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ABSTRACT

Appel and Haken published the proof of the Four Color
Theorem in 1977. This proof is divided into two parts, i.e.,
discharging and reducibility. By using a computer, we tried
rigorous verification of' the discharging procedure. And it is

confirmed that there are some errors in the proof.

1. Introduction.

The Four Color Conjecture had been one in the most famous unsolved
conjectures of mathematics. In 1976, the proof of the Four Color Theorem was

announced by Appel and Haken [2]. First, we will trace the history of its studies.

The statement of the Four Color Conjecture is as follows. Every planar map
M is four-colorable (that is, the regions of M can be colored with four colors so
that any two regions receive different colors if they have a common border line).
By use of triangulations, which are plane graphs all of whose regions are
triangles, the Four Color Conjecture is often formulated as follows. Every
triangulation without loop is (vertex-)four-colorable (that is, the vertices of G
can be colored with four colors so that any adjacent two vertices receive
different colors). From now on, we will phrase the results in the second

terminology of triangulations and vertex-coloring.

The first published attempt to prove the Four Color Conjecture was made by
A. B. Kempe [9] in 1879. He proved that the problem can be restricted to the
consideration of normal planar maps which correspond to triangulations. For

triangulations, he derived from Euler’s formula, the equation

kmax
4’n.g+3‘n,3+2‘n.4+‘n5= 2 (k —6)’n.k+12 (11)
k=7
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where n; is the number of vertices with precisely i neighbors and k,, is the
maximum degree of the triangulation. This equation immediately implies that

every triangulation contains a vertex with fewer than six neighbors.

In order to prove the Four Color Theorem by induction on the number n of
vertices in the triangulation, Kempe assumed that every triangulation with n<r
is four-colorable and considered a triangulation G,;; with r+1 vertices. He

considered four cases;

(1) G,,, contains a vertex v, of degree two.
(8) G.., contains a vertex vj of degreeA three.
(3) G,,; contains a vertex v4 of degree four.
(4) G, ., contains a vertex v of degree five.

At least one of these cases occurs by (1.1). In each case, he produced a
triangulation G, with r vertices by removing one vertex from G,,;. By the
induction hypothesis, G, admits a four-coloring, say ¢,, and Kempe attempted to
derive a four-coloring c,,, of G,,, as an extension of c¢,. This task is very easy in
cases (1) and (2). To treat cases (3) and (4), Kempe invented a tool called a
"Kempe chain”. Let C be a component which is obtained by removing all
vertices which colored by some two colors from G,. Then two colors of vertices
of C can be exchanged and we can obtain a new coloring ¢’,. Such a component
C is called a Kempe chain. By such exchanges, a four coloring c,,; of G,,, is

obtained.

Kempe's argument is correct in case (3). But it is incorrect in case (4), as
was pointed out by Heawood [6] in 1890. Kempe's argument proves, however,
that five colors suffice for coloring triangulations and that a minimal counter-
example to the Four Color Conjecture (minimal with resf)ect to the number of
vertices in the triangulation) can contain no vertex of degree 2, 3, or 4. This
restricts the Four Color Problem to consideration of triangulations in which
each vertex has at least five neighbors. Each such triangulation must contain at
least twelve vertices of degree five, since we have ny=nz=n,=0 in (1.1) and

thus
kmu »
ns= 3y, (k—6)n, +12. \ (1.2)

k=7

From now , we consider such triangulations only.
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Birkhoff [4] improved Kempe's reduction technique. He described the
methods by which it can be proved that some configuration cannot occur in a
~ minimal counter-example of the Four Color Theorem. Such a configuration is
said to be "reducible”. He showed that certain configurations are reducible by
his methods. These methods were improved by many investigators and many

reducible configurations have been discovered.

In 1904, Wernicke [11] proved that any triangulation must contain at least
one vertex of degree five which is adjacent to another vertex of degree five or
six. In 1922, Franklin [5] showed that every triangulation contains two adjacent
vertices of degree five or some vertex of degree five which is adjacent to two
vertices of degree six. The further improvement was made by Lebesque in 1940
by displaying a large collection of configurations at least one of which must
occur in any triangulation. We refer to such a set of configurations as an

"unavoidable set".

