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O. Introduction

- One motivation for the study of tensor algebras comes from
quantum field theory because every Garding-Wightman field (/6/)
describes a Wightman functional (i.e. a positive, Poincaré
invariant, continuous linear functional on the tensor algebra
over the Schwartz space 5%&4), /22/), and vice versa every
Wightman functional gives a Garding-Wightman field by /3/,/23/.

This paper 1is organized as follows. The definition of
tensor algebras and some algebraic properties of them are
given in Section 1. In Section 2 we introduce locally convex

(1.c.) topologies on tensor algebras %& over a l.c. space
E[t], discuss the order relations between these topologies
and their connection with the topological structure of E [t]
(Theorem 2.1), and list some properties of these topologies
for the case that E[t]is a Frechet space (Theorem 2.3).

The third point of this paper is aimed at the structure of
the cone of positive elements ES (3.1, 3.2), and at its
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topological closure, (3.3). Finally in Sect.4 the results are
illustrated by some examples.

For the definitions and concepts from the theory of topological
vector spaces and ordered vector spaces used in the following
we refer to /19/.

1. Definition and basic properties of tensor algebras

1.1
Let E be a vector space over € (the complex plane) with an
involution *, i.e. antilinear mapping f—f* with f**=f for
all f€E. Then let us put

E®:=EO & E1 & E2 ® ..., E =, E:=EQ® ... ® E (the n-fold
algebraic tensor product).

Thus the elements f eéE_  are terminating sequences

®
f:(fo’fl""’fN’O’O””)’ fieEi, i=0,1,2,...
Let us define componentwise the following algebraic operations
on E_ :
®
(f+g) = T+ g
(fg)n = fogn + flagn_l +...+fn_1 @ g + fngo ,
_ _ ~ (im) (im-1) (iq)
(e)=(t)*=Z & e "ree .. @ e T
i...1 1 n
1 n
finite |
for f = VA X, i e . @e(in) (i) eg, jo1,....n,
) i ...1 1" " "n
1 n
di :iecu % denotes the conjugate complex value of « ,
REEE

with f,g€E_, n=0,1,2,,,.

®
Thus %& becomes a *-algebra with unity 4=(1,0,0,...).
For f:(O,...,O,fL,...,fN,O,O,...)e %9, fL¢ o, fN¢ 0O let us put
N if f# 6=(0,0,...) Lif £ £ 6
Grad(f) = , gr‘ad(f) —
- 00 if f= @ o if f =0

Then one sees readily
Grad(fg)=Grad(f)+Grad(g), grad(fg)=grad(f)+grad(g),
Grad(f+g)< maxfGrad(f),Grad(g)f,

, (1)
grad(f+g) 2 minf{grad(f),grad(g)f ,



Grad(f*)=Grad(f), grad(f*)=grad(f),

for f,gel%g If f#g then the "="-sign occurs in (1).
Let be M
+ (i) (i) (i)
E = a * a ; a € E_, MEN
(o9} {5;1 ® F
the cone of positive elements in %3. h(E®):={f€?%@; f:f*f is
the hermitean part of %@' h(q$) is a vector space.over R, (the

real numbers). Then one gets the decomposition

qxf h(qs) + i h(ﬁg), i denotes the imaginary unit,
by =141 £(2) yign £(1) Z(£+1%) €n(Ey), f(2)=%(f*—f)eh(E®).

Some properties concerning the algebraic structure of E_ are

®
listed in the following
Statement 1.1:
i) E_ is a commutative *-algebra iff dim(E)=1, (dim(E)

®
denotes the dimension of E).

ii) It is {E if dim(E)=1

Z(Eg)={feEg; fg=gf for all geE 1= c® .
for the centre of %&.
iii) %& has no divisors Qf Zero.
iv) The only invertible elements of E& are the elements
from € \{0}.
v) &, 1 are the only idempotent elements in %&’

vi) %@ has no minimal ideals.

vii) §® is semisimple.

These properties were proved for E= 3(34) by Borchers and Wyss,
/4/,/25/. The proof of Statement 1.1 is in analogy to that of

E= $RY).

2. Topologies on E
p g ®

2.1

Let E[t] be a 1l.c. vector space, i.e. there is a system of
seminorms ?(t)=§p‘; delA}, A is a directed set of indexes,
describing the topology t.

Following Schatten, Grothendick, Pietsch, (/20/,/8/,/17/),
there are the following three important topologies on En’
n=2,3,...
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i) The injective topology En given by the system of

seminorms

v
fﬁ——-%'p,(.‘___,‘“(fn)zsupsgz i
1001y
1
' .lT( )(.jép““(.),...}T(n)(.)lsp,(h(.)}

f = Z gl Hi )®...®g(l"‘)eEn, «; €A,

i,...1

finite™

T(l)(g(iQ))...T(n)(g(i"))I :

ii)The projective topology T given by
A . (ig) (i),
fr;———bpﬁ"..- °("(frl): inf ;i Z i pxq(h 1 ). . -pd“(h » ),
1°°"°""n . .
f- 2 nlllg @ h(l"")f

n . .
1....1

finite"
TTn is also the strongest l.c. topology on En such that its
topological dual is topological isomorphic to the jointly
continuous multilinear forms B(En) on E_;
(E [m]T) ;:gp].s(En) .
iii) The inductive topology in is defined as the strongest

¢ [
l.c. topology on E_, such that (En[fn]) t;pBS(En),
where BS(En) denotes the separately continuous multilinear

forms on Eﬁ.

