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ABSTRACT
This paper deals with linear discrete-time systems with matrix-valued

transfer functions each entry of which is represented as the quqtient of two

H -class functionms. The notion of outer functions (or functiong of minimum
phase) is extended to matrix-valued functions of the Nevanlinna class N, and

a canonical factorization theorem for matrix functions of class‘N is presented.
This theorem gives minimum phase systems for these linear systems, and speci-
fies a necessary and sufficient condition for the systems to be causal. The
notion of the matrix-fraction descriptions (MFDs) is extended to theée systemé,
and some properties of the MFDs are presented by means of the canonical fac-

torization theoremn.

* This work will be presented at the 1985 International Symposium on Circuits
and Systems which will be held at Kyoto, on June 5-7.
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I. INTRODUCTION

In the design of controllers for linear systems (or plants), the systems
are usually described by rational transfer functions. In the analysis of
time series or digital signals, however, they could not be assumed a priori
to be generated from linear systems with rational transfer functions. It is
more natural to assume that they have irrational transfer functions. The
theory of linear systems with rational transfer functions should be extended
to the irrational case in order to cover the field of time series or digital
signal analysis.

Dewilde deals with a class of linear continuous-time systems with irra-
tional transfer functions, which he called roomy systems [13]. The roomy
systems exhibits some energy conservation properties. The systems considered
in this paber have no restriction of energy conservation, and thus contains
the discrete-time version of the roomy systems.

In this paper we shall deal with linear discrete-time systemsvwith ma-
trixed-valued transfer functions each entry of which is represented as the quo-
tient of two bounded functions analytic in the unit disk |z]| < 11! In the
literature of mathematics, such a function is called of bounded type. That
is, a scalar function h(z) of bounded type is written in the form h(z) = n(z)
/ d(z), where n(z) and d(z) belong to the Hardy class Hm(that is, the class
of functions bounded in |z| < 1).

First, we shall take out several properties of scalar analytic‘functions

of the Hardy class HP(O < p < =) and the Nevanlinna class [1-5] which are

1 It is a common practice in engineering to interpret the argument z in

the z-transfer functions as a unit~delay operator. 1It.is, however, convenient
in the sequel to interpret the argument z as a unit-delay operator in order

to exploit the Hardy space theory.



nesessary for our purpose. The notion of outer functions (or functions of
minimum phase) is extended to matrixed-valued functions of the Nevanlinna
class N. We shall next provide a canonical factorization theorem for matrix
functions of class N. This theorem gives linear systems of minimum phase
corresponding to linear systems with transfer functions of bounded type, and
specifies a necessary and sufficient condition for the systeﬁs to be causal.

The notion of the matrix-fraction description (MFDs) is extended to tﬁese
systems, and some properties of the MFDs are presented by means of the ca-
nonical factorization theorem.

The following notation will be used in this paper. The symbols, rank H,
det H, adj H and H* denote, respectively, the rank, the determinant, the ad-
joint matrix and the conjugéte transpose of a matrix H. For Hermitian matrix
K and L, K > L means K - L is positive semidefinite. Ir denotes the r x r
identity matrix, and its subscript r'is omitted when it is clear from the

context.

II. MATHEMATICAL PRELIMINARIES FOR
ANALYTIC FUNCTIONS

- This section contains some basic results on scalar analytic functions
of the Hardy class HP(O <pZ =) and the Nevanlinna class N, and on ma;rix—
valued functions of the Hardy class Hz, which are necessary for our pufpose.
These are presented without proofs. The reader is referred to the textbooks
[1], [2] for an introduction to the Hardy and the Nevanlinna spaces, and the
textboéks [31, [4] for the results related to functions of bounded type. He

is also referred to the works [6-11] for properties on matrix-valued functions

of the Hardy class Hz.



A) Scalar functions of the Nevanlinna class N.

We shall set down the definitions of these subclasses in the class of
analytic functions in the unit disk |z| < 1.
A scalér funétions £(z) analytic in |z| < 1 is said to be of class ik
(0 < p g =) if the integral means
T

{é%i If(rejw){pdm}l/p, for 0 < p < = (1a)
-

max| £ (red™) | , forp=-= (1b)
W

are bounded for r < 1. Thus H is the class of bounded functionvanalytic

in the unit disk, while H2 is the class of power series z anzn with Z Ianlz
] : n=0 n=0
< ©, A scalar function f(z) analytic in Iz[ < 1 is said to be of class N

if the characteristic function T(r) defined by

™

( .
T(r) = J log+if(re3w)[dw (2)
-7

is bounded for all r < 1, where log+k = log x if x > 1 and log+x =01if 0 < x
< 1. It is clear that N contains H® for every p > 0. When f(z) is analytic
in Izl < 1, the integral means (1) and the characteristic function T(r) are

- . . j w
nondecreasing as r increases. A scalar measurable function f(eJ ) on the

unit circle lejml = 1 is said to belong to class Lp(O <p s ») if the integral
means
i
f%; J ]f(ejw)lpdw}l/p, for 0 < p < =4 (3a)
-1
ess. S%P[f(ejw)‘ , forp=ow (3b)

are finite. A matrix valued function F is called, respectively, of calss



Hp, of class N and of class LP if its every entry Fij belongs’to class HP,
class N and class LP.