Heesch [7,8] exhibited several sets of reducible configurations which are
unavoidable in those triangulations which satisfy certain restrictive conditions.
He used a method called a discharging procedure to prove the unavoidability.
As an example of the discharging procedure, we consider triangulations without
vertices of degree six or seven. Initially, to each vertex v; of degree % in a
triangulation, we assign a "charge” qo(v;)=60%x(6—i). Then by (1.2), the sum of
the charges is positive 720. Now we discharge all vs's, i.e.,, we obtain a new
charge distribution ¢ which assigns every vertex v of G a charge q(v) such that
Y q(v)=3qo(v) as follows. The positive charges of the vertices of degree five
are distributed in equal fractions to their neighbors v, which have deg (v;)=8.
Then it is shown that positive charges can occur only in sixteen special cases
provided that the triangulation does not contain one of twenty reducible
configurations. Then as the second step, the positive charges of these vertices
are distributed to their negative neighbors, and it can be proved that no positive
charge occurs, provided that the triangulation does not contain any member of
the list of twenty reducible configurations. This implies that there exists no
triangulation without vertices of degree six or seven which does not contain at
least one of the twenty reducible configurations (since the sum of all the
charges must be positive).

In 1974, Appel and Haken [1] proved existence of a finite unavoidable set of
configurations called geographically good by constructing a discharging

procedure. In 1976, Appel and Haken [2] announced that they found a finite
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unavoidable set of reducible configurations and proved the Four Color Theorem.

Appel and Haken used- computers to prove reducibility of the
configurations. But they carried out the discharging procedure by hand. From
1976 through now, they found many errors in the computation of the discharging
procedure. All errors which were found have been corrected, but they think
that other possible errors remain, since detailed checking of the discharging
procedure is a task that require enumeration of a large number of cases by
hand.

We tried to verify the discharging procedure of Appel and Haken by uSing a

computer. The reasons why we use a computer are:

(1) Verification by hand takes two months according to Appel and Haken.
(2) Simple works are repeated for verification.

(3) Simple works for a long time cause human trifling errors.

(4) In order to modify the discharging procedure by a trial-and-error method,

it is effective to use a computer.

Now it is possible to verify discharging procedures for a few hours. We believe
that our method is useful for verification and meodification of the discharging

procedure.

2. Notation and Definitions.

We consider finite plane graphs. The terminology is essentially the same as

that of Behzad, Chartrand, and Lesniak-Foster [3].

Let G be a graph. We denote by V(G) and E(G) the set of vertices and the
set of edges of G, respectively. A graph is said to be planar, if it can be drawn in
the plane so that its edges intersect only at their end-vertices. Such a drawing
of a planar graph G is called a planar embedding of G. A planar embedding of G
can itself be regarded as a graph. We refer to a planar embedding of a planar
graph as a plane graph. A plane graph G divides the plane into connected
components, which are called regions of G. The unbounded region is called an
exterior region. If a vertex v is incident to a edge which is a part of the
boundary of a region r, v is called a boundary vertex of r. A region which has
exactly three boundary vertices is called a iriangle. A near-triangulation is a
plane graph all of whose regions are triangles except for the exterior region. A

triangulation is a near-triangulation whose exterior region is a triangle.
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A degree specification of a near-triangulation G is a function from V(G) into
the set of all the subset of { z |z is an integer, z=5 ]. A degree specification of
G is denoted by ds;. The value of degree specifications used in this paper is
restricted (See Figure 2.1). Let v be a vertex of G. We say that v is specified by
dsqg(v). If |dsg(v)|=1 for a vertex v of G, v is called a fully specified vertez.
Otherwise, v is called a partially specified vertez. The member of ds;(v) of a
fully specified vertex v is called the specified degree of v. If a vertex v is
specified by DS=dsg(v), v is called a DS-vertex. If an edge e is incident to two
vertices which are specified by DS and DS’ respectively, e is called a DS-DS'
edge. If a vertex v is specified by DS such that DScDS,,, v is called a minor

vertezx. If DScDSYy, then v is called a major vertez.

If a near-triangulation C with degree specification satisfies the following
four properties, C is called a configuration.
(1) degy(v)<max dsqc{v) for every vertex v of C.
(%) 1If dego(v)=max dsq(v) for a vertices v of C, v is not a boundary vertex of
the exterior region of C.
(3) If v is not a boundary vertex of the exterior region of C, v is a fully

specified vertex and the specified degree of v is equal to degc(v).

