goooboooogn
O 558 0 19850 52-63

5¢
SATO'S PRINCIPLE FOR MICROLOCALIZATION
AT THE BOUNDARY OF A CONVEX SET
! —_ " - - ] - 1
) 1 /lj-\(f?) #4(2)- LIEUTENANT Jean-Louis (*)
INTRODUCTION

Roughly speaking, Sato's fundamental microlocalization prin-
ciple asserts that Pu=f implies for any partial differential ope-
rator P and any solution u, that one has the inclusion S.S.(u) c 
S.S.(Ff) u{(x,n) :E(x,n) =0} in the cotangential spherical bundle
of the base space. Here, we are going to see that such a formula
remains true if one considers a certain type of microlocalization
at the boundary that allows to characterize the possible decompo-
sitions in sumsof holomorphic functions in special imaginary co-
nic domains admitted by a real analytic function or an hyper-
function defined over a convex set 2 of R" near a point x € 3Q.
To establish this fact, we are basically going to investigate the
conditions under which the morphism induced by a linear diffe-
rential operator with constant coefficients constitutes an iso-

morphism of the stalks of the microlocalization sheaf Cb.

(*) Senior Research Assistant of the Belgian F.N.R.S.



GEOMETRICAL BACKGROUND

From now, let Q denote a convex open set of Rn, F be its

n ® n
U Sn_1 of R

and 30 its bbundary in D". We denote by z=x+iy the points of

closure in the radial compactification D" « R

F+iR" and by z=&+in the directions of En, i.e. the elements of
t"\{0}. We identify e provided with the hermitian product

<Z,C> = szE; with the euclidean space R2" provided with the

scalar product Re<z,z>. We shall denote indifferently by P or

P(D) the Tinear partial differential operator | T C, Di over
_ ol<m
Q with constant coefficients c, or its natural extension to

. o _ .
the complex domain zc, DZ (where Dzj—(ij-1Dyj)/2). The
characteristic varjety of P will be denoted by

o]

Char(P) = {zeC™{0}: P(z)= 0} ,

where P is the principal part of the operator. Throughout this
paper, we will also mean by w any open subset of F whose inter-

section with Q is convex, by S the unit sphere of R" and by

n-1
Sh_q the unit cosphere of R".

Let us now give a brief description of the sheaves of mi-
crolocalization we are going to deal with. If T'>T' are open
convex cones of R" with vertex 0, we denote by AMw,I',T'). the
profile [ U {x}+ ir JU [ U {x}+ir'] and call a tuboid

Xewn§? Xew\
of profile A(w,T',T') any intersection of an open convex neigh-
borhoddofumﬂin Q+iR" with an open subset V of A(w,F,F')'such
that, given any compact set Kc A(w,I',T'), one can find fs >0
such that x+ipy belongs to V for every xt+iy ¢ K and every p in
]O,poj. If A and 0 denote respectively the sheaf of real ana-

lytic functions over Q and the sheaf of holomorphic functions
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40 02] the sheaf over SF:=

over +iR", we denote by 00 [resp. 0
that associates to any SF nA(w,T,I')the space 1im 0(V),
.+.

F'xSn_1

where V runs through the family of tuboids of profile A(w,Rn,Rn)

1/OO and

(k=1,2) which vanish

[reép. A(w,Rn,r), AMw,T,T)]. The quotient sheaves 01 0=0

02’0=02/00.a11ow to define the sheaves Cb’k

over @ xS* _ but, whose stalk at any point (x_,n ) ed3QxS¥ is

1 1

defined by the formula

)= Tim 0, o[SF n MwyuTpuT )] -
N ‘ - '

ol ngiok,O[SF n Aw ,T )]

with the following notations. The family W (me IN) is a decrea-

jomTi,m

sing sequence of open neighborhoods of X, in. F such that wmnﬂ is
convex for any m, & is the tech coboundary operator (i.e. alter-

nate sum of restrictions); if for any ne S;_l, we denote by

En the open half-space {y eR" : <y,n>>0}, then r. and Fj,m are
defjned by Pm:;jgi Enj,m ahdfrj,m:=k2j Enk,m’ where, for each m‘
in m,{nl,m, c e ’nn,m} is.a set of Tinearly independant points
of Sy_, verifying

$12 Nym = No * V je{1,...,n}

{no’ni,m+1””’nn;m+1} CYm:={‘gi fjnj,m:rj >0) . ¥m.