The following theorem is a fundamental result for functions of bounded
type [3, p.188; 4, p.157].

Theorem 1 (R. Nevanlinna): A function f(z) meromorphic in Izl <1 is

of bounded type if and only if the characteristic function T(r) defined by
(2) is bounded as r -+ 1. Thus, an analytic function in lz[ < 1 belongs to
the class N if and only if it is of bounded type.

Since bounded analytic\function £f(z) has almost evefywheré (a.e.) the
boundary value f(ejw) which is defined by the radial limit

f(eJm) = 1lim f(rer) a.e.,
r>1

a function f(z) of bounded type also has a.e. the boundary value.

In order to show the factorization theorems on functions of the Hardy
and the Nevanlinna classes, we shall wfite down the definitions of outer func-
tions and inner functions.

An outer function for the class N is a function of the form

j(ﬂ T .
f(z) = c expﬁj; J S log p(e?®)dul, lz] <1 (%)
2m jw
-7 e’ -z
where ¢ is a complex number such that |c| = 1, y(e”) > 0 and log ¥(e”") e L.
We note in (4) that it holds
limlf(rejw)‘ = w(er) a.e.
1
An inner function is a function £ ¢ H for which If(ejw)l = 1 a.e. There

are two kinds of inner functions. The one is a Blaschke product B(z) which



is defined by

o ‘an{ a -z
B(z) =z I S - (3)
n n 1-az
n
where m is a nonnegative integer and 2(1 - [anl) < . The set {a_} may be
n

finite, or even empty. The other is a singular inner function S(z) which
is defined by
T u _

T2 gu(w)} (6)

w
=T eJ - Z

S(z) = exp{-J

where u(w) is a bounded nondecreasing function such that the derivative u’'(w)
=0 a.e.

The following theorem is a generalization of the factorization theorem
by F. Riesz.

Theorem 2 (Smirnov's canonical factorization theorem): Every function

f(z) £ 0 of class N can be expressed in the form
f(z) = B(Z){SI(Z)/SZ(Z)}fO(z) ; o (7)

where B(z) is a Blaschke product, Sl(z) ans SZ(Z) are singular inner func-
tions, and fo(z) is an outer functions (with w(ejw) = f(ejw)). Conversely,
every function of the form (7) belongs to N. Moreover, every function £(z)
# 0 belongs to HP if and only‘if'it can be expressed in the form (7), where

Sz(z) = 1 and f(ejm) e 1P,

The above form (7) for Hp is called the inmer-outer factorization for
class HP.

Another subclass in class N was introduced by Smirnov. A function f(z)
is called of class N+(or called "D" by Smirnov) if it has the form (7) such

that Sz(z) = 1, that is, the form £(z) = B(z)S(z)fo(z), where B(z) is a



Blaschke product, S(z) is a singular inner function and fo(z) is an outer

. . . L. . + ...
function. For a matrix function F(z), it is said to be of class N if its

+
every entry belongs to class N . It is clear by the definitions that an
X : +

outer function for class N belongs to class N .

The following useful result is an easy consequence of the canonical
factorization theorem.

Theorem 3 (Smirnov): If f ¢ N+ and f(er) e LP for some p, then f ¢ Hp.

The following theorem characterizes outer functions, which is derived
easily by the canonical factorization theorem.

Theorem 4: The following properties are equivalent.
1) £(z) is outer for class N.

2) f(z) £ O belongs to class N and satisfies
HOIENHOY | (8a)

for any function %(z) of class N+ with the same magnitude of the boundary

value as f(z), that is,
l%(ejw)l = lf(ejw)l a.e. (8b)
3) f(z) belongs to class N and

m

[£C0)]| = exp{%J 1og|f(ej“’)|dw > 0. (9)
] -7

B) Matrix-valued functions of the Hardy class Hz.‘

A square matrix function U(z) is called inmer if U(z) is of class‘Hoo
_ . . -
and if U(eJm) is unitary a.e., that is, U(er)U(eJm) =1 a.e.
The definition of outer matrix functions was first introduced by Helson

and Lowdenslager (1961) for the Hardy class HZ[ll]. This is shown to be
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equivalent to that of maximal factors introduced by Krein (1958) and Rozanov

- (1959) [6]1, [71, and to that of optimal factors by Masani (1962) [9], in the

investigations;of weekly stationary random processes. The definition by
Helson and Lowdenslager can not be applied to class N. The definition by
Krein and others, however, can be exploited to class N. Thus, the notion of
outer functions will be extended for the first time to matrix functions of
class N.