Let T < T/ denote y("t') c y(’t‘ ), that means the 1l.c.
topology T' is stronger (finer) than the l.c. topology T
respectively % is weaker (coarser) than ¢'.

Then & n< 17‘n4 (‘n’ n=2,3,..., follows immediately.

Now let us define 1l.c. topologies on %& connected with Enten].
We denote by 53 the topology of the direct sum of the spaces
Enten] and by €P the restriction of the topology of the

direct product § En[é‘n] to its subspace E@.
n=o

Then €b (resp. {P) is the strongest (resp. weakest) 1l.c.

®
5 \ = = i i
J"/Eu En) n=2,3,..., and 't’["s. denotes ‘;he restriction of the

topology on E, with &g lp =t, &g ,\Eu =€n’, (resp. Erl‘E=t,

topology T to a subspace G.
A further important topology is §,, defined as the strongest
l.c. topology on E

Q®
f,g —=fg is jointly continuous as mapping

such that the multiplication
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ng:eq,] x EQDL‘EOO‘}-——» E®L’€.,°3.

The topology &, was introduced by Lassner /13/.
Let NV denote the set of all sequences (¥ )% of

n'n=o0
natural numbers including O, Afoax ... XA (m times),
o X nt P s
m=1,2,..., A°={17, ® A" the set of all sequences (¥ ) o
n=o o0 oo

n n n,eeo n

1= = (¥ . 4 € H .
SPen”, and Agp=f(VTT =(¥,v,...) nézboA ; veAf

Then the above introduced topologies can be given by the

following systems of seminorms:

v & v o
3(£®)={f"*p(n)(v*>(f)'=n§o\’npw>(fn>; e, (v © a7,

n=o0o
g(q”)={fd.5(ﬁ‘)(“")(fﬁzgzovhﬁ(v“)(fn); (T}QENN, (Vn)é'AOO},
P(gp)=ft—8 o (£,); n=0,1,..., @) e,
£=(£4,f 1500, Ey,0,0,...) € By, Pwe) (f)=[f] -

We get readily €&p < &< é‘@
Analogously we define the topologies T?,q;,ﬁg,{P,i 1

2.2
It is obvious that the following order relations between
the topologies defined in 2.1 are valid:
& £ €& < &
N A% AZ
Te < T, < Tg
N A A
4P < "oc < ’ts .
A connection between the coincidence of some of these
topologies and the topological structure of E[t] is given by the

Theorem 2.1:

a) E[t] is normable iff one of the following equivalent

conditions f= £ g.Th,= 7ré,«' =4 o is satisfied.

b) If E[t] is nuclear then Ep=Tp ; Epp Ty ,g@ =1r®.
Conversely, if there is a system of Hilbertian seminorms
describing the topology t then & =Tp or £, =T, or

| £®=7"’® implies-the nuclearity of E [t] .

c) Every separately continuous multilinear form on En’

n=2,3,..., is jointly continuous iff “P=7’P or dy =T,

or 1_=T_.
® &
The proof of this theorem is contained in /12/.
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Let us make the following

Remarks to Theorem 2.1:

i) Pisier (/18/) constructed an example of an infinite
dimensional Banach space B with the property 82=TT2.
Because B is not nuclear that example indicates the need of a
further assumption for\p(t) to prove the second statement of
Theorem 2.1 b). ‘
ii) The assertions of Theorem 2.1 can be illustrated by the

following figure.

2“ /y

: ) ~

P 1o P
7
Fig.1

- m
e

> x

‘s
Every point of the wedge €, , T » {P , & ®’ .Tr®, 1 ®
illustrates a l.c. topology on E_, and the semiordering "&£ "

®

between these topologies is given by the cone

{(x,y,z); x20, y2 0, z2 O}.

If the assertion a) (b) resp. c¢)) is valid then we have to
carry out the orthogonal projection into the yz-plane
(xz-plane resp. xy-plane) in Fig.l?

That means that this wedge of topologies collapses to the
smaller wedge with the corners &p ,7p , '!‘Jp‘ , “;?:E@:Wco =7T®,
.~ Tl‘®, 1@, tp in the xz-
plane resp. to the rectangle é},, é‘@ ,77'@: i®,77:9={P in the

"w=1‘® (to the rectangle & =Mp , &£

X,y-plane) iff the assumptions of Theorem 2.1 a) ( b) resp.

c)) are valid.

An easy consequence of Theorem 2.1 is the
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Corollary 2.2:
i) If E[t] is finite dimensional then

£y:7rP :‘!P 5 £°°=7£° = {mz £®= Tr®= 14 ®.

ii) If E([t] is a Frechet space or an LB-space (i.e. strict
inductive limit of Banach spaces) then 7}:={P,
Mo =10 » 1TQ§=i ® " |

iii) If E[t] is a nuclear Frechet space then E=Tp =1p,

eoo =Trc° =(oQ , £®=Tl‘®= ‘(@.

