Cycles in Graphs

Katsuhiro Ota

and

Akira Saito

Department of Information Science
Faculty of Science
University of Tokyo

In this paper, we consider only finite simple graphs. A cycle C in G is called separating if deletion of its vertices results in a disconnected graph. A cycle is non-separating if it is not separating. Lovász[3] remarked that every 3-connected graph has a non-separating cycle. Thomassen and Toft[4] extended his result and proved that every 3-connected graph has a non-separating induced cycle. We prove in this paper that every 3-connected graph has many non-separating induced cycles.

When we prove the property of 3-connected graph, the idea of a contractible edge is very useful. In a 3-connected graph, an edge e is called contractible if contraction of e results in a 3-connected graph. An edge is non-contractible if it is not contractible. Obviously, an edge xy in G is non-contractible if and only if G has a cutset of order three which contains both x and y.

We denote the set of vertices and the set of edges of the graph G by $V(G)$ and $E(G)$, respectively. Let $x \in V(G)$. We denote the set of the vertices adjacent to x by $\Gamma_G(x)$, the degree of x by $d_G(x)$ and the order of G by $|G|$. Other notations may be found in [2].

- 1 -
For a 3-connected graph G and $x \in V(G)$, we write

\[\Gamma^{(1)}(x) := \{ y \in \Gamma_G(x) \mid xy \text{ is a contractible edge} \} \]
\[\Gamma^{(2)}(x) := \{ y \in \Gamma_G(x) \mid xy \text{ is a non-contractible edge} \} \]

and define $U_i (i=0,1,2,3), W_i (i \geq 0)$, subset of $V(G)$, by

\[U_i := \{ x \in V(G) \mid d_G(x) = 3, |\Gamma^{(1)}(x)| = i \} \quad (i=0,1,2,3) \]
\[W_i := \{ x \in V(G) \mid d_G(x) \geq 4, |\Gamma^{(1)}(x)| = i \} \quad (i \geq 0) \]

Ando, Enomoto and Saito[1] proved the following theorems.

Theorem A. Let G be a 3-connected graph of order at least five and $x \in V(G)$. If $d_G(x) = 3$, say $\Gamma_G(x) = \{a,b,c\}$, and both xb and xc are non-contractible, then $d_G(b) = d_G(c) = 3$, and b and c are adjacent.

Theorem B. $U_0 = \emptyset$ if $|G| \geq 5$.

Theorem C. Suppose $|G| \geq 5$. If $x \in W_0$ then $|\Gamma^{(2)}(x) \cap U_2| \geq 3$. If $x \in W_1$ then $|\Gamma^{(2)}(x) \cap U_2| \geq 2$.

Theorem B is easily deduced from Theorem A.

The following theorem is a slight generalization of the result of Ando, Enomoto and Saito([1, Theorem 3]).

Theorem 1. Let G be a 3-connected graph of order at least five, $x \in V(G)$ and $X \subset V(G)$. Suppose $\Gamma^{(1)}(x) \subset X$ and $d_G(x) \geq 4$. Moreover, suppose there exists a least cutset S, which contains x, such that $G-S$ has a connected component disjoint from X. Then $(\Gamma^{(2)}(x)-X) \cap U_2 \neq \emptyset$.

Proof. Define

\[C_x := \{ S \mid \text{a least cutset such that } x \in S \}
\text{ and } G-S \text{ has a connected component } A \text{ which is disjoint from } X \} \]

By the assumption $C_x \neq \emptyset$. For each $S \in C_x$, let A_S be the smallest component of $G-S$ such that A_S is disjoint from X. Moreover, we choose $S \in C_x$ such that $|A_S|$ is minimum. Let $B_S = V(G)-A_S-S$.

\[-2 - \]
Since \(A_S \cap X = \phi \), there exists a vertex \(y \) in \(A_S \cap \Gamma_G (x) \) such that \(xy \) is a non-contractible edge. Let \(T \) be a least cutset containing the edge \(xy \). \(C \) be one of the connected components of \(G-T \) and \(D = V(G)-T-C \). Let

\[
X_1 := (S \cap C) \cup (S \cap T) \cup (A_S \cap T)
\]

and

\[
X_2 := (S \cap C) \cup (S \cap T) \cup (B_S \cap T).
\]

First we claim that \(S \cap C \neq \phi \). Assume \(S \cap C = \phi \). Since \(y \in A_S \cap T \), \(|X_2| \leq 2 \).

If \(B_S \cap C \neq \phi \) then \(X_2 \) is a cutset of order at most two. This contradicts the assumption on connectivity of \(G \). Therefore, \(B_S \cap C = \phi \) and it follows \(A_S \cap C \neq \phi \) since \(C \neq \phi \). Hence \(X_1 \) is a cutset and since \(X_1 \subset T \), \(|X_1| \leq 3 \). This contradicts either the connectivity of \(G \) or the minimality of \(A_S \).