An r x m matrix function F(z) of class N is said to be column outer if

: 2
F(er) has a.e. full column rank , that is,

rank F(ed%) =m a.e., : (10)

and if

FO)F(0) > ¥0)¥ 0" (11a)

N + N,
for any r x m matrix function F(z) of class N whose boundary value F(er)

satisfies

ode
w

¥ ¥ I s red®rEIY*  ae. (11b)

A row outer matrix function is defined in the same way, replacing re-

spectively (10) by

fank F(ejw) (12)

]
H
8}
1]

(lia) by

F(0)"F(0) > ¥(0) F(0), (13a)

2
The notion of column outer functions may be valid without this assumption

as in [11], but unnecessary details shoud be taken into account in this case.
Thus we have the assumption (10) in this paper.

-7 -
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and (11b) by
¥ FeI?) = 7RI ae. A

For a matrix function F(z) analytic in |z| < 1 and having the form
F(z) = ) Fz", |z| <1,

define the analytic function F (z) by

o]
. *
F,(z) = F(1/2) = zan 2", |z] < 1.
n=

Then it is clear that F € N is row outer if and only if F, € N is column outer.

The following theorem provides the inner-outer factorization for class

2 .
Theorem 5 (Krein and Rozanov): Every r X m matrix function F ¢ H™ with

rank F(ejw) = m a.e. can be expressed in the form

F(2) =, (2)F, (2) (16)

. 2 . .
where Fi(z) is inner, and Fo(z) € H® is column outer. Moreover, the factori-
zation (14) is unique up to multiplication by a constant unitary matrix, that is

. ,\J r\l . . . . I3
if F(z) = Fo(z)Fi(z) is another inner-outer factorization, then there exists

a constant unitary matrix U such that
¥ () =F (U, ¥ (2 =U"F, () (15)
o2 = F ()T, ;1 (2 1(2).

The following theorem characterizes a square matrix outer function of

class H2.

Theorem 6 (Wiener and Masani): Suppose F(z) is a square matrix function
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2
of class H'. Then F(z) is column outer (or row outer) if and only if

m

|det F(0)] = exp{-i]:;J log|det F(ej“’)ldm} > 0. (16)
-

It is clear by Theorems 4 and 6 that a square matrix function F(z) of
class H2 is outer if and only if det F(z) is a scalar outer function. It is
shown by this statement and Theorem 5 that a column outer function F(z) of

class H2 has full column rank for all |z| < 1 [7. p.83].

IIT. CANONICAL FACTORIZATION FOR MATRIX
FUNCTIONS OF CLASS N

In th;s section the canonical factorization theorem in the scalar case
will be extended to the case of matrix functions of class N, and the inner-
outer factorization of matrix functions of class N+ will be presented, which
is a generalization of Theorem 5.

We first introduce some notions about greatest common inner divisors of
Hm—class matrix functions. Let A ¢ H be rx% dimensional, and B ¢ H be rxm

dimensional. We say that A and B have a common left inner divisor (CLID) if

there exist an r X r matrix inner function U such that

(o] {s+)
A= UAl, A e H, and Bl e H .

U is called a greatest common left inner divisor (GCLID) if, for any CLID Ul’

there exists an inner function U2 such that

In the above definitions we tacitly assume that matrix [A(z), B(z)] have full

N o0 2
row rank a.e. in |z| < 1. It is clear by Theorem 5, since H € H", that a



GCLID U is unique except for a constant right unitary factor. A and B are

said to be left inmer coprime (LIC) if their GCLID is a constant unitary

matrix.

Using Theorem 5 (or tﬁe inner-outer factorization for class Hw), we
easily obtain the following result.

Theorem 7: Let [A, B] ¢ H have a.e. full row rank. Then A and B are
LIC if and only if [A, B] is row outer.

We shall start with an r X m matrix function H(z) of“bounded type.
Since each entry of H(z) can be represented as a quotient of two bounded

functions, we can write it as

H(z) = 2 (17)

where d(z) is the product of all denominators of the entry of H(z), which is
a scalar function of class H . Then N(z) = d(z)H(z) is an r x m matrix func-

oo
tion of class H . Thus we can represent H(z) as a left matrix-fraction de-

scription (left MFD)
H(z) = D ()TN, (2), | (18a)
DL(Z) = d(z)Ir, and NL(z) = N(z). ) (18b)

In general, DL(z) and NL(z) are not LIC, and thus there exists a GCLID U such

that

D, (2), N ()] = U(z)[D(2), N(z)] (19)

where [D(z), N(z)] is row outer by Theorem 7. A left MFD [ﬁ(z), ﬁ(z)] is
said to be irreducible if ﬁ(z) and ﬁ(z) are LIC.

We shall provide one of main results in this paper, which is an exten-

- 10 -



sion of the Smirnov canonical factorization theorem to the matrix case.