(4) If a vertex v is a cut vertex in C, then v is fully specified and the sum of
deg-(v) and the number of components in G—v is equal to the specified
degree of v.

The triangulation can be considered as a configuration whose vertices are all

fully specified.

Let C and D be configurations. A immersion is a mapping f:C-»D of C into

D defined by the following five properties:

(1) The images of vertices and edges of C are vertices and edges of D,
respectively.

(2) If an edge e and a vertex v of C are incident, then the edge f(e) and the
vertex f (v) are incident in D.

(3) It is satisfied that ds¢(v)>dsp(f (v)) for every vertex v of C.

(4) 1f e, and e, are distinct edges of C which are incident to a common vertex

v, then f(e,) and f (e,) are also distinct edges of D.
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(5) Lete,es,,... e, be the edges incident to a vertex v of € in consecutive order,
reading clockwise or counter-clockwise. Then f(e;).f(ez).....f(e,) are

consecutively ordered around f (v) in D.

(6) Let F be a induced subgraph of D by f(V(C)). If a vertex v is a cut vertex
of C, the number of component in C—v is equal to that in F—f (v).

A configuration C is said to be contained in a configuration D if there is a

immersion f:C-»D. A immersion of a configuration C into a triangulation G is

similarly defined by considering G as a configuration.
3. Review of Appel and Haken’s Work.

3.1. Outline.
The Four Color Theorem is formulated as follows.

Four Color Theorem. Every triangulation G with no loop is colored by four

colors so that two adjacent vertices of G are colored by distinct colors. »
If the following theorem is proved, the Four Color Theorem is proved.

Theorem 1. There exisis a set U of configurations which satisfles the

Sollowing two properties:

(1) The configurations of U are contained in no minimal triangulation which is

not colored by four colors.
(2) Every loop-free triangulation contains at least one member of U. =

We call the set U of configurations which satisfy the condition (2) of Theorem 1

an unavoidable set.

Let G be a triangulation considered in the above theorem. We may confine
ourselves to the case that every vertex v of G satisfy dég (v)=5 by Kempe's
argument [9]. The details about basic results of the Four Color Theorem are
described in [10]. ‘

Appel and Haken proved Theorem 1. They gave a set U which consists of
1482 configurations (for example, in Figure 3.1.1). They proved Theorem 1 (1)
by computers. We have not verified the proof of this part. Theorem 1 (2) is
proved by a method called a discharging procedure. First we explain the

discharging rule and proceed to the proof of Theorem 1 (2).
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3.2. Discharging Rule.

Let G be a triangulation. We consider an integer-valued function g4 on
V(G). For every vertex v of G, qq is defined as qo(v)=60x(6—deg (v)). Then by
(1.2), we have

€%}(G)qo(v.‘v)=720 (3.1)

Note that qq(v) is negative for every major vertex ( deg(v)=7 ), zero for every

vertex of degree six, and positive for every vertex of degree five.

Let {(v,,wy.1).(va,wzca), - . ., (Va, Wy .6, )} be the set of triples such that v;
and w; (1<i<n) are vertices of G, and c; (1st=n) is a nonnegative integer. Let

g be an integer-valued function on V(G) defined by q(v)=gqq4(v)~- 3 c;+ ¥ c,.

v=v  w=v
Then by (3.1) we have

Y, q(v)=720 (3.2)

veV(G)

We call ¢ a terminal charge function of G. The triple (v;,w;,c;) is called a
discharging from v; to w;. The integer c; is called a discharging value from v;
to w;. Let t=(v,w,c) be a discharging. If v and w are not adjacent, we call the
discharging t a T-discharging. Otherwise, three cases occur. If ¢ =30, then the
discharging t is called an R-discharging. If ¢ <30, then the discharging ¢t is
called an S-discharging. If ¢>30, then the discharging ¢t is called an L-
discharging.

Next we explain rules for deciding dischargings for every triangulation
which Appel and Haken used in [2]. Rules to define dischargings for every
triangulation are called discharging rules. Let G be a triangulation. We
consider a method to make the dischargings (v,w,c) of G. Every discharging of

G are defined from a 5-vertex to a major vertex.