It is then possible to define the morphisms pk, Gk and gk (k=1,2)

making exact'the rows of the commutative diagrams

1 - 01
0 ~ T*OO > 1A — ﬂ*Cb’l -0
N R - (2)
o) 4

b,2 , 4

0 ~ T*Oo — 14,8 — m,C

and
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e

~1
(0]
0+ ker 60 — 1 11*A — Cb’1 + 0

1 l ~2 ‘l (3)
0+ ker 32 — 17l 8 — P2 .0 |

where vis the imbedding Q+iR" - F+1Rn,T the projection SF~>F,
n the projection S*F:=F xS* > F, the ok's are restriction

morphisms, the ok's decomposition morphisms'and the Ek's the

compositions of the respective'w-lok's with the natural mor-

b,k b,k

phisms W-lﬂ*c —C We may then define the wave-front

sets up to the boundary by w.F.b(f) =suppcb,k(ckf) for feA

if k=1 and feB if k=2.
In what follows, we are going to develop the complete

b,1 (that we are going to

proofs only in the case of A and C
denote now by Cb for short). The case of hyperfunctions is
entirely similar and the proofs even contain some simplifi-

cations related to the use of Ozinstead of that of Of

SOME PRELIMINARY PROPOSITIONS

PROPOSITION 1. Any operator P induces an endomorphism P
04 Cb vernifying GoP =Pog (P denotes also the trivial extension

1

of the oniginal P as an endomorphism of m~ 1*A).7Moneoben, p

induces a sunjective endomonrphdism o4 C? forn any point

X, s, )
0o
(xo,no) in S*F such that x, admits a basis 04 nedghborhoods

{w} verigying PA(wnQ)=A(wnQ).

Proof. By the definition of 01’0, it is clear that P in-
duces an endomorphism of this sheaf deduced from the usual
action of a differential operator over holomorphic functions.
The cohomological definition of Cb in terms of derived cate-
gories allows to deduce from this morphism the endomorphism

P Cb - Cb by derivation of functors.



The equality Poo=GeP may then be verified only in the
stalks. As the derivation of functors commutes with restric-
tions, it is clear that P coincides in the stalks with the
application of P to elements of the numerator of (1). By

commutativity of the diagram

i, B
ﬂ—lﬂ*cb * ﬂ-lw*Cb
Cb . . Cb
P

and by the sfabi]ity of the stalks under n—l, we are lead to

prove that o_ oP = (m,P)_ oo_ holds for any x_eF. By use of
X, Xo O Xg 0

tech cohomology, it is possfb]e to prove that the image under
o of any f e(x*A)(w)n=A(an) [where w is any neighborhood of
x0 such that wn® is convex] may be represented by a vector

(([f1]’ cee [fn+1])) with the fj s sections of 01 over do- -

mains of SF whose projections over S,.q are such that their
polarsconstitute a covering of S;_l for every x in w. In the

above representation, [ ] means the equivalence class for Oo’

(( ))the equivalence class for tech coboundaries and one has
n+i
f= 3% f. over wnQ . ()
j=1 !

We get therefore the equality (n*ﬁ)oc(f);=(([Pfl],...,[an+1])).

On the other side, the equality Pf=g§i Pfj and the uniqueness-
of the decomposition (*) modulo tech coboundaries gives also

ooP(f) =(([Pf1],...,[Pf 1)), which is enough.

nt+1

The surjectivity of 5( ) when PA(wn@) = A(wn2) holds

X N
0’0
for a basis of neighborhoods of Xo is then a trivial conse-

quence of the exact sequence of microlocalization (3).0
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LEMMA 2. Let wy be an open subset of F, Ngs =ev > M 65:-1
. . n
be Lineanly independant and T be the open cone n E_ . For any
. j=71 ]

: J
~open convex set w relatively compact in w, and any tuboid V of

)
profgile A(wo;Rn, I'), there exists a convex tuboid V' 0§ profile
Mw,T,T) contained in V and which is constituted by the inten-

section of a convex neighbonhoodof wnf in @ +iR" with a domain 04

product Lype with nespect to real and imaginary varniables.