Theorem 8 (Canonical factorization theorem): Let H(z) be of class N

and H(z) = D(z)—lN(z) be an irreducible left MFD. Then det D(z) has no zero

in |z| < 1. Let

det D(z) = do(z)ds(z), ' (20a)
adj D(z) = Ao(z)As(z), (20b)
AS(Z)N(Z) = Lo(z)Li(z) (20c)

be the inner-outer factorizations of det D(z), adj D(z) and As(z)N(z), re-
spectively, where do(z) is outer, ds(z) is singular inner, Ao(z) is outer,
As(z)>is singular inner, Lo(z) is column outer, and Li(z) is inner. Then

H(z) can be expressed in the form
H(z) = H (2)-H, () = (21a)
o i dS(Z)

where Ho(z) is column outer for class N, Hi(z) is inner, and they are re-

spectively defined by

l R
HO(Z) = do(z) AO(Z)LO(Z), (21b)

]

Hi(z) L, (2). (21c)

Moreover, H(z) belongs to class N+ if and only if it can be expressed in the
form (21) with ds(z) = 1 and As(z) =TI (ot Ao(z) = adj D(z)). In this case,
the inner-outer factorization (2la) is unique up to multiplication by a con-
stant unitary matrix, that is, if H(z) = ﬁo(z)ﬁi(z) is another inner-outer

factorization, then there exists a constant unitary matrix U such that

ﬁq(z) =B (z)U and K (2) - U*Hi(z). (22)

- 11 -
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Proof: Since [D(z), N(z)] is row outer, using the comment below Theo-

rem 6, we have

rank [D(z), N(z)] = r for all |z| < 1. - (23)
Substituting N(z) = D(z)H(z) for N(z) in (23) yields

[D(2), N(z)] = D(2)[I_, H(2)]. | (24)

Since H(z) is énalytic in |z| < 1, (23) and (24) imply that det D(z) f 0 for
all [z‘ < 1. Thus there is no Blaschke product in the inner-outer factori-

zation of det D(z) as in (20a). Since adj D(z) belongs to class Hw, by means
of Theorem 5, we obtain the inner-outer factorizationm (20b) of adj D(z). We
shall show below that the inner factor AS(z) becomes singular. The identity

1

% det D(z) adj D(z) (23)

D(z)—l
gives

D(z)-adj D(z) = det D(z)~Ir,

which yields together with (20a) v

detladj D(2)] = (det D))" = d ()" tea ()" 7. (26)
Thus it follows from (20b) and (26)
r-1
det A (z) = c+d (2) R 27)
s s g
where |c| = 1. Thus the inner function As(z) becomes singular. Since As(z)N(z)

[e°)
belongs to class H , we get the inner-outer factorization (20c) by means of

Theorem 5. It is clear from (20), (21b), (21c) and (25) that H(z) can be

- 12 -
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represented in the form (21a) provided that B (z) given by (21b) is column

outer. We shall show that Ho(z) is a column outer function for class N.

It is clear by Theorems 1 and 2 that Ho(z) belongs to class N (in fact, clags ¢

N+ by Theorem 5). Consider any r X m matrix function H e N+ such that
Tl F iy F o jw Juy*
H(e” )H(e’") = Ho(e )Ho(e ) a.e. (28)

It follows from (21b) and (28) that

Ao(ejm)“ldo(ejm)ﬁ(ejw)ltl(ejm)*do(ejm)*Ao(ejw)*“l

. -
=L (3L ™) a.e. (29)
o o
Since Ao(z) is outer for class Hm, Theorems 1, 2 and 5 imply that Ao(z)-1
+ o S CRE . -1 = 4
belongs to class N . Since do € H and H e N, this fact yields Ao ~do-H e N

(in fact, A;l'do°ﬁ e H. by Theorem 3). By the fact that4Lo(z) is column

outer, we have

-1 - - % * %-1
AO(O) do(O)H(O)H(O) dO(O) AO(O)
% ;
< L, (OL €0) . (30)
This gives, together with (21b)
- - * *
H(O)H(0) < HO(O)HO(O) , (31)

which meaﬁs Ho(z) is column outer.

Next suppose H € N+. Then we can show below that D(z) is outer for class
Hw, which implies, by the coment below Theorem 6, that det D(z) is outer,
which yields from (26) that adj D(z) is also outer. Thus we can take ds(z)
=1 in (20a) and As(z) = 1 in (20b). Consider any r X r matrix function D e

Hm such that

- 13 -
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5(ed®)*5(ed®y = Dy D) a.e. (32)
Denote
N(z) = D(z)H(z). (33)

By Theorem 2 we get N e N+, because D € Hoo and H ¢ N+. it follows from (32),

(33) and H(z) = D(z) 1N(z) that
53 F(ed?) = ped®)*need®)  a.e. (34a)

NI * eIy = neEed®)*nEed®)  a.e. (34b)

Since N ¢ N+ and N ¢ Hm, using Theorem 3 and (34b), we obtain N € H . (32)

and (34) become
b3y, NI 1% B3, Fed)]
= 0y, NI 1 D)y, NEed®)]  a.e. 35)

[D(z), N(z)] is row outer for class H by Theorem 7, because D(z) and N(z)

are LIC. This implies

[5(0), §(0)17[D(0), N(0)] < [D(0), N(D)1 [D(0), N(O)T, (36)
which gives

- k= *

D(0) D(0) £ D(0) D(0) (37)

Thus D(z) becomes row outer (or outer since D(z) is square).
Conversely, suppose ds(z) = 1 in (21la). Since HO(z) given by (21b)
belongs to class N+ by Theorem 2, H(z) also belongs to class N+, because