First we consider about T-dischargings. Seven situations are described in
[2] to define the T-dischargings. (See Figure 3.2.1.) They are called T-situations.
T-situations with solid arrows are called TZ-situations. T-situations with open
arrows are called TI-sifuations. If a T-situation is contained in G, we define a T-
discharging between two vertices indicated by the arrow. The discharging value
¢ is defined as 20 if the arrow is solid, and as 10 if the arrow is open, with the
following exception (see Figure 3.2.2). In the case that two T-dischargings leave

the same 5-vertex across the same 6-6 edge (but arrive at different major
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vertices), the discharging value is defined as follows. If at least one of the two
arrows is solid then the discharging value is 10. If both of the arrows are open,
the discharging value is 5. If a T-discharging ¢ has discharging value 5 or 10, ¢ is
called T1-discharging. If a T-discharging ¢ has discharging value 20, t is called
T2-discharging. »

Next we consider about R-dischargings, S-dischargings, and L-dischargings.
As a general rule, R-dischargings are defined from 5-vertices to major vertices.
And as exception, S-dischargings and L-dischargings are defined. 484 situations
are described in [2]. (Some examples are given in Figure 3.2.3 and Figure 3.2.4.)
Each of situations has a distinguished edge which is drawn vertical and marked
by a number (0, 5, 10, 15, 20, 25, 35, 40, 50, or 60). Let n be a marked number.
We distinguish three classes of S-situations, and three classes of L-situations as

follows;
SO-situation means n=0 or 5,
S1-situation means n=10 or 15,
S2-situation means n =20 or 25,
L4-situation means n =35 or 40,
L5-situation means n =50,
L6-situation means n =60.

Let e be an edge of G, and v,w be two vertices incident to e such that deg(v)=5
and deg(w)=7. If an S-situation (L-situation) C is contained in G in such a way
that the distinguished edge of C is identified to e, we say that C is applied at e.
In this case, we also say that C is applied at v(or w). We denote the discharging

value from v to w by d(e).
Regarding the edges e, we now have three possibilities.

(1) No S-situations or L-situations are applied at e. In this case we call e an R-

edge and we define d(e) to be 30.

(2) One or more S-situations, but no L-situations, are applied at e. Then we call
e an S-edge and we define d(e) to be equal to the smallest of the marked

numbers of the applied S-situations.

(3) One or more L-situations and zero, one, or more S-situations are applied at
e. Then we call e an L-edge and we define d(e) to be equal to the largest of

the marked number of the applied L-situations.

-11-
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Now every edge e of G which joins a 5-vertex to a major vertex has a uniquely

defined discharging value d(e) and we can define a discharging from v to w.

We define dischargings of G only by dischargings obtained by the above
rules. We distinguish three classes of S-dischargings and three classes of L-
dischargings by the discharging value ¢ as follows.

S0-discharging means n=0 or 5,

S1-discharging means n=10 or 15,

S2-discharging means n =20 or 25,

L4-discharging means n =35 or 40,

L5-discharging means n =50,

L6-discharging means n =60.

Note that a discharging rule DR depends essentially on the set of T-situations T,
on the set of S-situations S, and on the set of L-situations L. Thus, to be
precise, we should denote the discharging rules by DR(T,S,L), indicating that
we would obtain different discharging rules by using different sets of T-
situations, S-situations, or L-situations. A terminal charge function ¢ of G
obtained by the dischargings which are made by applying DR(T,S,L) to G, is
called a terminal charge function of G with respect to DR(T,S.L).

3.3. Discharging Theorem.

Appel and Haken gave a set T of T-situations, a set S of S-situations, and a
set L of L-situations. The number of the sets are 7, 269, and 215, respectively.
And they gave a set U of 1482 configurations. Then they prove the following
theorem by using the discharging rule (7,S,L).

Discharging Theorem for (7,S,L). Let G be any triangulation. Let q be a
terminal charge function of G with respect to (T,S,L). If the triangulation G
‘contains no configuration belonging to U, then q(v)=<0 for every vertexv of G. =
But the conclusion of Discharging Theorem contradicts (3.1). Therefore
Theorem 1 (2) is proved.

We describe the outline of the proof for Discharging Theorem. It follows
immediately from the definition of (7,S,L) that q (vg)=0 for every 6-vertex vg of

G. The proof consists of two parts;

_13-
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(A) g¢(v5)=0 for every 5-vertex v; of G and
(B) q(v,)=0 for every k-vertex v, of G (k=7).
Part (A) is called V5-Lemma and part (B) is called Vy-Lemma.