Proof. As conveXwneighborhood of un@ that will allow to de-
fine V;, let us consider the intersection of the convex complex
neiﬂﬁorhoodofubnﬂ‘that‘define§ V with w+iR". From now, let us
also denote for_short by V and V' the other two open sets whose
intersectiom with the neighborhoods mfwomzandumﬂwe just mention-
ned constftute the tuboids of the statement.

Let us denote by nand n. the traces on the cosphere 6f

J.m
1

{Aan: A<0} and {A(nj+m- n): A>0};it is direct to verify that

m’
te bases of the dual of R" and that the cones y t=.p, E ve-

'm* =1 n,

for any m.eN larger than 1, the {ni Ny H-sti11 constitu-

>3

J
rify UYHI=F as well as Y €€ Yy €+ ©S T for every m=22.

n n
For any r_>0, we have jgl{y eR: |y - ' nj,ml< r

therefore, it is straightforward to prove the existence of a
sequence of positive numbers g that decreases to 0 and such

that one has:

.= - . n n, _
(o) B, 1= © + i j21 {yeR': |y rmnj,ml <r.} eV, ¥m=2.
Let us now also prove the following two relations:

(B) ¥ chmiym, Jp>0 s.t. {x-'r'ip'y:x+'iyeK,0<p'sp}C8m

|
(v) 3 6m>0 s.t. {xtiy <B i <y,n> > —Gm} c\Bm+1. J

Y

If (B) does not hold, we can find xq+iyne K such that x_+ig "y,
| . S

-
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does not belong to Bm, hence such that
|2

|y 2 2 r_q inf {<_y,n\_j0 > @ x+iy € K}

q m .M

holds for at least one jo <n. As this lower bound is strictly

positive, we get a contradiction by making gq»». If (y) does not

hold, : i i -1
0 we can find xq+1_yq eBm\Bm+1 .

have yq eym<:r for every q, as up to a positive coefficient in-

n -
- dependant of q we also have I <yq,nj> <q 1 and as up to the

. j=1
choice of a subsequence we may also suppose x _+iy =x +iy en+iy_,

| n q q 0 0 m

we et O<1i < JNs> = ST - < > = . .

ge VQ+2 yq nJ <yo n3> <j§1 <yo,nJ> 0 for every j which
implies y0=0. Considering now the compact set K:={xq+1yq|y

verifying <yq,n>-2—q As we

I'l.
— — —_— q .
q eN}<=w+1ym<:w+iym+1, we get by (B) a number p>0 such that

< d . . s
Iyql p implies xq+1yq eBm+1‘ Hence a contradiction because yq+0.

We are now going to modify the Bm s in order to get an

increasing sequence of convex sets open in p+iR" verifying
m
(8) B& c U B, , ¥m=22,

and for which there exists a decreasing sequence of positive

numbers em+0 such that the following equality holds:
(g) {x+iy eBm 3 <y,n> >-em}':,{x+1y eBm: <y,n> >-sm}.

As it is clear that Bé=82 and €,71 are suitable, let us proceed

by induction and suppose B), and €os +en SE alrea-

)
? Bm-i m-1
dy determined. Combining (y) and (e¢), we may find 65]0,em_1[

such that {x+iy eB%_ 2 <y,n>>-681} cBm holds. Let us now prove

1

the existence of €m e ]0,8[ such that the convex hull of B&_l u

{x+iy eBm: <y,n> >—sm} is contained in BmUBm-i’ If this does not
occur, wevcan find sequenceSfaq e [0,1], zq=xq+1yq eBm_i and
z'=x'+iy' ¢ B_ such that <y',n>>- -1 d 8 z +(1-6_)z'
q %q"Yq ¢ m at <ygen>>-q " and 8,z +(1-8.)zg

Let us first remark that we may suppose eq+eoe[o,1], Zq+xo+iyo

VR By 3
m-1 and zq»xoew because one gets directly

Tim y& =0 by the same argumentation as above. If the yq's verify

£ BmUBm—:L .