H, € H.
i

- 14 -



Although the proof of the fact that the inner-outer factorization of
+ . . . . .
H(z) of class N 1is unique up to multiplication by a constant unitary matrix
can be carried out in a similar way to the corresponding proof in Theorem

5, we shall present it for completeness. Suppose H ¢ N+ and let
H(z) = H_(2)H, (2) (38)

. 3 > '\I >
be another inner-outer factorization of H(z), where Ho(z) is column outer

and ﬁi(z) is inner. The identity

H (@, (2) = B_(2)E, (2) (39)
gives

H (2) = B (2)U(2), | (40a)
where

U(2) = B (2 ()7 (40b)

Since Ho(z) is column outer, Ho(z) has full column rank for all [zf < 1 (see
(21b) and the comment below Theorem 5). This, together with the fact that
ﬁo(z) is analytic in |z] < 1, means that the matrix U(z) satisfying (40a)

is analytic in lzl < 1. By the definition of inner functions, we have from

(39)

. ok . -
H 3u @37 = 1 @3u @°  a.e. (41)
o o o o
Since ﬁo(z) and Ho(z) are column outer, (41) implies
n n, * %
H (0)H (0) =H (0)H (0) . (42)
o o o o

Substituting (40a) for ﬁo(ejw) in (41) yields

- 15 -
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. . - ) . I
H (3 ued®) "8 (7)) =8 (?%)u () a.e.
(o] [0} Q (o]
which gives
. I
uEeduE®™y =1 a.e., (43)

because Ho(ejw) has a.e. full column rank. Similarly, substituting (40a)

for ﬁo(O) in (42) yields
%*
Uu(0)u(0) = I. (44)

By means of the maximum modulus theorem of analytic functions [2], (43) and

(44) imply that U(z) becomes a constant unitary matrix. Thus we obtain (22)

from (40). Q.E.D.
In Theorem 8, if the given H(z) is of bounded type, (20a), (20b) and

(20c) must be exchanged respectively for the inner-outer factorizations

det D(z) = do(z)di(z), (20'a)
adj D(z) = Ao(z)Aitz), o (20'b)
Ai(Z)N(Z).= LO(Z)Li(Z), (20'c)

where do(z), Ao(z) and Lo(z) are column outer, and di(z), Ai(z) and Li(z)

are inner. Then H(z) can be represented in the form
H(z) = B (2)H, (2) ¢ (21'a)
o i di(z)’ A

where Ho(z) is column outer, Hi(z) is inner and they are obtained by means
of (20'), (21b) and (21c).
We note that Ho(z) has full column rank for all |z| < 1, since Ao(z)Lo(z)

has full column rank for all [z| < 1.

- 16 -
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The notions about the GLIDs introduced in the beginning of this section
are extended to the class N+. Then we obtain the same result for class N+
as Theorem 7.

Theorem 9: Let [A, B] ¢ N+ have a.e. full row rank. Then A and B are
LIC if and only if [A, B] is row outer.

Using Theorems 8 and 9, we have basic properties of outer functions for
class N. Wg shall state them for row outer functions for convenience of
later use.

Theorem 10: ©Let H(z) be an r X m matrix function of class N.

1) Supbose that H(z) is square and belongs to class N+. Then H(z) is row
outer (or column outer) if and only if det H(z) is outer.
2) If H(z) is square and outer, then its inverse H(z)_l is also outer. -

3) If H(z) has a factorization

H(z) = Hl(z)HZ(z), Hl ¢ N, and H2 € N | (45)

where Hl(z) is square. Then H(z) is row outer if and only if both Hl(z)
and HZ(Z) are row outer.

4) Suppose H ¢ N+. Then H(z) is row outer if and only if there exists an
r x r submatrix of H(z) which is outer.

5) Suppose H é N+. Then H(z) is row outer if and only if there exists a right
inverse G(z)‘of H(z) in class N+.

6)L>Let H(z) = Hi(z)Ho(z) be the inner-outer factorization of H(z), where
Hi(z) is inner and Ho(z) is row outer. Then det Hi(z) is a greatest com-
mon inner divisor of all the minors of order r in H(z).

Proof: Proof of 1) If H(z) is (column) outer, from (21b) and the com-

2
ment for class H below Theorem 6, det H(z) is scalar outer for class N. Let

H(z) = Hi(z)Ho(z) be the inner outer factorization of H(z), where Hi(z) is

-17 -
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inner and Ho(z) is row outer. Then we have det H(z) = de; Hi(z)-det Ho(z).
Suppose that det H(z) is not outer. Then det Hi(z) is not constant. Thus
Hi(z) is not a constant unitary matrix. Therefore H(z) is not row outer.
Proof of 2) Since H(z) is outer, det H(z) has no zero in |z| < 1. Thus
by Theorem 1 H(z)—l belongs to class N. Consider any square matrix function

L e N+ such that
- * . . ~T1% . - :
L3 Led®) = B HEID T L., (46)
which gives
g EL A0 0y I0 .
H(e”?") L(e’ ) L(e” )H(e" ) =1 a.e.
Since the identity matrix is outer, this means
* *
H(0) L(0) L(0)H(0) < I.