Proof; i) If E[t] is finite dimensional then the assumptions
of Theorem 2.1 a), b), c) are satisfied and thus assertion i)
follows.

ii) follows by /19; III.5.1/ and the definition of in,
n=2,3,... )

iii) is a consequence of Theorem 2.1 b) and Corollary 2.2 ii).

2.3

-
In the following let M denote the closure of a set M with
respect to the l.c. topology 7 .
Let %@ (En, n=2,3,..., resp. £) denote the completion of
.E®[7T®J (Erl [ﬂn] resp. E[t] ). Then

Er-Ceofof, @0 ...

(74
follows by /19; II.6.2/. Further a set M C’%& is called
graded if {Q(m)f; fé M}tz M for all m=0,1,2,..., where
(m) -
Q (fo,fl,...,fm,...,fN,O,O,...)_(fo,fl,...,fm,O,O,...)

If E[t] is a Frechet space then the following topological

properties of E@ are valid.

Theorem 2.3:

a) Let E[t] be a Frechet space and T a 1l.c. topology on
' E@ with 7p £ T<Tg . Then ' ‘
i) W™ =FM° =N"® holds for every graded set Me Eg;
ii) E@ is barrelled iff T= 7T®.
b) Let E[t] be a Frechet space containig a continuous norm
and % a l.c. topology on Eé with Mg, < 7<7r0 . Then
i) if there is a base of neighborhoods describing 4

and containing graded sets only then %§L7] is complete.
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ii) q§£7] and EalﬁbY have the same bounded sets.
iii) Q§F7J is bornological iff Ny =7n$.

The proof of this theorem is contained in /12/. Let us make

some

Remarks:

i) If E[t] is a Frechet space which has no continuous norm

then §§[ﬂg] is not complete, /12/.

ii) In /12/ there is also an example of a l.c. topology #*,
n5447*<1n& having nongraded neighborhoods in every base with

the property that E@[‘l*] is not complete.

i),ii) show that one connot spare the additional assumption of

Theorem 2.3 b).

3. On the cone of positive elements

3.1
We show some basic facts on the cone of positive elements q;
in this section. Let us remark that all considerations are

s s +
also valid if we replace ?@ and E@ by %@ and

M . . .
Eé::‘j‘i;;l‘,jl(l)*a(l); a(l)e %ﬁ’ Me WZ'

A linear functional T on %® is called positive if T(g)2 O
for all ge‘%; . Further a linear functional S on a complex
vector space F with an involution ¥* is called hermitean if
s(£*) = 5(f),
and-§T§3 denotes the conjugate complex value of S(f).
Then every positive linear functional is hermitean and
satisfies the Cauchy-Schwarz inequality
IT(£%g) |74 T(£*£) T(g*g),  (/16/).
Further there is an isomorphism between the set of linear
hermitean functionals L*(E_,C) on %@ and the set of real
linear functionals L(h(EQ),B) on the real vector space
h(E®) given by X: L*(EQ,C) ——-e-L(h(EQD) ,R) with
XT=T, ‘TGIﬁ(%@,C),

@) (0)=u(s ) inel?), Lertnzy w),

£(1)_ %—(f-’l-f*), £(2)_ ig(f*-f).
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Because of the duality of the direct sum and the direct product
of 1l.c. spaces (/19; IV.4/) every linear functional T onjE<8 can
be written as T=(TO,T1,T2,...), and Tj is a linear functional
on Ej, j=0,1,2,...
The following lemma is important for the proof of the theorem
of this section.
Lemma 3.1:

Let be # k € Eg. Then

i) grad(k) and Grad(k) are even numbers;

ii) if grad(k)=2n, Grad(k)=2N then (Tn @)Tn)(kgn)?»o,

(TN ® TN)(kzN); O hold for every hermitean linear

functional Tn on En and TN on EN;
iii) there are hermitean linear functionals Tg on En and

- mO . (o] 0] o (o]
/TN on E with (Tn ® Tn)(k2n)> 0, (TN ® TN)(kZN) > 0.

Proof: We are giving the proof for the highest nonvanishing
component, i.e. we regard Grad(k). The corresponding proofs for
grad(k) are analogously.

i) Let be k=2 alPug(Pg gt 2Py | N:=maxjfGrad(a
i=1 ® ®
] t 1
...,Grad(a(M))}, a&l),...,aﬁm ) £ 0, a&M +1)=a&M‘+2)=...=a§M)=Q,
M'eN, 1M €M, and fait),...,al"" )} linear independent.
M . .
Now let us assume k,..= Z: a‘l)*aél) =0.

2N i1 N

(1, ..

