1. Introduction

We consider a finite graph G which may have multiple edges but has no loops. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of G, respectively. We write $d_G(x)$ for the degree of a vertex x in G. Let a, b and r be integers such that $0 \leq a \leq b$ and $r > 0$. A spanning subgraph F of G is called an $[a,b]$-factor of G if $a \leq d_F(x) \leq b$ for all $x \in V(G)$, and we call an $[r,r]$-factor an r-factor. An r-regular graph is a graph in which each vertex has degree r.

Tutte [8] ([3], p. 77) proved that for any odd integer r and any integer k ($0 \leq k \leq r$), every r-regular graph has a $[k-1,k]$-factor. It was proved in [5], [9] that every regular graph has a $[1,2]$-factor each of whose components is regular. Enomoto and Saito [4] gave the following conjecture: Every r-regular graph has a $[k-1,k]$-factor each of whose components is regular for any k, $0 < k < r$. Note that this conjecture is true when r is even by Petersen's 2-factorable theorem (see Lemma 1). So the essential part of this conjecture is the case that r is odd. We obtain the following two theorems.

Theorem 1. Let r and k be positive integers. If $k \leq 2(2r + 1)/3$, then every $(2r+1)$-regular graph has a $[k-1,k]$-factor each
of whose components is regular.

Theorem 2. Let \(k \) and \(r \) be positive integers. If \(2r+3 - \sqrt{2r+1} < k \leq 2r \), then there exists a simple \((2r+1)\)-regular graph that has no \([k-1,k]\)-factor each component of which is regular.

It seems that there exists a \((2r+1)\)-regular graph that has no \([k-1,k]\)-factor with regular components if \(2(2r+1)/3 < k \leq 2r \). Some results related to our results can be found in a survey article [1].

2. Proofs of Theorems

Let \(G \) be a graph, and \(g \) and \(f \) be integer-valued functions defined on \(V(G) \) such that \(g(x) \leq f(x) \) for all \(x \in V(G) \). A spanning subgraph \(F \) of \(G \) is called a \((g,f)\)-factor if \(g(x) \leq d_F(x) \leq f(x) \) for all \(x \in V(G) \). A \((g,f)\)-factor satisfying \(g(x) = f(x) \) for all \(x \in V(G) \) is briefly called an \(f\)-factor. For a vertex subset \(X \) of \(G \), we write \(G \setminus X \) for the graph obtained from \(G \) by deleting the vertices in \(X \) together with their incident edges. Similarly, for an edge subset \(Y \) of \(G \), \(G \setminus Y \) denotes the graph obtained from \(G \) by deleting all the edges in \(Y \). For two disjoint subsets \(S \) and \(T \) of \(V(G) \), we denote by \(e_G(S,T) \) the number of edges of \(G \) joining \(S \) and \(T \).

Lemma 1. (Petersen [7], [2] p.166) Every \(2r \)-regular graph has a \(2k \)-factor for every integer \(k \), \(0 < k < r \).

Lemma 2 [6] Let \(G \) be an \(n \)-edge-connected graph \((n \geq 1) \), \(\theta \) be a real number such that \(0 \leq \theta \leq 1 \), and \(f \) be an integer-valued function defined on \(V(G) \). Suppose (1) and (2) hold. Moreover, if one of (3a) and (3b) holds, then \(G \) has an \(f \)-factor.

1. \[\sum_{x \in V(G)} f(x) = 0 \pmod{2}. \]
(2) \(\varepsilon = \sum_{x \in V(G)} |f(x) - \theta d_G(x)| < 2. \)

(3a) \(\{f(x) \mid x \in V(G)\} \) consists of even numbers, and \(m(1-\theta) \geq 1 \), where \(m \in \{n, n+1\} \) and \(m \equiv 1 \pmod{2} \).

(3b) \(\{d_G(x), f(x) \mid x \in V(G)\} \) consists of odd numbers, and \(m \theta \geq 1 \), where \(m \in \{n, n+1\} \) and \(m \equiv 1 \pmod{2} \).

Lemma 3. Let \(G \) be an \(n \)-edge-connected graph \((n \geq 1) \), \(\theta \) be a real number such that \(0 < \theta < 1 \), and \(g \) and \(f \) be integer-valued functions defined on \(V(G) \) such that \(g(x) \leq f(x) \) for all \(x \in V(G) \). Suppose (1) and (2) hold. Moreover, if one of (3a) and (3b) holds, then \(G \) has a \((g,f) \)-factor.