Thus

L(0)"L(0) < 8(0) TH(O) T,

which implies together with (46) that H(z)-_l is outer.

= .+
Proof of 3) "if" part: Consider any square matrix function H € N such

that

s o s - .

H(el®) H(M) = Hl(ejm) Hl(ejm) a.e., (47)

which gives together with (45)
1 e i % — 3 3 3 * . * . .

1, (e3) TH(e?) H !, (1) = B, (! H () H) ()8, (™)

= H(ejw)*H(ejw) a.e.
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Since H(z) is row outer, this implies

*m ke *
H,(0) H(0) H(0)H, (0) < H(0) H(0)

A

* x
HZ(O) Hl(O) Hl(O)HZ(O).

Since H(z) has full row rank for all Izlb< 1, HZ(O) has full row rank from

(45). Thus the above relation gives

- %
H(0) H(0)

A

%
Hl(O) Hl(O). (48)
Therefore, Hl(z) is row outer. Let

HZ(Z) = HZi(Z)HZO(Z)’ , (49)

be the inner-outer factorization of HZ(Z)’ where HZi(Z) is inner and HZQ(Z)

is row outer. Put

L(z) = Hl(Z)HZi(Z)‘ ‘ (50)
Then we get the factorization

H(z) = L(Z)HZO(Z)'

Since L(z) is square, the above argument from (47) to (48) shows that L(z)
is outer, which means that H2i(z) is a constant unitary matrix. Thus Hz(z)

is row outer.

"only if" part: Suppose that Hl(z) and Hz(z) are row outer. Then from

(45) we have the factorization
. -1
HZ(Z) = Hl(z) H(z), ' (51)

where H;l € N by 2) of Theorem 1, because H(z) is outer. Since Hz(z) is row
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outer, we know from the above "only if" part that H(z) is row outer.

Proof of 4) Suppose H(z) is row outer. Then, by the definitian of row
outer functions (see (12)), there exists an r X r submatrix Pl(z) of H(z)
such that Pl(ejw) has a.e. full rank. Interchanging some columns in H(z) can
place Pl(z) in the left side of H(z), which does not affect the fact that
H(z) is row outer. Thus we can take H(z) = [Pl(z), PZ(Z)] without loss of

. . ; . 5 +
generality. Consider any square matrix function P, ¢ N such that

1
BL(e)7F (1) = 2 (¥ 1) ae. (52)
put
B,(2) = B, ()P, (2) 'R, (2), (53a)
H(z) = [51(2), 52(2)]- o (53b)

Then we have
=, ju,*=, jw jwy* jw
H(e®") H(e” ) = H(e”’ ") H(e’ ).
Since H(z) is row outer, this implies
- % %*
H(0) H(0) g H(0) H(0),
which gives from (53b)
5 (0)" 0)p. (0) (54)
Pl(O) Pl(O) < Pl( ) Pl . .

. Thus Pl(z) is row outer.

Proof of 5) Suppose H(z) is row outer. Then using the argument above,

we can take H(z) = [Pl(z), P2(z)], where Pl(z) is row outer. Put
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| Pl(Z)_l
G(z) = .

Then by 2) of Theorem 10, G(z) belongs to class N+. It is clear H(z)G(z) = I.
Conversely, suppose that there exists a matrix function G € N+ such that
H(z)G(z) = I. Let H(z) = Hi(z)Ho(z) be the inner-outer factorization of H(z),

where Hi(z) is inner and Ho(z) is row outer. Then we have
det Hi(z)-det[Ho(z)G(z)] = 1.

Since Ho(z)G(z) belongs to class N , we have the inner-outer factorization

of det[Ho(z)G(Z)],
det[Ho(Z)G(Z)] = fi(Z)fo(Z),

where fi(z) is scalar inner and fo(z) is scalar.outer. Hence
det Hi(z)-fi(z)fo(z) =1,

which implies |det Hi(z)l - 1. Thus Hi(z) becomes a constant unitary matrix,
which means that H(z) is row outer.

Proof of 6) Every minor of order r in the matrix Hi(z)Ho(z) possesses
det Hi(z) as an inner factor by means of the Binet-Cauchy theorem [14, p.9].
Hence det Hi(z) devides all the minors of order r in H(z). Since Ho(z) is
row outer, from 4) of Theorem 10, there exists an r X r submatrix Po(z) of
Ho(z) such that Po(z) is row outgr. Let P(z) be the corresponding square
submatrix of H(z) to Po(z) such that P(z) = Hi(z)Po(z).\ Then it holds det
P(z) = det Hi(z)-det Po(z). Since Po(z) is outer, det Po(z) is outer from
1) of Theorem 10. Thus det Hi(z) becomes a greatest inner divisor of det

P(z). Hence det Hi(z) is a greatest common inmer divisor of all the minors
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of order r of H(z). Q.E.D.

A transfer function H(z) of bounded type with H(ejw) € Ll is said to

be causal if, in the Fourier series of H(eJm)

H(ed®) ~ § Hnejum», (55)

the nth qurier coefficient Hn vanishes for any n < 0.