(1) (M'
yee.,a

. (1) Nim) N

independence of f{a * Ay *f and thus k, =0 yields

A M) et M

N N \\| N YN

M . .
k —Z (algl)*®al +a(l)
i=1

The linear independenceof fa )f implies the linear

=0. Thus we have

fei4) a(l)) = 0 which proves that

(1)
2N-1" & N-1 7 “N-1 N

Grad(k) is even.
ii) It is M

(i), (1)_ (1), (1)
(Ty ® Ty) (kpp)=(Ty @ TN)(izf-l ay @ ay )= 2 TlayHT(ay)

M .
=.leTN<afvl)>!zzo.
1=

i (1) (1) (1) (1), (1)
iii) Let be ay #0. Then ay *+aN £0 or ay *—aN #£0, and thus

. . . o _ . oex
there is a real linear functional LN on h(EN)— {fNEEN, fN _fo

with Lﬁ(a&l)*+a§l))#0 or Lﬁ(i(a&l)*—aél)))ﬁo. Then
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(S g]

(13 & 1) () 2 113l 12 = 13 (el "ralt)edid (i (el x-allhy) 2
>0 holds for T9= ™'LY

N
Some basic facts on q; are stated in

Theorem 3.2:

a) EI is a proper cone, i.e. Kk, ke'E; imply k=0.

b) Qg 1s(§§nerat1ng for h(E )y, i.e. h(E )= {k(l)—k(g); k(l),
€ E+}

c) E® has no topologlcal interior points with respect to

every l.c. topology T with €&p< < f@.

+ . . .
E t latt h(E .
d) ® is not a lattice cone in (®)

Proof: a) is an immediate consequence of Lemma 3.1 ii), iii).
b) Because of (1+f)*{(A+f£)-(A-£)*(1-F)=2(F+£*), fe.qa, and
h(E )=ff+f*; fe€ %@ assertion b) is valid.

c) To every ke ET there is a % -neighborhood U of zero and an

u€U with Grad(d?=2s+l>-Grad(k), s € N. Then Grad(k+u)=2s+1

and thus kH1£E+ because of Lemma 3.1 i).

d) Let be [x,yl:={fen(Ey);x ¢ ££y}:={ren(Ey); f- xegg,y-feE®f
QIG?KE ), the orderlntervall generated by the cone %8

Let be r, sefN, r<s, O# greEr, 04 g € ES,

a=(O,...,O,gr,O,...,O,—gS,O,O,...), b=(O,...,O,gr,O,...,O,gS,O..)
+
and u:(O,...,O,2gr*g,gr,o,...), v:(O,...QO,Zgg ® gS,O,...)ng.
Then a*a+b*b=(0,...,0,,2g*rﬁ ® gr,O,...,O,.?g; fes) gs,0,0,....) and
a*a € [@,a*a+b*b]=[®,u+v] \ (1)
follow. But on the other side f:(fo,...,fN,o,...)e[G,u] resp.
h=(h_,...,hy,,0,...)€[®,v] implies f =0 for i#2r resp. h ;=0

for j#2s. This yields a*a€[@,u]+[@,v], and thus because of (1)
the Riesz decomposition property is not valid. Then d) follows
by /19;Vl.1/.

The assertions of Theorem 3.2 a),b),c) were proved for E=STR4)
~at first by Borchers and Wyss (/4/,/25/).

3.2
Now let us regard a net k(P)z(kép), gﬁ) 0,0,...)€ EX,
BeB, B is a directed set of indexes, and kg;l—q»o with
(#)
respect to ... Then k ~—————>-C) follows because of
2N 2N-1 N-1

Lemma 3.1 1i).
This indicates that the components ki of an element

/0
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k_(ko,kl,...,kZN,O,...)e %@ are not independent of each other.
The aim of this section is to give a quantitative estimation
of this dependency.

Let us write fn for (O,...,O,fn,o,..f), f €E , n=0,1,
Then we say a mapping £: Ei—A»Z_ has the property (A) if the

following three conditions are fulfilled:

(A;) |£(f+g) | € [£(£)[+|£(g)| for all f,g eEgy; £(0)=0;
(A;;) 1£<£§iaél>*agl)| > 0 for all aél)e Eg» MeN;

M . i M. i M. oy
(A...) |£(ii§1 ér(ll)*aéll))lgé £(i§15r(11)*5511))£( Z aél)*aél))

iii .
i=1

~(i) ~(1)
for all > Ay € §®, n,meN.
Further let us put

th0:=ce( £ &M a2, gt B ACARTICIRY
i= n=0

for k=(k_, ... ky,0,0,...)= Za 1)ag(i) a(i)6E®.
io1

If there is no possibility of confusion then let us write ﬂkﬂ,
L, instead of JKI%, LE(x).
Some relations between £, Ln and | .] are proved in the technical
Lemma 3.3:
Let £ have thenproperty (A), keq;, nelN. Then
i) ek )] £ éo Lpoj Ly
n

i1 - <
ii) L 2321 L jL 5 S I£(k2 )

iii) Z (L, )2 £ k]

Proof: i) is a consequence of

M . . (A,) M . .
(2 Z alﬁl)*a(l’n < Z ez eVl
i= 1 r+s=n r+s=n i=1
(A,
<11 Z (f.(Z *a(l))£(2a(ll*a(l)))1/2= Z. L. Lg
r+s=n i=1 ' r+s=n
ii) follows from
M . . (A,) M . .
o ~(1),=(1) S ~(1),~(1)
|£<k2n>|=|£<r+§ L ZEUESDL Y e 2 A