The similar argument leads us to \(S \cap D \neq \phi \). Therefore, we know that \(|S \cap C| = |S \cap T| = |S \cap D| = 1 \).

Next, we claim \(B_S \cap T \neq \phi \). Assume \(B_S \cap T = \phi \). Without loss of generality, we may assume that \(B_S \cap C \neq \phi \), and it follows that \(X_2 \) is a cutset of order at most two. This is a contradiction.

Therefore, we know that \(|A_S \cap T| = |S \cap T| = |B_S \cap T| = 1 \), and \(|X_1| = 3 \).

Since \(A_S \) is minimal, \(A_S \cap C = \phi \) and \(A_S \cap D = \phi \). Hence we have \(|A_S| = 1 \) and \(A_S = \{y\} \). Then \(\Gamma_G (y) = S \) and \(d_G (y) = 3 \).

Let \(a \in S - \{x\} \). If \(ya \) is a non-contractible edge, then \(d_G (x) = 3 \) by Theorem A. This contradicts the assumption that \(d_G (x) = 4 \). Hence \(ay \) is a contractible edge. This implies \(y \in U_2 \).

For \(X \subset V(G) \) and \(F \subset E(G) \), we say \(X \) covers \(F \) in case that any edge of \(F \) is incident with at least one of the vertices of \(X \).

Theorem 2. Let \(G \) be a 3-connected graph of order at least six. Then, the set of the contractible edges of \(G \) cannot be covered with any set of two
vertices.

Proof. We assume that there is a 3-connected graph G of order at least six such that a set of contractible edges is covered with two vertices, say u and v. From Theorem B, $V(G)$ can be written as

$$V(G) = U_1 \cup U_2 \cup W_0 \cup W_1 \cup W_2 \cup \{u, v\}.$$

since $W_i = U_i = 0$ if $i \geq 3$.

Claim 1: $W_i - \{u, v\} = \emptyset$ for $i = 0, 1$.

Suppose $W_i - \{u, v\} \neq \emptyset$, say $x \in W_i - \{u, v\}$. Let $X = (\Gamma^{(2)}(x) \cap U_2) - \{u, v\}$. By Theorem C, there exists $a \in (\Gamma^{(2)}(x) \cap U_2) - \{u, v\}$. (If $x \in W_1$ and $\Gamma^{(2)}(x) \cap U_2 = \{u, v\}$, then xu and xv are non-contractible, which contradicts the assumption that $x \in W_1$. If $a \in (\Gamma^{(2)}(x) \cap U_2) - \{u, v\}$, then $\Gamma_G(a) = \{x, u, v\}$. Hence $S = \{x, u, v\}$ is a least cutset which contains x and $G - S$ has a connected component disjoint from X, if $\Gamma_G(x) \cap X$. Assume $\Gamma_G(x) \cap X$. Then by applying Theorem C, we have $(\Gamma^{(2)}(x) - X) \cap U_2 \neq \emptyset$. This contradicts the fact that $\Gamma^{(2)}(x) \cap U_2 \subseteq X$. It follows $\Gamma_G(x) \cap X$.

Next assume that $V(G) \neq \{x\} \cup X$, then $\{u, v\}$ is a cutset of G, which is impossible because G is 3-connected.

Thus G is the graph such that

$$V(G) = \{x\} \cup (\Gamma^{(2)}(x) \cap U_2) \cup \{u, v\} \quad \text{(disjoint)}$$

$$E(G) = \{xy, yu, yv \mid y \in \Gamma^{(2)}(x) \cap U_2\}$$

and for every $y \in \Gamma^{(2)}(x) \cap U_2$, xy is a non-contractible edge and yu and yv are contractible edges. In this graph, however, for each vertex $y \in \Gamma^{(2)}(x) \cap U_2$, $G - \{x, y\}$ is 2-connected since $|G| \geq 6$. This contradicts the fact that an edge xy is non-contractible. Hence the claim follows.

Now we have

$$V(G) = U_1 \cup U_2 \cup W_2 \cup \{u, v\}$$

(1)
Claim 2: Let $x \in W_2$, then $d_G(x)=4$, say $\Gamma_G(x) = \{a,b,u,v\}$, and $\{x,a,b\}$ is a cutset separating u and v.