The following result specifies the condition of causality of
linear systems with transfer functions of bounded type.

Theorem 11: Suppose H(z) is an r x m matrix function of bounded type
and H(ejw) € Ll. Then H(z) is causal if and only if H(z) belongs to class
Hl. Moreover, suppose H(z) is represented by an irreducible MFD H(z) = D(z)-l
N(z). Then H(z) is causal if and only if D(z) is outer.

Proof: Suppose the nth Fourier coefficient Hn vanishes for n < 0. By
the Riemann-lebesgue lemma [2. p.109], the nth Fourier coefficient Hn - 0,

o]

. n
as n > @, This means from the Cauchy-Hadamard formula that the sires z an
: ' n=0
converges on |z| < 1. Thus we can define

n
H+(z) = E an . |z| <1 (56)
n=0

Since
T

H == J Hed®)e %%y for all n, (57)
n 2n —

it follows from (56) that

Juz"+ JH zZ°
n=0 " n=1 ©

2 .
=L J ERELE 1 S (58)

H+(Z)

2m -7 Ier _ z|2
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which is the Poisson integral representation of H+(z). This implies together

with H(er) € Ll that H+(z) belongs to class Hl and that

H (e3%) = 1im H (re?®) = H(E'™) a.e. (59)
+ —1 t

(see [2, p.262] or [8, p.l1l1l4]).

Since H(z) is of bounded type, it follows from (59) that
H(z) = B (2), |z] <1, (60)

because functions of bounded type are uniquely determined by their boundary
jw +
values a.e. on [e ! = 1. Thus H(z) belongs to class H .
Conversely, suppose that H(z) is of class Hl. Then we know that H(rer)
juy . 1 .
+ H(e”’ ") in the L ~topology as r = 1, that is,

™

lim J |1, . (re?”) - H,,(e?¥)|dw = 0 for all i, j, (61)
1] 1]
1 /-7

where Hij(z) is the (i, j)th entry of H(z) [2, p.368]. Since H(z) is analytic

in Izl < 1, the nth Fourier coefficient of H(rejw) vanishes for n < 1. This

Jw). Thus H(z) is caus-

means together with (61) that the same is true for H(e
al.
Suppose H(z) is represented by an irreducible MFD H(z) = D_l(z)N(z).
Then it is clear from Theorem 8 and (21'a) that H(z) is causal if and only if
D(z) i; outer. Q.E.D.
Some remarks will be given here. Suppose that H(z) is rational and is
represented by an irreducible MFD H(z) = D(z)_lN(z), where D(z) and L(z) are

LIC polynomial matrices. Then H(z) is causal if and only if D(z) has no zero

in |z| < 1. We can see from Theorem 11 that this statement is not correct in
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the case when H(z) is irrational. In order to see actually this fact, consid-

er the scalar transfer function

H(z) = D(z) 1N(z),

where

exp{E—i—l} and N(z) = 1,

D(2) z -1

By an elementary calculation, we see that D(z) is bounded in |z| < 1 and has

no zero in |z| < 1. On the other hand, it holds
l/D(er) = D(e—Jw) a.e.,

which implies that the nth Fourier coefficient Hn of H(er) vanishes for n > 0,

because
T T
1 -jwn jw 1 -jwn -jw
Hn =5 J e /D(e”Ndw = o e D(e )dw
-7 -7
T
1 { jun _, jw
= o e D(e” )dw = D__n =0, for =n > 0,

-1

where Dn is the nth Fourier coefficient. Thus H(z) is not causal.

IV. MATRIX-FRACTION DESCRIPTIONS FOR MATRIX FUNCTIONS
OF BOUNDED TYPE
The matrix-fraction descriptions (MFDs) have been well developed for
rational matrix transfer functions [12, Ch.6]. We shall>extend the notion
of the MFDs to matrix transfer functions of bounded type, and obtain some
corresponding results to those in the rational case.

In Section III we obtained a left MFD (18) from a given H(z) expressed
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by (17). We also have from (18) a right MFD
H(z) = NR(z)—lDR(z), (62a)
DR(z) = d(z)Im, and NR(z) = N(z) (62b)

The following three theorems are basic results for the MFDs, and derived
by Theorems 7, 8 and 10.
Theorem 12: Suppose that a transfer function H(z) of bounded type has

two irreducible left MFDs
H(z) = D, (z) N kZ)‘= D (2) "IN, (2) (63)
1 1 2 2

(o] (o] . .
where Di e H and Ni e H for i = 1, 2. Then there exists an outer function

F(z) of class N such that

Dl(Z) = F(z)Dz(z), Nl(Z) = F(Z)NZ(Z)- (64)

Proof: It follows from (63) that
N, (2) ='Dl(z)D2(z)—lN2(z). | | (65)
Putting F(z) = Dl(z)Dz(z)—l, we obtain
[Dl(z), Nl(z)] = F(Z)(DZ(Z), NZ(Z)]' ; (66)