(A;..) Mo .
- Z |£<-za< Paa{Py | MY a2 a(Dag())
i=1

r+s=2n i=1
r#s " .
- ~(1) (1) ~(1),~(i)y\1/2_ =
er=2é£(;§;ar “r )£(;§1as ey jéﬁ n+j n-j°
r#s

7/
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iii) Because of (A,.) = n
. . . 4
Ix*= Zz le(k, )1 277 Zz ((L) ZL PR
J=1 oS
we have to show the matrix 1nequa11ty A2 with I= (5;J i,j=0’
b
d-\:(a. )OO— ) s s 4J PR
ij’i, j=o 1 for i=j] 2 for i=j
5, - T S
i3 (o for 143 ij 45 or i+j is o ,
oo -2 for i+j=2s, s=1,2,
i.e. Z: a, z 5..1.1. for every terminating sequence
; ij 1 J . ij7i~j
» J=0 i, Jj=o
(1 1,. ,lN,O,O,...), lié c.

By repeated application of

E: _ n-1 - : 5 ?i}
a..1.1. .11, + a |11 | + 2RE( a .1.1.)
i, 30 ijtivg§ 1,500 13717 nn' n joo PITDT

n-1 n-1

- 2 2 -1 2

> 2 a 1.1 +a |1 |[“~c |1 |“—c 7|2 |
2156 137173 nn' "n n n T, R

n-1 - n-1 5 5

a..1.1.—x(§ 1.]%)+(a__-c )|1_1°,

7 1520 337473 nn—t‘ J' )+ ( nn n | n|
with cn}o, xn=c;1221|anj|2, RE(.) denotes the real part of (.),
we get J=0

N = 2
Z a; 513152 (agy-cp) [yl *(aN—l,N—l‘XN'CN-l)'lN-ll + (2)

2
+(aN—2,N—2_xN_XN—1_CN-2)llN—2| +...+(a22—xN—xN_1—...—x3—c2)
2 2 2
|12l +(a11—xN_xN_l_ -XZ)(Illl +!12| )
n ny 4" tinst
Let be[§J=s er n=2s or n=2s+1, se€N, and Cn:[§]2 .
Then all coefficients of llOIZ,...,IlNI2 in (2) are greater

than 1. Thus A »I is satisfied. A similar proof is in /15/.

Let us give two

Examples of mappings with property (A):

i) Let T=(TO,T1,...) be a positive linear functional on %@'
Then T fulfills (A). (Ai) is a consequence of the linearity of

T, (Aii) of the positivity and (Aiii) of the Cauchy-Schwarz

inequality.
ii) Let us regard the seminorm fe——sp(f)= fgn(fn) with
B(f )=sup {IZ 11 (gia)y () (((m)y | Tn Dy pepy,. .
AT ()£ p(],
f = Z g(i") ®...0 g(l"') and a fixed seminorm p € P(t) with
ili2...in
finite

/2



¥* ) =
p(f¥)=p(f ) for all f,;

(A) because (Ai), (Ai

i) are fulfilled by definition and (A,

€E. Then f——=B(f) has the property

)

follows by

(p<Z et n?e G (2 aDeali))2

iii

i=1
=supfir't @ ®T(n+m))<£1 alt)xg alt)) %108 ()ep( L), f
s=1,2,...,N+m
5sup§§li('r(1)® or'™)y a2 1 (1 ep), re1,2,..0F
1

supf.le(T(l)@..m(‘“’)(aé,i))|2;1T(u><.>;f p(.), u=1,...,mf
i=

M . . M . .
_ v (1), (1), ¥ (1), (1)
=P n(fggan an ) p2m(£§iam an ).

Let be §nf=s for n=2s or n=2s-1, s=1,2,

and B= (@(c)

M =1

an infinite dimensional matrix of elements ff>0 depending on

a constant ¢ >0 and given by
Bi=0 for p1=1,2,...,¥i-1,

M-mn{(c/em)) 1} Bo=(Bo/ (4n)) 2,

Theorem 3.4:

n=Ff+1

W +2,

M . .
Let be k=zf 1) a(l)eﬁﬁ} £ a mapping with property (A)

& ®
and L (k) €1, n=0,1,... . Then:

a) If there is a ¢ >0 and an odd index s with |£(ky)|=c>0
~ v
then there is an other index 21 >+ with |£(k21)|:>% Fl'

b) If there is an even index ¥=2s

with |£(K )I=C'>O, (LE(x))% ¢ §<Z

and a constant ° >0
£ £
Loy (K L 500

then there is an other index 21>V with I£(kugl>-2 fa( )

( ﬂ )means that we have to put
deflnltlon of R.
c) If there is an index Vv with Ly

Proof:

a) Because of L €1, n=0,1,2,

' : (A, ..
c=le(Ry) I=12( 2 _ & a(Dag()y) ik

follows for an index m, > V/2. Thus

/7

2c’
€+2

for ¢ in the

0101 %

z2c''">0 then there
exists an other index 1 »~r with [£(k

> B +1)cr) .