belonging to w+iy
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<yq,n> >-6 for q large enough, we are lead to a first contradic—

: i i i i +(1-060_)z' ¢eB_. We ma
tion by convexity of B_ which implies eqzq (1 q) q € Bn y

therefore suppose <yq,n> <-§ for any q. As we have <yé,n>>-6/2
for q large enough, there exist uqe[O,i]'such that -8/2 =

I B
q)yq,n>. If we suppose Mg

uoéjo,i[. As 85-1 is open and convex in o+iR" and admits both

<uqu+(1-u +uoe[0,1], we have necessarily

~

= +(1- ' X +i as points of its closure, it con-
X, eoxo (1 eo)xO and Xty p .

tains x *iu y, and consequently Xo+1(uqu+(1—uq)y& for g large

enough.Let us first consider the possibility eqe[o,uq]; as we
may write :

6 6
o y +(1-8 )y' = (1-—d)y' + 4 +(1- '
oY q ( q)yq ( uq)yq uq(“qu ( uq)yq)

with xo+1yq eB_and x +ifp y +(1-u )yq] e {x+iy eB_ <y,n>>-6}

0 q’q q 1°
c {z eBmZ <y,n>>-8}, we get another contradiction by convexity

of Bm. The second possibility eqe]uq,l] provides also a contra-

diction if one writes

' B - u 1-0
1_ ] = " - ]
equ+( eq)yq (—%—:—;%)yq + (?f:—gi)[uqu + (1 uq)yq]

because Yq and the factor between brackets belong to B4 Which

1
is convex.

The conclusion follows then directly by taking as B& the
convex hull we just considered and as € the number of which

we proved the existence. As a matter of fact, the union of the
Bi ‘s will provide a convex set which is of required type as one

can verify easily by use of (8);it is then straightforward to
verify that such a set is of product type with respect to the

real and imaginary variables.O
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PROPOSITION 3. I (x,.n,) 46 a point of 3 xS*_ such that

5(n ) # 0, then P induces a bijective endomorphism of C?

0 Xo,ﬂo)

Proof. Let Yo be an open convex salient cone of the dual of

R" containing n, and consider the representation of C?x n )
: o’'o

given by formula (1) of the introduction. Using the notations
of that paragraph,we may of course suppose that the closures in

the complement of the origin of the cones y _={zZr.n. : r.>0} are
. m J J.m J

contained in Yo and that P does not vanish over Yor

Any element of Cb appears then 1ike the equivalence
(xgm,)

class of a function f holomorphic over a tuboidVof profile

b

A(anRn,Fm). As it is trivial to prove by using the theory of
inductive limits that the restriction map corresponding to the
inclusion w +il cw +il'  induces in Ch

m+L o m o omoom (%421,
operator, Tlemma 2 allows to suppose that V contains a tuboid

) the identity

I' ,I' ) which is a.convex intersection of

\ A
V' of profile A(mm, P .

a convex neighborhood afmeEWTth a domain V' of product type.
By Malgrange-Ehrenpreis principle, we can solve the equation
Pu=f over V'. Let us then remark that w82 is contained in the bound-
ary of V' and that in a neighborhood of any point of wan, V' coincides
withvV'. It is then easy to verify that V' fulfills the condition C(x,I)
stated in 4.1 of [1] for I= -i(?ﬁ\{O})<:-iyo. By homogeneity, P does
not vanish on I and therefore, theorem 4.1 of [1] asserts that u extends
ho]omorphica]]y on a neighborhood of wan.

The Surjectivity of ﬁ(x ) will then follow directly from propo-

0’0

sition 1 because u constitutes clearly a section of 01 over um]x(S T )

n
n-1"m
such that P(cu) =c(Pu) =of holds in CbE“h,X(S;-QYm)] and because the de-

composition of f is unique modulo tech coboundaries.