Since [Dl(z), Nl(z)] is row outer and [Dz(z), NZ(Z)] is analytic in ]z} <1,

it follows from (66) and 4) of Theorem 10 that det F(z) has no zero in Izl < 1.
Analogously, since [Dz(z), Nz(z)] is row outer and [Dl(z), Nl(z)] is analytic,
det F(z) has no pole in |z| < 1. Thus F(z) belongs to class N by means of
Theorem 1. Therefore it follows from (65) and 3) of Theorem 10 that F(z) is

row outer for class N. . Q.E.D.
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Theorem 13: Suppose that a transfer function H(z) of bounded type has

where D, ¢ H and N, € H fori=1, 2. If D,(z) and N,(z) are LIC, then

+
there exists a matrix function L(z) of class N such that

D (2) = L&Dy (2), N, (2) = L(2)N,(2). (68)

Proof: If Dl(z) and Nl(z) are LIC, Theorem 13 is true from Theorem 12.
Supppose that Dl(z) and Ll(z) are not LIC, and let U(z) be their GCLID, so

that

Dl(z) = U(z)D(z) and N, (2) = U(z)N(z), (69)
where U(z) is inner and D(z) and L(z) are LIC. Since
H(z) = D(z) H(z) = Dz(z)‘luz(z).

it follows from Theorem 12 that there exists an outer function F(z) of class

N such that

D(z) = F(z)D,(z)  and N(z) = F(2)N,(2). (70)

Thus putting L(z) = U(z)F(z), we see from Theorem 8 that L(z) belongs to class
N'. Therefore (68) follows from (69) and (70). Q.E.D.

Theorem 14: Given a left and a right irreducible MFDs
H(z) = D (2) N (2) = N (2)D ()" (71)
L L R R ?

a greatest inner factor of det DL(z) becomes a greatest inner factor of det

DR(Z).
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Proof: By Theorem 13 together with (18) and (71), we have

[d(Z)Ir, N(z)] L(Z)[DL(Z), NL(Z)], (72a)

L(z) = U(z)F(z), (72b)

where U(z) is inner and F(z) is outer. Analogously we obtain from (62) and

(71)

d(z)Im DR(z)

L N(z) NR(Z)

L(z), (73a)

L(z)

[}

F(z)U(z), (73b)

where F(z) is outer and U(z) is inner. Since [DL(z), NL(z)] is row outer and
F(z) is row outer, it follows from 3) of Theorem 10 that F(z) [DL(Z)’ NL(z)]

becomes row outer. Denote

G(z) = [d(Z)Ir, N(z)], GO(Z) = F(Z)[DL(Z), NL(Z)],
_ d(z)Ia- _ 'DR(Z) _ (74)
G(z) = | and Go(z) = F(z).
N(z) ,NR(Z)
Then we have
G(z) = U(2)G_(z) and G(z) = Eo(z)ﬁ<z), (75)

which are the inner-outer factorization of G(z) and G(z), respectively. Thus
we know from 6) of Theorem 10 that det U(z) is a greatest common inner divisor
of all the minors of order r in G(z), and that det U(z) is a greatest common
~inner divisor of all the minors of order m in E(z). But they are in fact

greatest common inner divisors of the following collections: Suppose for
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definiteness r > m. For the matrix G(z) = [d(z)Ir, N{(z)],
[d(2)1",

[d(z)]r_l-[Minors of order 1 in N(z)],

[d(z)]" ™+ [Minors of order m in N(z)].
For the matrix G(z)T = [d(z)Im, N(z)T] (where superscript T denotes transpose),
[d(2)1",
m-1 . .
[d(z)] e [Minors of order 1 in N(z)],
[d(z)]o-[Minors of order m in N(z)].
Hence we have
det U(z) = det U(z)+[a greatest inner factor of d(z)]r_m. (76)

On the other hand, we get from (72) and (73)

det D (z)-det U(z)-det F(z) [d(z)]r, ; (77a)

[d(z)]1™. (77b)

det D_(z)-det U(z)-det F(2)
which implies
[a greatest inner factor of det DL(z)]-det U(z)
= ta greatest inner factor of d(z)]", (78a)
[a greatest innmer factor of det DR(z)j~det U(z)

= [a greatest inner factor of‘d(z)]m, (78b)
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because det U(z) and det U(z) are inner and det F(z) and det F(z) are outer.
Hence we obtain from (76) and (78) that a greatest inmer factor of det DL(z)

becomes a greatest inner factor of det DR(z). Q.E.D.

V. CONCLUSIONS

We have considered the linear discrete-time systems with matrix-valued
transfer function of bounded type. The notion of outer functions has been
extended to matrix-valued function of the Nevanlinna class N, and the canon-
ical factorization theorem for matrix-valued functions of class N has been
presented. This theorem gives minimum phase systems for these linear systems,
and specifies the necessary and sufficient condition for the systems to be
.causal. The notion of the MFDs has been éxtended to these linear systems,
and some properties of the MFDs have been presented.

We would expect further applicatioms of the canonical factorization theo-
rem. The one application, which is under our investigation, is to providing
a necessary and sufficient condition of the identifiability of linear systems

operating in closed loop.
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