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Proper subanalytic transformation groups and

unique triangulation of the orbit spaces

by

Takao Matumoto and Masahiro Shiota

BAZELE B H Bl

§ 1. Introduction

Let G be a transformation group of a topological space X.
Triangulation of the orbit space X/G was treated by several
people (e.g. [4], [11] and [12]) in some cases of compact dif-
ferentiable transformation groups. The authors showed in [6]

a unique triangulation of X/G, provided that G is a compact
Lie group, X 1is a real analytic manifold and the action is ana-
lytic. Moreover, the uniqueness was extended to the case of
differentiable G-manifolds and played an important role in de-
fining the equivariant simple hoﬁotopy type of a compact differ-
entiable G-manifolds when G is a compact Lie group. Let us
explain what the uniqueness means here. Under the above condi-
tions we can give haturally X/G a subanalytic structure. On
the other hand we know a combinatorially unique subanalytic tri-
angulation of a locally compact subanalytic set ([3] and [10]).

Hence X/G comes to admit a unique subanalytic triangulation.

Now we consider a problem under what weaker condition X/G

has a natural subanalytic structure. Of course we may assume



that X,G and the action are subanalytic; as subanalytic set is
Hausdorff, it is natural to assume a condition that the action

is proper in the sense of [5] and [8] (see §2); moreover, in
order to simplify the description we assume that "X is locally
coﬁpact. In this paper we shall show that these conditions are
sufficient (Corollary 3.4) and hence we obtain a unique sub-
analytic triangulation of the orbit space of a proper subanalytic
transformation group of a locally compact subanalytic set

(Corollary 3.5).

We shall see that a subanalytic group is homeomorphic to a
Lie group. But we shall not use properties of Lie group except

for the Montgomery-Zippin neighboring subgroups theorem [7].

See [6] for more references and our terminology.

§ 2. Subanalytic transformation group

Let G be a topological group contained in a real analytic
manifold M. If G is subanalytic in M then we call G a

subanalytic group in M.

Remark 2.1. A subanalytic group in an analytic manifold
is homeomorphic to a Lie group. It is possible that G may be

subanalytically homeomorphic to a Lie group.

 Proof. As the Hilbert's fifth problem is affirmative [7]
it suffices to see that G is locally Euclidean at some point
of G. But this is clear by the fact that a subanalytic set

admits a subanalytic stratification (see Lemma 2.2, [6]).

Let G be a subanalytic group in M, and X a subanalytic
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set in Mz. If G 1is a topological transformation group of X

and the action GXX3 (g, X) »gx€X 1is subanalytic (i.e. the

graph is subanalytié in M ><MZ) then we call (G, Ml) a sub-

1

analytic transformation group of (X, M2) .

A transformation group G of a topological space X is
called proper if for any x, y €X, there exist neighborhoods U
of x and V of y such that {h€G: hunv=¢} is relatively
compact in G ([5] and [8]). This is equivalent to say that
GxX3 (g, x)» (gx, x) €EXxX 1is proper when G is locally

compact and X is Hausdorff.

Remark 2.2. Let G be a locally compact proper transfor-
mation group of a completely regular space X. Then X/G is

completely regular [8].

Lemma 2.3. Let (G, Ml) be a subanalytic proper transfor-
mation group of a subanalytic set (X, M2) and {Xi} be the decom-
position of X by orbit types. Then {Xi} is locally finite
in U and each Xi is subanalytic in U for some open neigh-
borhood U of X in M2.
Proof. For each x¢X le£ Gx denote the isotropy sub=

group of G at x. Put

A= U G xx = {{g, x) €GxXs gx =x}

x€eX
and let ﬂ:M1 x M, > M, be the projection. Then A is sub-
analytic in My x M, Moreover, we can choose an open neighbor=

hood U of X in M so that :A'">U 1is proper from

2 N
tgxat . . .
the factja subanalytic set is o¢-compact and the assumption of
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properness that WIA:A->X is proper,where A' 1is the closure
of A in GxU. We may consider the problem in U and an

open neighborhood of G in M, in place of M, and M1
respectively, and this U will satisfy the requirements in the
lemma. Hence we can assume from the beginning that G 1is closed
in Ml and n[g:ﬁ-sz is proper where A is the closure of

