamma_{m+1}$, we get by (β) a number $\rho > 0$ such that $|y_q| \le \rho$ implies $x_q + iy_q \in B_{m+1}$. Hence a contradiction because $y_q \to 0$.

We are now going to modify the B $_m$'s in order to get an increasing sequence of convex sets open in $\overline{\omega}+i\mathbb{R}^n$ verifying

$$B_{m}^{\prime} \subset \bigcup_{m=2}^{m} B_{m}^{\prime}, \quad \forall m \geq 2,$$

and for which there exists a decreasing sequence of positive numbers $\epsilon_m\!\!\to\!\!0$ such that the following equality holds:

(
$$\varepsilon$$
) { $x+iy \in B'_m : \langle y, \eta \rangle \rangle - \varepsilon_m$ } = { $x+iy \in B_m : \langle y, \eta \rangle \rangle - \varepsilon_m$ }.

As it is clear that $B_2'=B_2$ and $\varepsilon_2=1$ are suitable, let us proceed by induction and suppose B_2' , ..., B_{m-1}' and ε_2 , ..., ε_{m-1} already determined. Combining (γ) and (ε) , we may find $\delta \varepsilon]0, \varepsilon_{m-1}[$ such that $\{x+iy \in B_{m-1}': \langle y,\eta \rangle > -\delta \} \in B_m$ holds. Let us now prove the existence of $\varepsilon_m \in]0, \delta[$ such that the convex hull of B_{m-1}' \mathbf{U} $\{x+iy \in B_m: \langle y,\eta \rangle > -\varepsilon_m\}$ is contained in $B_m \cup B_{m-1}'$. If this does not occur, we can find sequences $\theta_q \in [0,1]$, $z_q = x_q + iy_q \in B_{m-1}'$ and $z_q' = x_q' + iy_q' \in B_m$ such that $\{x_q',\eta \rangle > -q^{-1}$ and $\{x_q',\eta \rangle > -q^{-1}\}$ because one gets directly lim $\{x_q',\eta \rangle > -q^{-1}\}$ and $\{x_q',\eta \rangle >$

 $<\mathbf{y_q},\eta>>-\delta$ for q large enough, we are lead to a first contradiction by convexity of $\mathbf{B_m}$ which implies $\mathbf{\theta_q}\mathbf{z_q}+(\mathbf{1}-\mathbf{\theta_q})\mathbf{z_q'}\in\mathbf{B_m}$. We may therefore suppose $<\mathbf{y_q},\eta>\leq-\delta$ for any q. As we have $<\mathbf{y_q'},\eta>>-\delta/2$ for q large enough, there exist $\mathbf{\mu_q}\in[0,1]$ such that $-\delta/2=$ $<\mathbf{\mu_q}\mathbf{y_q}+(\mathbf{1}-\mathbf{\mu_q})\mathbf{y_q'},\eta>$. If we suppose $\mathbf{\mu_q}\rightarrow\mathbf{\mu_0}\in[0,1]$, we have necessarily $\mathbf{\mu_0}\in[0,1]$. As $\mathbf{B_{m-1}'}$ is open and convex in $\overline{\mathbf{\omega}}+\mathrm{i}\mathbf{R}^n$ and admits both $\widetilde{\mathbf{x}_0}=\mathbf{\theta_0}\mathbf{x_0}+(\mathbf{1}-\mathbf{\theta_0})\mathbf{x_0'}$ and $\widetilde{\mathbf{x}_0}+\mathrm{i}\mathbf{y_0}$ as points of its closure, it contains $\widetilde{\mathbf{x}_0}+\mathrm{i}\mathbf{\mu_0}\mathbf{y_0}$ and consequently $\widetilde{\mathbf{x}_0}+\mathrm{i}(\mathbf{\mu_q}\mathbf{y_q}+(\mathbf{1}-\mathbf{\mu_q})\mathbf{y_q'})$ for q large enough. Let us first consider the possibility $\mathbf{\theta_q}\in[0,\mathbf{\mu_q}]$; as we may write