(1) \(G \) has at least one vertex \(v \) such that \(g(v) < f(v) \).

(2) \(\varepsilon = \sum_{x \in V(G)} (\max\{0, g(x) - \theta d_G(x)\} + \max\{0, \theta d_G(x) - f(x)\}) < 1. \)

(3a) \(\{f(x) \mid f(x) = g(x), x \in V(G)\} \) consists of even numbers, and \(m(1-\theta) \geq 1 \), where \(m \in \{n, n+1\} \) and \(m \equiv 1 \pmod{2} \).

(3b) \(\{f(x), d_G(x) \mid f(x) = g(x), x \in V(G)\} \) consists of odd numbers, and \(m \theta \geq 1 \), where \(m \in \{n, n+1\} \) and \(m \equiv 1 \pmod{2} \).

Lemma 4. Let \(G \) be a 2-edge-connected \((2r+1) \)-regular graph, and \(h \) be a positive integer. If \(2h \leq 2(2r+1)/3 \), then \(G \) has a \(2h \)-factor. If \((2r+1)/3 \leq 2h + 1 \leq (2r+1) \), then \(G \) has a \((2h+1) \)-factor.

In particular, for every integer \(k \), \(0 < k < 2r+1 \), \(G \) has a \([k-1,k]\)-factor each component of which is regular.

Proof Define a function \(f \) on \(V(G) \) by \(f(x) = 2h \) for all \(x \in V(G) \), and set \(\theta = 2h/(2r+1) \). We show that \(G, f \) and \(\theta \) satisfy conditions (1), (2) and (3a) of Lemma 2. Since \(G \) is of even order, (1) holds, and (2) is trivial as \(\varepsilon = 0 \). Furthermore, (3a) follows from \(m = 3 \) and \(2h \leq 2(2r+1)/3 \). Hence \(G \) has an \(f \)-factor,
that is, G has a 2h-factor. Similarly, we can prove that G
has a $\{2h+1\}$-factor if $2h+1 \geq (2r+1)/3$ by using (3b) instead of
(3a). Since one of $\{k-1, k\}$ is odd and the other is even, the
last statement is an easy consequence of the two results proved
above.

Lemma 5. Let G be a 2-edge-connected $[2r, 2r+1]$-graph
having exactly one vertex w of degree $2r$. Then
(1) if $0 < 2k \leq 2(2r+1)/3$, then G has a $2k$-factor; and
(2) if $(2r+1)/3 \leq 2k+1 \leq 2r+1$, then G has a $[2k, 2k+1]$-factor F such
that $d_F(w) = 2k$ and $d_F(x) = 2k+1$ for all $x \in V(G) \setminus \{w\}$.

Proof. We prove only (2). It is clear that we may assume
$2r > 2k$. Define two functions g and f on $V(G)$ by
\[
g(x) = \begin{cases} 2k & \text{if } x = w \\ 2k+1 & \text{otherwise,} \end{cases}
\quad \text{and } f(x) = 2k+1 \text{ for all } x \in V(G).
\]

Put $\theta = (2k+1)/(2r+1)$. We show that G, g, f and θ satisfy condi-
tions (1), (2) and (3b) of Lemma 3. Since $g(w) > f(w)$, (1) holds.
It is immediate that $g(w) < \theta d_G(w) < f(w)$. Thus (2) holds. Since
$\{d_G(x), f(x) \mid f(x) = g(x), x \in V(G)\} = \{2r+1, 2k+1\}$ and $m = 3$, (3b)
follows. Therefore, G has a (g, f)-factor F, which is a $[2k, 2k +1]$-factor. Since G is of odd order, we have $d_F(w) = 2k$. Conse-
quently, F is a desired factor.

The next lemma plays an important role in the proof of
Theorem 1, and its proof is not so short.