First we explain the proof of (A) in brief. We consider the discharging rule
(7,5,¢) ( which uses T-situations and S-situations but no L-situations) and we
denote the terminal charge function with respect to (T,S,4) by gqrs. By
straightforward enumeration of all the possible cases of grs(v5)>0, it is proved
that G contains one of 33 configurations if G contains a 5-vertex vs which
satisfies gr5(v5)>0. In the enumeration, all cases which imply the presense of a
configuration of U are deleted. And then it is proved that there is no 5-vertex v
such that ¢(v)>0 in the 33 configurations by applying some L-dischargings to

the configurations.

Next, we explain the proof of (B) in brief. First, some lemmas are proved.
The proofs of the lemmas are easily obtained by straightforward enumeration of
several cases. From the consequences of these lemmas, it is shown that g (v)<0
for every vertex v of G such that deg(v)=11. It remains to prove (B) for a
vertex v which has degree seven, eight, nine, or ten. We consider the
discharging procedure (T,¢,L) (i.e. we ignore the S-situations) and the terminal
charge function of G with respect to (T,¢,L) is denoted by gr,. It is shown that
G contains one of the 152 configurations if G has a vertex v which satisfies
gr.{v)>0. In the enumeration, all cases which imply the presense of a
configuration of U are deleted. This proof is also obtained by straightforward
case enumeration. Then we assure that every vertex v of the configurations has

g (v)=<0 by applying some S-situations to the configurations.

In July 1984, Appel and Haken informed to the author about the status of
the proof of the Four Color Theorem. According to this, a number of errors were
found in the case enumeration. They have been corrected in most cases by
correcting trivial miswritings, but in one case by modifying the discharging rule.
They say that the proof has no specific errors that they know but they expect to

find a few more errors of the same type as above.

4. Results.

Three errors are found in the proof of Discharging Theorem in [2]. The

following three facts are claimed in the proof:

-14 -
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(1) When the degree of the distinguished major vertex of an L-situation 35#564
is specified by seven, 14-5 is contained in it. (See class check list for (51) in

the microfiche supplement of [2].)

(2) When an L-situation 40#453 is attached at Z in CTL#134, an S-situation
20#117 is contained in it. (See class check list for CTL#134 in the

microfiche supplement of [2].)

(3) When an S-situation 10#252n is attached at A and an S-situation 20#173r is
attached at E in Figure 4.1, 14-26 is contained in it. (See class check list for

(2a) in the microfiche supplement of [2]).

A
E/ \B
\ / ' Figure 4.1
D C k

However, we found that these facts are false.

5. Conclusions.

We" wrote computer programs in order to help verifying Discharging
Theorem. The programs were written in PASCAL 8000, and HITAC 8700 is used.

We explain the way of verification in brief. First we must prove Lemma(5-6-
8), Lemma(6-6-6), Lemma(5°-7-6-6), Lemma(6-6), Lemma(T), Lemma(5,L,5), and
Lemma(5,L) (see [2]) by hand. Lemma(5-6-6), Lemma(6-6-6), Lemma(5°-7-6-6),
Lemma(T), Lemma(5,L,5), and Lemma(5,L) are used in programs. Then we verify
Lemma(l), Lemma S*, Vs-Lemma, V,-Lemma, Vg-Lemma, Vg-Lemma, V,g-Lemma,
and V;;-Lemma. Every case of Lemma S*, Vyp-Lemma, and V,,-Lemma is proved
by a compuier. Almost every case of Lemma(l), Vs-Lemma, V,-Lemma, V-
Lemma, and Vy-Lemma is verified by a computer. The remaining cases are
calculated by hand. Sometimes we use Lemma(6-6) in these cases. Verification
takes about thirty hours for inputting all the drawings in [2] by hand, about an
hour for computer calculation, and a few hour for calculation by hand.
Incidentally, if a person carries out all the tasks, it will take two months

according to Appel and Haken.

-15-
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We consider merits of such a method by a computer. There are three

merits as follows:

(1) From now, we can verify the proof with respect to a modified discharging
rule in a few hours. So we can repeat modification of discharging rules and

verification alternately in a few hours.

(2) The calculation is more precise. In particular, when we use a trial-and-
error method on discharging rules, verification by a computer is more

precise.

(3) The Lemmas used in the programs are so simple, that verification of the

programs is easier.

A remaining problem is that we are apt to make a mistake in data input. In

order to settle the problem, we must verify reducibility by using a computer.
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