$$\theta_{q}y_{q} + (1 - \theta_{q})y_{q}' = (1 - \frac{\theta_{q}}{\mu_{q}})y_{q}' + \frac{\theta_{q}}{\mu_{q}}(\mu_{q}y_{q} + (1 - \mu_{q})y_{q}')$$

with $\tilde{x}_0 + iy_q' \in B_m$ and $\tilde{x}_0 + i[\mu_q y_q + (1 - \mu_q) y_q'] \in \{x + iy \in B_{m-1}' : \langle y, \eta \rangle > -\delta \}$ $\subset \{z \in B_m : \langle y, \eta \rangle > -\delta \}$, we get another contradiction by convexity of B_m . The second possibility $\theta_q \in]\mu_q$,1] provides also a contradiction if one writes

$$\theta_q y_q + (1-\theta_q) y_q' = (\frac{\theta_q - \mu_q}{1 - \mu_q}) y_q + (\frac{1-\theta_q}{1 - \mu_q}) [\mu_q y_q + (1-\mu_q) y_q']$$
 because y_q and the factor between brackets belong to B_{m-1}' which is convex.

The conclusion follows then directly by taking as B_m^+ the convex hull we just considered and as ϵ_m^- , the number of which we proved the existence. As a matter of fact, the union of the B_m^+ 's will provide a convex set which is of required type as one can verify easily by use of (β) ; it is then straightforward to verify that such a set is of product type with respect to the real and imaginary variables.

PROPOSITION 3. If (x_0,η_0) is a point of $\partial\Omega \times S_{n-1}^*$ such that $\mathring{P}(\eta_0) \neq 0$, then \widetilde{P} induces a bijective endomorphism of $C_{(x_0,\eta_0)}^b$.

<u>Proof.</u> Let γ_0 be an open convex salient cone of the dual of \mathbb{R}^n containing η_0 and consider the representation of $c^b_{(\chi_0,\eta_0)}$ given by formula (1) of the introduction. Using the notations of that paragraph, we may of course suppose that the closures in the complement of the origin of the cones $\gamma_m = \{\Sigma r_j \eta_j, m : r_j > 0\}$ are contained in γ_0 and that \mathring{P} does not vanish over γ_0 .

Any element of $C_{(x_0,\eta_0)}^b$ appears then like the equivalence class of a function f holomorphic over a tuboidVof profile $\Lambda(\omega_m,\mathbb{R}^n,\Gamma_m)$. As it is trivial to prove by using the theory of inductive limits that the restriction map corresponding to the inclusion $\omega_{m+1}+i\Gamma_m=\omega_m+i\Gamma_m$ induces in $C_{(x_0,\eta_0)}^b$ the identity operator, lemma 2 allows to suppose that V contains a tuboid V' of profile $\Lambda(\omega_m,\Gamma_m,\Gamma_m)$ which is a convex intersection of a convex neighborhood of $\omega_m\cap\Omega$ with a domain \widetilde{V}' of product type. By Malgrange-Ehrenpreis principle, we can solve the equation Pu=f over V'. Let us then remark that $\omega_m\cap\Omega$ is contained in the boundary of V' and that in a neighborhood of any point of $\omega_m\cap\Omega$, V' coincides with \widetilde{V}' . It is then easy to verify that V' fulfills the condition C(x,I) stated in 4.1 of [1] for $I=-i(\overline{\gamma_m}\setminus\{0\})=-i\gamma_0$. By homogeneity, $\overset{\circ}{P}$ does not vanish on I and therefore, theorem 4.1 of [1] asserts that u extends holomorphically on a neighborhood of $\omega_m\cap\Omega$.