A in Ml><M2. Let X also denote the closure of X in MZ'

We remark ANGxX=A because A is closed in GxX,
Assertion: A and X have subanalytic stratification
A={a;} and Yy = {Yj} respectively such that rw[z:A-Y is a

stratified map: i.e.,

(i) For each stratum A; of A, n(Ai) is contained in some’
Y..
J
(i)  For such i and j, w[, Ay Yy is a C° submersion.
i E '

(1ii) For each jJ, Ay = {a; €A: T(a;) c’Yj} is a Whitney

stratification ([2] or [9]).

The authers do not know an apt reference to Assertion. So
we give a proof. Let p be the dimension of A, We prove by
induction on k = dim X, If k = 0 Assertion is the same as
that A admits a subanalytic Whitney stratification. But this
is well-known (e.g. Theorem 4.8 [2]). Hence assume that
Assertion is true for dim <k, Choose a subanalytic stratifica-

tion of A and let Z1 be the union of all strata of dimen=

tion<p. Then 2 is a subanalytic set in MlxM2 of dimen-

1

tion<p and A - Z, is a subanalytic analytic manifold in

M1><M2 of dimengion p. Now we remark that the connected



components of a subanalytic set are subanalytic (Lemma 2.2, [6]).
Apply 2.14 of [9] to the restriction of 1w to each connected

component of A -~ % Then there exists a subanalytic set

1

Z2(c:§ = Z;) in M; xM, of dimension<p such that 2, is

closed in A - Z, and the differential d(=|z _, ) 1is of
; A"‘Z:L--Z2

constant rank on each connected component of i-—zl-Zz. The
last property implies that the restriction of 7w to each con-

nected component of ﬁ-—Zl--Z2 is a submersion to the image,

Next consider n© on Z, U Z2. Then we obtain in the same
way as above a subanalytic set Z3(<:Z1lJZ2) in MlxM2 of
dimension<p~1 such that Z3 is closed in Z, U Zz,

(ZlLiZZ)--Z3 is a subanalytic analytic manifold of dimension

p~1 (possibly empty), and d(n](z UzZ.) -2 ) 1is of constant
1 2 3
rank on each connected component of (Zlu Z2)- z3° Moreover

enlarging Z, if necessary, we can assume {connected components

of A-1% and-(zlthz)—-z3} is a Whitney stratification

17 %2
(by Prop. 4.7, [2]). Repeat this argument. Then we obtain a

subanalytic Whitney stratification {Bi} of A such that for

each i the restriction | is a submersion to the image.

B

i
ﬂli:i—>M2 is proper, the image under

n of any subanalytic set in My contained in A is subanalytic

in M, ((2.6), [2]). In particular ﬁ(Bi) are subanalytic in

As we assumed that

M It also follows from the properness that {W(Bi)} is locally

5
finite in M2. Hence we have a subénalytic stratification of
X compatible with {ﬂ(Bi)} (i.e. n(Bi) is a union of some strata)

(2.11), [9]1). Let V1=={Yli} denote the family of all the



strata-of dimension k, X2 the union of strata of dimension < k,

- -1
and {AlsL}SL_ {connected components of = (Ylj) n Bi}(i, 3) -

Then for each &, Tr(AU‘) is contained in some Ylj’ For such 2 ‘

a3, |, :A,"Y i ®  sub i A.={a, 1} i
an Jr T Algl. 12 1:] l1s a C submersion; 1- 12 is a

subanalytic Whitney stratification and

-1 -
b (t:’Ylj)ﬂA A

]

u .
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Consider the subanalytic sets A2=T1'“1 (X,) NA and X, and
the proper map “‘A :A2->X2, Then by induction hypothesis we