Let X be $\{u,v\}$ (= $\Gamma^{(1)}(x)$). If there exists a least cutset S such that $x \in S$ and $G-S$ has a connected component disjoint from X, then by Theorem C, $(\Gamma^{(2)}(x) - X) \cap U_2 \neq \emptyset$. This means that $\{x,u,v\}$ is a cutset, which is a contradiction since edges xu and xv are contractible. Therefore, every least cutset S which contains x, say $\{x,a,b\}$, separates u and v. Let A be a connected component of $G-S$ which contains u, and $B = V(G)-S-A$. If there is a vertex $y \in (A - \{u\}) \cap \Gamma_G(x)$, then by (1) $y \in U_1 \cup U_2 \cup W_2$. However y and v cannot be adjacent, so $y \in U_1$. Since an edge xy is non-contractible, we have $d_G(x)=3$ by Theorem A. This is a contradiction since $x \in W_2$. Since $d_G(x)=4$, $\Gamma_G(x) = \{a,b,u,v\}$, and the claim follows.

Now we consider $G-\{u,v\}$. Since G is 3-connected, $G-\{u,v\}$ is connected and $\delta(G-\{u,v\}) \leq 2$ by (1) and Claim 2. Hence $G-\{u,v\}$ is a path or a cycle.

First assume that $G-\{u,v\}$ is a path, say $G-\{u,v\} \simeq P_n$. Since $|G| \geq 6$, $n \geq 4$. Let x be an internal vertex of P_n. Then $\{x,u,v\}$ is a cutset of G. On the other hand, xu or xv is contractible since $x \in U_1 \cup U_2 \cup W_2$. This is a contradiction.

Therefore, $G-\{u,v\}$ is a cycle, say $G-\{u,v\} \simeq C_n$. In this case $U_2 - \{u,v\} = \emptyset$, and hence $V(G) = U_1 \cup W_2 \cup \{u,v\}$. First we claim $U_1 - \{u,v\} = \emptyset$. Assume the contrary and let $x \in U_1 - \{u,v\}$. By Theorem A, two neighbors of x in $V(G)-\{u,v\}$ are adjacent. This is impossible since $|G| \geq 6$.

Thus $V(G) = W_2 \cup \{u,v\}$. However, for each $x \in V(G)-\{u,v\}$, $\Gamma^{(3)}(x) \cup \{x\}$ is not a cutset since $|G| \geq 6$. This contradicts Claim 2. This is a final contradiction and the proof is complete. *

Theorem 3. Let G be a 3-connected graph and e be an edge of G. Then there exists a non-separating induced cycle which contains e.

- 5 -
Proof. We prove the theorem by induction on $|G|$. When $|G| \leq 5$, we can easily check the result. Now we can assume that $|G| \geq 6$, and that all 3-connected graph of order less than $|G|$ has a non-separating induced cycle which contains a specified edge.

Assume G has no non-separating induced cycle which contains a specified edge e. Let a and b be the endvertices of e. By Theorem 2, G has a contractible edge, say xy, which is not incident with a or b. Let G' be the graph obtained from G by contraction of xy. By induction hypothesis, G' has a non-separating induced cycle C' which contains e. If the contracted vertex z is not on C', then C' is also a non-separating induced cycle in G which contains e. Therefore, we can assume that z lies on C'. Let u,v be the vertices adjacent to z on C' and P' be the path obtained by $C' - z$. In G, u and v are adjacent to z or y. Now two cases occur.

Case 1: At least one of $\{x,y\}$ is adjacent to both u and v.

Without loss of generality, we have $\Gamma_G(x) \supset \{u,v\}$. If y is adjacent to the vertex of $V(G) - V(C')$, then $P' \cup \{z\}$ with edges zu and zu is a non-separating cycle in G, a contradiction. Therefore y can be adjacent only to u, v and z, since C' is an induced cycle in G'. This implies $\Gamma_G(y) = \{u,v,x\}$ since the minimum degree of G is at least three. Applying the same argument to y, we have $\Gamma_G(x) = \{u,v,y\}$. Then, degree of z is two in G', which contradicts the fact that xy is a contractible edge.

Case 2: The vertex z is adjacent to one of u, v and y to the other.

We can assume that x is adjacent to u (and not to v) and y to v (and not to u). Then, $P' \cup \{z,y\}$ with edges ux, xy and yu is a non-separating induced cycle in G.

This completes the proof of the theorem. •
Corollary 4. Let G be a 3-connected graph and x and y be vertices of G. Then there exists an induced x,y-path P such that $G-V(P)$ is connected.

Proof. If x and y are adjacent, then the edge xy is a desired path. Otherwise, in the graph obtained from G by adding an edge xy, there exists a non-separating induced cycle which contains xy, by Theorem 3. This cycle induces a non-separating induced path in G. •

The above corollary leads us to the following conjecture.

Conjecture. For a given integer k ($k \geq 1$), there exists a minimum number n_k such that every n_k-connected graph G satisfies the following property (*).

(*) For every pair of distinct vertices x,y of G, there exists an induced x,y-path P such that $G-V(P)$ is k-connected.

Theorem 3 indicates that $n_1=3$.

Acknowledgement. The authors would like to thank Professor Hikoe Enomoto for helpful discussions.

References.