The surjectivity of $\widetilde{P}_{(x_0,\eta_0)}$ will then follow directly from proposition 1 because u constitutes clearly a section of \mathcal{O}_1 over $\omega_m \times (S_{n-1} \cap \Gamma_m)$ such that $\widetilde{P}(\widetilde{\sigma}u) = \widetilde{\sigma}(Pu) = \widetilde{\sigma}f$ holds in $\mathcal{C}^b[\omega_m \times (S_{n-1}^\star \cap \Upsilon_m)]$ and because the decomposition of f is unique modulo Čech coboundaries.

To prove the injectivity of $\widetilde{P}_{(x_0,\eta_0)}$, let us again denote by f a representing function of an element of $C^b_{(x_0,\eta_0)}$, i.e. a holomorphic funct-

ion defined over a tuboid of profile $\Lambda(\omega_m,\mathbb{R}^n,\Gamma_m)$. By homogeneity of $\overset{\circ}{P}$, we may find a ϵ]0,1[such that $\overset{\circ}{P}$ does not vanish over $T(\eta_0):=\{\zeta\in \mathbb{C}^n: |\xi|^2+|\eta|^2=1, |\xi|< a,\eta\in \pm\overline{\gamma_{m-1}}\setminus\{0\}\}$.

If $\widetilde{P}(\widetilde{\sigma}f) = \widetilde{\sigma}(Pf)$ vanishes in $C_{(x_0,\eta_0)}^b$, we may suppose that $Pf \in \mathfrak{g}_{j=1}^n \mathcal{O}_{1,0}[SF \cap \Lambda(\omega_m,\mathbb{R}^n,\Gamma_{j,m})];$ this means the existence of n tuboids V_j of profile $\Lambda(\omega_m,\mathbb{R}^n,\Gamma_{j,m})$ and of functions $g_j \in \mathcal{O}(V_j)$ and $g_0 \in \mathcal{O}_0[SF \cap \Lambda(\omega_m,\Gamma_m,\Gamma_m)]$ such that $Pf = \sum_{j=0}^n g_j$ over $\omega_m \cap \Omega$.

By a restriction affecting only the real variables and by a procedure similar to the one we used to prove the surjectivity of \widetilde{P} (use of lemma 2), we may suppose that g_0 is defined over a convex complex neighborhood \widetilde{V}_0 of $\omega_m \cap \Omega$ and that the V_j 's contain respectively a tuboid \widetilde{V}_j of profile $\Lambda(\omega_m,\Gamma_j,m,\Gamma_j,m)$ composed by the intersection of a convex complex neighborhood of $\omega_m \cap \Omega$ with a domain of product type. By Malgrange-Ehrenpreis principle, we may again solve the equations $\text{Pf}_j=g_j$ over those \widetilde{V}_j 's; we hence obtain $\text{P}(\text{f-}\frac{p}{j=0})=0$ on $\text{V'}:=\text{Vn}\frac{n}{j=0}\widetilde{V}_j$. According to theorem 2.1 of [1], we may extend $\text{f-}\frac{p}{j=0}$ to any open convex set V" containing V' such that each hyperplane of \mathbb{R}^{2n} whose normal is characteristic and that intersects V", intersects also V'.

We are going to take

$$V'':=\bigcap_{\zeta\in Char(P)} \bigcup_{z'\in V'} \{z\in \mathbb{C}^n: Re < z-z', \zeta>=0\}$$

as such a V". As a matter of fact, V" is open because otherwise, we could find a point $z_0 \in V$ " and a sequence $z_m \notin V$ " converging to z_0 . It should therefore exist some $\zeta_m \in Char(P)$ such that any $z' \in V'$ verifies $Re < z_m - z'$, $\zeta_m > \neq 0$. By convexity of V' and up to the extraction of a subsequence, we may suppose $\zeta_m \to \zeta_0 \in Char(P)$ and $V' \subset \{z \colon Re < z_m - z, \zeta_m > 0\}$ for any m.

By taking the limit and using the fact that V' is open, we obtain $V' \subset \{z : \text{Re} < z_0 - z, \zeta_0 > > 0\}$, which contradicts $z_0 \in V''$.