v \1/2 v 1/2
Lml??%l-= (/3{\7.?) ?(ﬁml)

follows. Now let us regard I£(f<2m )|. Then there are two
e 1
possibilities:
ek, )l >1 [3"
2m1 2 m,
~ 1 v
< =
l£(k2ml)| =2 ﬁn&

The assertion is proved for (Il). The following inequalities

follow if (IIl) is fulfilled.
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(3)

(1)

(11,)

(4)

(5)

(6)

(1,)

L 3, o ¥ ()
EFm-Z L —5tm, +3 £ §(Lm)_z Ln—itm +5 €
1 j=1 M~Jd M+ 1 =1 M~J mHJ

(11,)
<1 ik < 1 1 M
1 1
which implies
1 oV 5
L €2 L L €gm L
4 pml j=1 ml—v my+V 1 m, +m,
for an index m, with 1 ém2é my s and
-1 v v 1/2
L z (4m.) z ( )
m1+m2’ 1 ﬁml le+m2
Next let us regard k . There are again two possibilities
2(m1+m2)
for |£(k ) | 7
2(m1+m2)
~ 1 v
l£(k o> 5 F
2(ml+m2) 2 m, +m, ,
~ 1 v
|£(k )oE 5
2(ml+m2) 2 Fnﬁ+m2

(I2) proves the assertion. In case of (II

with L >( B 2
. m1+m2+m3 /3m1+m2+m3

Thus the above defined algorithm goes on.

2

1€m, €m

3 57 by analogou; o

consideration.
However, because of Ln=0 for n>-% Grad(k) the possibility
(Il) must occur after 1 steps. This proves a).
((*) follows by Lemma 3.3 ii).)
b) It is o i
cl=l£(k, )| € (L)%23 L L. £(g+2)
. . £ L L .

2s S jo1 S=37s+J ;Z; s-J s+]
4
‘(g+2)SLs+j1

for an index 1 £ j, £€s. Then

1

r K

) we get an index m

(I1,)

3’
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L ¥ S /(e+2)s —(/325 (e(2s+1) /e 0ys))1/2 >

my

ZOBE (g 0y DVP 3 (p22 (P (g2

follows for ml=s+j1. This is the corresponding 1nequa11ty
to (3) and the further proof is in analogy to that of a).
((**) is a consequence of Lemma 3.3 1i),)
c) We take L, 2 2 (A (@+1)cr))t/2
proof is analogously to that of a).

for (3). The further

3.3
In this section let us regard the topological closure of %;
resp. Eé.

One motivation for the study of this closure is the following
statement by Wyss and Yngvason.
Statement 3.5:
Let E= $(R?). Then every linear functional T on Eg with
T(£)2 0 for all fefg" is
i) é€g-continuous, (/25/),

ii) W -continuous, where N'is a l.c. topology defined

on Eg with E,#N$Eg, (/26/).

. —-FT
Beside E let us regard the sets

®
+,fT_ ) o)+ . (n)
Ex _{gegg, there is a sequence (g )n 1° g“e%Q with g .ﬁ,pg}
S (i), (i), _(1)
E+’Sr={2f a /gt e g | 2. is Q’—convergent}
X in1 @
<1 _ c
for a 1l.c. topology E.P 4 T4 g on E® Then it is
—F +,fT +,8¢
E E_’ E_’
e - I > By
R O
+ +,fr +,8%T
< E° E_’
Eo ® 2 B
for T/ 4 T . The aim of this section is to show that these

sets coincide for a large class of topological vector spaces
E[t] and l.c. topologies ', 7T.

. n, _
Let us use the notations E :={(f_,f ,...,fy,0,...)€E

. 1 -1
S2n(e)'-(pr1(e)) , nelN. Then one can prove the

/ §
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Lemma 3.6:

Let T be a l.c. topology on E®, s.t. there is a system

of seminorms P (%) describing T with the properties:

i) every p e (t) satisfies (A...);

iii
ii) to every pe€ B(T) there are seminorms p, on E_, n=0,1,...,
0
such that p(f):lr‘gO pn(fn) for all f=(fo,f1,...,fN,O,..)€E®;

iii) to every c>»0, pef(T) there is a T -continuous
seminorm f--»p(f):é?o pn(fn), p, are seminorms on En’
such that p(f) » p(£), B£l” «p(f), &, (c)p, (£, ) €D, (£,)
for all n€N, fe E®.

T T

E. N E™ = ELNET

Then
[%:4

, n=0,1,2,..., follows.

¥, L2no > F ALon, T
Proof: Let be Eg NE"®Z EgNE "o for an neN, i.e. there

is an element > >
_ ¥ 2N, + 2n
g—(go,-.-,ggno,0,0,.-.)e(E® NET°)\(Eg NET ).

Thus there are a seminorm pe€ P(T), a T -continuous seminorm p
given by assumption iii) and a constant C depending on p,g
with

1/2 2C. >0 , ; (7)
3 (1) e (1) (1) ¢ g* e
p(g-2 £ 7/*f*7/)y> ¢ for all f € E,NE ©  MeN,
i=1
lglP=1/2 and
p(g-h) sp(g-h) €C/2 €1/4 (8)
M ) ) ) .