Lemma 6. Let G be a connected $(2r+1)$-regular graph with
at least two bridges, and k be a positive integer. If $(2r+1)\
/3 \leq k \leq 2(2r+1)/3$, then G has a $[k-1, k]$-factor each component of
which is regular.
Proof of Theorem 1 We prove the theorem by induction on \(2r+1\). Let \(G\) be a \((2r+1)\)-regular graph and \(k\) be an integer such that \(2 \leq k \leq 2(2r+1)/3\). Note that every regular graph has a \([0,1]\)-factor with regular components since it has a 0-factor. By Lemma 4, we may assume \(G\) is not 2-edge-connected. Suppose \(G\) has one bridge \(vw\). Then each component \(C\) of \(G-vw\) is a 2-edge-connected \([2r,2r+1]\)-graph possessing one vertex of degree \(2r\). Thus \(C\) has a \(k\)-factor or a \((k-1)\)-factor by Lemma 5. Therefore \(G\) has a \(k\)-factor or a \((k-1)\)-factor, and the theorem holds. Consequently, we may assume \(G\) has at least two bridges.

By Lemma 6, a 3-regular graph with at least two bridges has a \([1,2]\)-factor with regular components. Hence every 3-regular graph has a \([1,2]\)-factor with regular components, and so the theorem is true if \(2r+1=3\). Similarly, we can show that every 5-regular graph has a \([2,3]\)-factor \(F_1\) with regular components. Since 3-regular components of \(F_1\) has a \([1,2]\)-factor with regular components, \(F_1\) has a \([1,2]\)-factor with regular components, which is of course a desired \([1,2]\)-factor of \(G\). Hence the theorem follows for \(2r+1=5\). In general, if a \((2r+1)\)-regular graph \(G\) has an \([h-1,h]\)-factor \(F_2\) with regular components and if each component of \(F_2\) has a \([k-1,k]\)-factor with regular components, then \(G\) has a \([k-1,k]\)-factor with regular components. By this argument, we can verify that if \(2r+1\leq13\), then the theorem holds. Suppose \(2r+1\geq15\). If \((2r+4)/3 \leq k \leq 2(2r+1)/3\), then a \((2r+1)\)-regular graph \(G\) has a \([k-1,k]\)-factor with regular components by Lemma 6. Hence we may assume \(k<(2r+4)/3\). Let \(h\) be the greatest integer not exceeding \(2(2r+1)/3\). Then \(G\) has an
[h-1,h]-factor F with regular components. Since $2(h-1)/3 \geq 2(4r -1)/9$ and $2r+1 \geq 5$, we have $2(h-1)/3 \geq (2r+4)/3 > k$. Hence each component of F has a $[k-1,k]$-factor with regular components by Lemma 1 or by the inductive hypothesis. Therefore G has a $[k-1,k]$-factor with regular components, and we conclude that the proof of Theorem 1 is complete.

Proof of Theorem 2. Let k and r be positive integers such that $2r+2 - \sqrt{2r+1} < 2k \leq 2r$. Let k' be an odd integer that is one of $\{2k-1, 2k+1\}$ and not equal to $2r+1$. Let K_{2r+2} denote the complete graph with vertex set $\{a_1, \ldots, a_{2r+2}\}$. We obtain the graph R from K_{2r+3} by deleting edges $a_1a_2, a_1a_3, \ldots, a_1a_{2r-2k+5}, a_{2r-2k+6}a_{2r-2k+7}, \ldots, a_{2r+2}a_{2r+3}$. It is clear that $d_R(a_i) = 2k-2$ and $d_R(a_i) = 2r+1$ for all $i, i \neq 1$. Let $R(1), \ldots, R(2r)$ be copies of R, and let b_i be the vertex of R_i whose degree is $2k-2$ for all i. We construct a graph H with vertex set $V(R(1)) \cup \ldots \cup V(R(2r)) \cup \{c_1, \ldots, c_{2r-2k+2}, v\}$ as follows. Join every b_i to all c_j ($1 \leq j \leq 2r-2k+2$) and v by new edges, and add new edges $c_1c_2, c_3c_4, \ldots, c_{2r-2k+1}c_{2r-2k+2}$ (see Figure). Then $d_H(v) = 2r$ and $d_H(x) = 2r+1$ for all $x \in V(H) \setminus \{v\}$.

![Graph H](image_url)
Let H_1, \ldots, H_{2r+1} be copies of H, and let v_i be the vertex of H_i whose degree is $2r$ for every i. We now construct a $(2r+1)$-regular graph G as follows, which has the required property. Set $V(G)=V(H_1) \cup \ldots \cup V(H_{2r+1}) \cup \{w\}$, and join each v_i to w by a new edge. We omit the proof of the non-existence of $[k-1,k]$-factor with regular components in G.

Acknowledgements The author would like to thank Professor H. Enomoto for his helpful suggestions.

References

本稿で述べた定理の完全な証明は下記の論文に見られる。