) let. us again denote by f a

: o’ob

representing function of an element of C(x n) i.e. a holomorphic funct-
0’'o

To prove the injectivity of 5(
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jon defined over a tuboid of profile A(wm,m”,rm). By homoge-

“neity of P, we may find a e JO,1[ such that P does not vanish

over T(no)1={€ € In: I£I2+Inlz= 1’|€!<asn € —-Y \{0}}.

m=-1

1f P(of) =G(Pf) vanishes in C? o) We may sup-
n o
pose that Pf e.Gl [SF nA(m ,R" m)], this means the
j= 20
existence of n tuboids Vj of prof1]e (wm,Rn,Pj m) and of

funcﬁ1ons ngO(Vj) and 9, eOO[SFnA(wm,Fm,Fm)] such that

Pf= L g. over w_nQ.
j=o " "

By a restriction affecting only the real variables
and by a procedure similar to the one we used to prove the
surjectivity of P (use of lemma 2), we may suppose that 9
is defined over a convex complex neighborhood VO of wan and
that the V.'s contain respectively a tuboid Vj of profile
A(wm’rj,m’ra m) composed by the intersection of a convex
complex neighborhood of wan with a domain of product type.

By Malgrange-Ehrenpreis principle, we may again solve the

equat1ons Pf. gj over those Vj's; we hence obtain P(f-_ Z f.)

J j=o0 J
n - ;
=0 on V':=Vn nOVj. According to theorem 2.1 of [1], we may
J:
extend f- Z fj to any open convex set V" containing V'
j=o

such that each hyperplane of RZn whose normal is characte-
ristic and that intersects V", intersects also V'.
We are going to take

V.= n ) {zet": Re<z-z',z> = 0}
teChar(P) z'eV' ,

as such a V". As a matter of fact, V" is open because other-
wise, we could find a point z, e V" and a sequence z, V" con-
verging to z,. It should therefore exist some . e Char(P)
such that any z'eV' verifies Re<zm—z',cm> # 0. By convexity
of V' and up to the extraction of a subsequence, we may sup-

pose ¢~z e Char(P) and V'c {z: Re<zm-z,cm> >0} for any m.



By taking the 1imit and using the fact that V' is open, we
obtain V'e{z :Re<zo-z,g0> >0}, which contradicts zZ, e V",

The convexity of V" will follow from the convexity of
V' as one may verify directly. More important is the fact
that V" contains wan. As a matter of fact, we shall prove
this by distinguishing the two cases |&|<a and |&|=a. In the
first one, we get necessarily néfﬁ; and hence, we may find
Yo in Fm such that <yo,n> =0. Any X ewmnﬂ is then the center
of a compact ball b contained in wan; we may then find
po>0 such that x'+1'py0 belongs to V' for any x'in b and
any pe]O,po].vAS there exists at least one x' in b such
that <x-x',&> =0, the point z:=x'+1'py0 e V' verifies
Re<x-z,z>= 0. In the second opportunity (|&|=a), there exists
certainly r>0 such that the function <x-.,&> takes all the
values between -r and r in b. Let us then consider a point
y of rm; there exists again po>0 such that x'+ipy belongs to
Vf for any x' in b andpin ]O,poj. Hence we may choose p in
order to get |<py,n>|< r and then x' in b to get <x-x',g> =
p<y,n>, which is also sufficient.

The injectivity of 5( ) follows then directly be-

*0°Mo

n ‘
cause the function f- v fj will then constitute in fact a
J=0 :

section of Oo‘D

SATO'S PRINCIPLE FOR cP.

THEOREM. T4 u and f are simultaneously real analytic
gunctions (orn hypernfunctions) overn the internsection wnQ and
verdfy Pu=f , the follLowing Ainclusions hold:

W.FP(F) cu PP (u) e W.F.2(F) v {(xom) e 8@ xS*_ : P(n) =0}

Proof. The first inclusion is a trivial consequence of
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the linearity of P. Let us now consider a point (xo,no) which

b(f) nor to 380 x Char(P). If we

does not belong neither to W.F.

1dent1fy u, f, Pu and Pf with their respective images in
(x_.n ) We get by proposition 1 the relation P(ou) =
o’ :

(W—H*A)
0
S(Pu) =G(f) =0 and by proposition 3, this implies that u=0,

j.e. (xo,no) ¢ W.F.b(u).D
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