_ (1) ,,.(1) + (1) _,.(1) (1) + o g
for some h_iglb b €Eg, b =(b, ,...,bni,O,...)€E®nE <
M',n.€IN. Then there is an index 1 , n_ <1 £€2n_, with

1 (@) O (o] O
(8) (7) M’ ) )
c/2 £ C-p(g-h) < p(g- (Q(no)b(})*(Q(n°)b(l)))—p(g—Q(2n°)h)
i=1
M’ . . M' 2n
ep( > (@Me)p(1))x(qnaly(1)y (el (5 5° 2
i=1 i=1 r=no+1 pv=r
. . . R % 2n * ¥
< (b(l)*bgl)+b(\,l)*b(l)) 2 5° ¥ 2P LB (h) (5)
I /1 r=no+1 i =r I

/:zn,,*-‘l .

/6



_ P(h) < _ p "
(r no) Lr(h)..ZnO(lo no) Ly (h). (9)
=n _+1 o
(9) and Theorem 3.4 iii) imply the existence of an index 1,
11>l , such that
o

~ A &
p(fiyy > Lps (e 1) 3 3 lcran )z /sil(c) (10)

for e=C/(2(2n_)(1_-n_))2 c/(41§). Then
5 B (*xx) (iii)
p(g-h)zp211<(g—h>211> = p(h211> > 8211(C)p211<h211)>
(10)
l 1

8,5y (c) ﬁll(c) =5
is a contradiction to (8).
((*) follows by (A...) and the definition of Lp

iii
(**) is a consequence of Lemma 3.3 iii) and

Z (LP(n))? < (nIP ¢ [glP+ fe-nf? €Y 1/2 + p(g-n) ¢
(8) (7)
£1/2 + C/2 < 1.,

(¥***x) is valid because of Grad(g) 52no~<211.)

This completes the proof of Lemma 3.6.

Remarks:

i) The assumptions of Lemma 3.6 are satisfied for &, and 5@.
But there are also l.c. topologies ¥, T # €eo, satisfying

these assumptions.

ii) In /9/ there are examples of sets Mc:(?(R )) with

MOE" 69,-4 M % N E" for some neN. That shows that the structure

of %3 is important for the proof of Lemma 3.6.

Let us give two corollaries of Lemma 3.6.

Corollary 3.7:

let T, be a 1l.c. topology on E_ satisfying the assumptions

1 Q
of Lemma 3.6, and let be Té a further l.c. topology on E

®
with &, > T, ¢lrE*“ = Té[E”,,nzo,l,

— —_—
Then %; 1 Q; 2 follows.
Proof oo
> r o0 ___ 7T T
BT .zci:r'!:u +1nE2n_UE+nE2n =UE+ﬂE2n cg *
® @ . @ n=o &® neo @ ®

implies the assertion.

/7



Corollary 3.8:

Let 7T satisfy the assumptions of Lemma 3.6, and let
further be E[t], t=%[., an LF-space (i.e. strict

inductive limes of Frechet spaces).

.—*r
Then E = =g ' T%

© ® follows.

N—p oD

Proof; Let be Efﬁj= lim '(n)ELt(nZ], (n)E:&(n) Frechet spaces,
go...ompsp o t(ml)f(.,)E S

g J . (o)
If keE® then there is a net (k )o(eA’

set of indexes, k(“) eE; and k(d)—-?—rk‘.
However,l<£3§; implies further that there are indexes n',N

1
with ke((n )E)® n EN. Then there is a cofinal subset A'c A

A is a directed

with k(d) € ((n')E)@nEN, £ €EA', by Lemma 3.6. Because

‘?.'/‘ . . . (n),°
((an) {\EN is metrizable there is a sequence (g )

n=1’

(n) o o+ N s (n) .
g e gx NEY with g =3 kK with respect to T .

This proves the Corollary.

There is the following lemma proved by Borchers.
Lemmd 3.9 (/5/):

If Eft] is a nuclear LF-space then gt Té

+, 56
=F ? follows.
® ®

Combining Lemma 3.6, Corollaries 3.7, 3.8 and Lemma 3.9
one gets the
Theorem 3.10:

Let E[t] be a nuclear LF-space and T a l.c.topology on

23 satisfying the assumption of Lemma 3.6 and Tszqu&ﬁﬁN'
+,s7 T+
The E.’ = .
n Fe )
Remarks:

+,88, -F %
E_’TTe=E .
®

All assertions of Theorem 3.10 remain valid if one replaces

i) Theorem 3.10 holds especially for % =£&,,, i.e.

+ +
E® and E® by %ﬁ and %@‘ 4 |
ii) This theorem was firstly proved for E= ¥ (R’) by Borchers
and the author (/5/,/9/,/10/). Later there are also proofs
in /1/,/21/.

iii) One can prove an analogous theorem for cones of "positive

s



type", 1.e. cones satisfying Theorem 3.4 or a similar version
of it. Further one can prove an analogous theorem for the
union of some cones of positive type.

This will be treated in a subsequent paper.

One can easily extend the proofs of Theorem 3.2 to.%é’s£ﬁ’.