The convexity of V" will follow from the convexity of V' as one may verify directly. More important is the fact that V" contains $\omega_{m} \cap \Omega.$ As a matter of fact, we shall prove this by distinguishing the two cases $|\xi|$ <a and $|\xi| \ge a$. In the first one, we get necessarily $\eta \not\in \pm \overline{\gamma_m}$ and hence, we may find y_0 in Γ_m such that $\langle y_0, \eta \rangle = 0$. Any $x \in \omega_m n\Omega$ is then the center of a compact ball b contained in $\boldsymbol{\omega}_{\mathbf{m}} \cap \boldsymbol{\Omega};$ we may then find $\rho_0 > 0$ such that $x' + i \rho y_0$ belongs to V' for any x'in b and any $\rho\,\varepsilon\,]\,0\,,\rho_{\,0}\,]\,.$ As there exists at least one x' in b such that $\langle x-x', \xi \rangle$ =0, the point $z:=x'+i\rho y_0 \in V'$ verifies Re<x-z, $\zeta>$ = 0. In the second opportunity ($|\xi| \ge a$), there exists certainly r>0 such that the function $\langle x-.,\xi \rangle$ takes all the values between -r and r in b. Let us then consider a point y of $\Gamma_{m};$ there exists again $\rho_{0}\!>\!0$ such that x'+i ρy belongs to V' for any x' in b and ρ in]0, ρ_0]. Hence we may choose ρ in order to get $|<\rho y,\eta>|< r$ and then x' in b to get $< x-x',\xi> =$ $\rho < y, \eta >$, which is also sufficient.

The injectivity of $\widetilde{P}_{(x_0,\eta_0)}$ follows then directly because the function $f_{j=0}^{\sum} f_j$ will then constitute in fact a section of θ_0 . \square

SATO'S PRINCIPLE FOR c^b .

THEOREM. If u and f are simultaneously real analytic functions (or hyperfunctions) over the intersection $\omega \cap \Omega$ and verify Pu=f , the following inclusions hold:

W.F. $^{b}(f) \subset W.F. ^{b}(u) \subset W.F. ^{b}(f) \cup \{(x,\eta) \in \partial \Omega \times S_{n-1}^{*} : \mathring{P}(\eta) = 0\}$

<u>Proof</u>. The first inclusion is a trivial consequence of

the linearity of P. Let us now consider a point (x_0,η_0) which does not belong neither to W.F. $^b(f)$ nor to $\partial\Omega$ x Char(P). If we identify u, f, Pu and Pf with their respective images in $(\pi^{-1} + A)_{(x_0,\eta_0)}$, we get by proposition 1 the relation $\widetilde{P}(\widetilde{\sigma}u) = \widetilde{\sigma}(Pu) = \widetilde{\sigma}(f) = 0$ and by proposition 3, this implies that u=0, i.e. $(x_0,\eta_0) \notin W.F.^b(u).\Box$

ACKNOWLEDGEMENTS

REFERENCES

- [1] J.-M. BONY et P. SCHAPIRA, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles. Invent. Math. 17 (1972), 95-105.
- [2] A. KANEKO, On the global existence of real analytic solutions of linear partial differential equations on unbounded domains. Preprint.
- [3] M. KASHIWARA, T. KAWAI, T. KIMURA, Daisūkaiseki gaku no kisō, Kinokuniya shōten, Tōkyō, 1980.
- [4] T. KAWAI, On the global existence of real analytic solutions of linear differential operators, Surikaiseki kenkyusho Kōkyūroku 162, (1972), 109-135.
- [5] H. KOMATSU, Relative cohomology of sheaves of solutions of differential equations, Springer Lect. Notes in Math. 267 (1973), 192-261.
- [6] M. SATO, T. KAWAI, M. KASHIWARA, Hyperfunctions and pseudo-differential equations, Springer Lect. Notes in Math. <u>267</u> (1973), 263-529.