Thus the following Corollary 3.11 is an important consequence
of Theorem 3.10.
Corollary 3.11:

._é‘Q

_6‘8
All assertions of Theorem 3.2 are valid for E; and %é

4, Examples

Let us discuss our results for some examples.

4.1
Let be E=C. Then E_ is *-isomorphic with the algebra of

®
polynomials P in one real variable t. This *-isomorphism

is given by

o0
-~ n
£=(f_,.00 £20,0,.0.) <> f(t)=nZ—O £ t7, £ €C, teR.

Let the algebraic operations in P given by T(t)+g(t),f(t)g(t),

Bx(£)=F(t).

Readily one sees
fig =% +8, F2=2g b+, 2,5eP.

We have further

q:;:{f(t)eP; £(t)2 0 for all teRmf . (1)
Proof:
Cé c {f follows immediately.

Otherwise one has

os%(t)=(t-al)2“‘1 ...(t—an)2°(‘"(1:2+bf)‘81 ...(t2+b§)p*,xi,Fien\I,
al,...,aneiR, al< a2< cee <A, bl,...,breﬂ,

because f(t) is real for all t the conjugate complex value
of every root must be a root too, and because F(t)30 the
exponents of the factors (t—aj), j=1,2,...,n , have to be

even. ghus

2 . « 2 .2 Ese 2 . o& K
()= ((t-a;) " ... (t-a ) " (%405 ). . (t%+bS) b, . tK)2
ké'o 1 n s+1 r Teoodg g
1l<...<1s_k 7 c 6;
isefl,...,sf ®

/7



for ﬁj=2Y3+1, j=1,...,s, s€r, ﬁi=2£l, l=s+1,...,r.

This proves (1). (Further properties of C@ are proved in /14/.)
Because of Corollary 2.2 one has &=Tp=1p £ &=T =1, ={®=7gé=
= ﬁ&. The topologies {Pand.Ea can be described by the following

systems of seminorms:

&p {f———»lfnl; n=O,1,...f
&t {f—*p (f)=i' Y £ |; (¥ )ao €INN2
® (%) &L 'n'"n’’ “'nin=o ’
f=(fo,f1,...,fN,O,O,...)€C®. Further one has the
Statement 4.1:
.\ oF e .t R ¥ &
1) €p ° =Cg, ii) Cg gca .

Proof: i) The image éson P of the topologyf‘® is stronger
than the topology of the pointwise convergence on P because
for (Xh(s))::oeﬂf{ s=1,2,..., with fh(s)=sn we have

~ N
A
If(to)l«:lfol+|fll|t0|+...+|fN||t| < Py (s))(f) for s>]tol.

Thus %eE;E@ implies £(t)> O for all teR ,and f‘eo%
follows by (1). This proves 1i).
ii) Let us regard the sequence (fn)gio, }nelﬁ, defined by

o
3o=‘f1=1, ig%LmIi}j=O, m=2,3,... . Then ({n)n=o is not
terminating, i.e.to every noe»N there is an neN, nan with fn#O.
Let us regard{"":(]o,}’l,...,fn,0,0,...)ECQ. Then we have

(n) 4 p(n) 2 +
£ eto1,-1,0,0000, 2 Fi R X fiEe..J0.0,. 06,
i+j=n+1 i+j=n+2
izl i,jz2
(n) co(n) _ .
f f == (1,-1,0,0,...) with respect to €p.
Because of (1,—1,0-,0,...)¢C; ii) is proved.

Remarks: -

. + +,S & +,T€ —Tée
et s & ’ . o

i) Because of E@ E® cE’ E®

Statement 4.1 i) and éw:ﬁg

with T =&g .

ii) Statement 4.1 ii) is valid for arbitrary tensoralgebras.

4,2

Let us regard E=90Rd), the Schwartz space.bf test function

for any 1l.c. space E

gives the assertion of Theorem 3.10

over Rd, delN.
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f(Rd) is a non normable, nuclear Frechet space having
continuous norms, /7/, /22/. Thus Theorem 2.1 implies

£oTo= toy & Eg-Tp=1g- ,;

The corresponding assertions of Theorem 2.3 and Theorem 3.10
are proved for E= #(RY) in /9/,/11/,/4/ and /5/,/10/.

4.3

Let J(Rd) denote the Schwartz space of the complex valued
smooth functions on Rd, delN, with compact support. Further
let us regard strongest l.c. topology t on.‘U(Rd) which
induces the topology given by

_ L2 Y ; & cr—
{f»—-;-pn(f)—maxﬂDl N X S WIE o(l,..‘.,xd—n;,n—o,'l,
D = 5%—, i=1,2, ,d, on every subspace
.5 {feﬂ'(lR ); supp(f)C{Ix +|x fﬁa? a>o0.

Then.JKR ) is a nonmetrizable, nuclear LF-space, /7/,/22/.

Theorem 2.1 implies

oo & ;/@
Iz %
£=T & E&zﬁé

Let (J’ Ll ) denote the set of the % -continuous linear
functlonals on (F(®RY ))g- Then (5® {."'61 )2 (ﬂ'® {ﬂé]) '
proved by Alcantara, /2/.
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