2

have subanalytic stratifications A, = {a,;} and Yy= {Yzj} of
A, and X, respectively such that m|,:A,->Y, is a stratified
map because of dim X, < k. Moreover we can choose A2 and VZ
so that Al U A2 and Vl uy, are subanalytic stratifications,
which is clear by the method of construction of Al and _Vl.
Then A= A1 U A2 and Y= Vl Uy, are what we wanted. Assertion

is thus proVed. We can also choose Y to be compatible with

X (i.e., X is a union of some strata of V).
Apply the Thom's first isotopy lemma to TT[E:A% Y (e.g.

jé’
ﬂ-l(Xl) NA and nal(xz) NA are homeomorphic, Here it is

5.2, Chapter II, [1]). Then for each Yj and Xqs xzeY

important that Y. are connected. Now if x¢€ X then
-1 = -1 _
m T (X)NA =1 (x)nA-—nyx.

Hence for Xqr X, € Yj cX, le and GX2 are homeomorphic,

Furthermore, for such x, and x,, G and G will be conjugate,
1 2 Xq X,

To see this recall the Montgomery-Zippin neighboring subgroups

theorem [7, p.216], which states that each compact subgroup H
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of G has a neighborhood <O in G such that any compact sub-
group of G included in O 1is conjugate to a subgroup of H.
Hence, by the properness assumption, each x€ X has a neighbor-
hood V in X such that for any yE€EvV Gy is conjugate to a
subgrdup of Gx’ But a proper subgroup of GX is never
homeomorphic to Gx as GX is compact. Therefore if y €V

is in the same stratum as x then Gy is conjugate to Gx°
Thus we have proved that for Xy x2€'ch:X, le and GX2 are
conjugate. Hence each of Xi in the lemma is a union of some

sz:x. Therefore {Xi} satisfies the requirements in the lemma,

which completes the proof.

Remark 2.4. In Lemma 2.3 and Lemma 3.1 below we can
replace the properness condition by a weaker condition that X
is a Cartan G-space in the sense of [8], which is clear by their

proofs.

In Lemma 2.3 if X 1is closed in M2 we can put ‘U==M2
for the following reason (Lemma 2.1, [6]). A subset Y of an
analytic manifold M is subanalytic in M if each x€M has
an open neighborhood W in M such that Y¥YNW is subanalytic

in W.

§ 3. Subanalytic structure on an orbit space and

its triangulation

Let X be a topological space. A subanalytic structure

on X 1s a proper continuous map ®: X-»M to an analytic
manifold such that (X) is subanalytic in M and ©: X-9(X)

is a‘homeomorphism. Let Xyr X be topological space with

2
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subanalytic structuresv(wl, Ml) and (mz, MZ) respectively. A

subanalytic map f£f: X1—>X2 is a continuous map such that the

graph of w20f<>m11: ml(Xl)—»wz(Xz) is subanalytic in MlxM2°

Subanalytic structures (ml, Ml) and (mz, MZ) on X are’egulvaa
lent if the identity map of X is subanalytic with respect to
the structures (ml, Ml) on the domain and (wz, M2) on the target.

We shall regard equivalent subanalytic structures as the same.

If X 1is a locally compact subanalytic set in an analytic
manifold M from the outset, then X 1is regarded as equipped
with the subanalytic structure inclusion : X-» U where U 1is
some open neighborhood of X in M such that X 1is closed in
U. We give every polyhedron a subanalytic structure by PL
embedding it in a Euclidean space so that the image is closed
in the space. Then a PL map between polyhedra is subanalytic
with such sﬁbanalytic structures and hence the subanalytic

structure on a polyhedron is unique.

Let X be a subanalytic set or a topological space with a

subanalytic structure. Then a subanalytic triangulation of X

is the pair of a simplicial complex K and a subanalytic

homeomorphism 7T:|/Kl->X. For a family {Xi} of subsets of X,

a triangulation (K, T) of X is compatible with {Xi} if each

X is a union of some 7t(Int o), o€K.

We remark that when we consider a subanalytic structure on
a topological space or a subanalytic triangulation of the space
we shall treat only a locally compact space. Of course we can

define a subanalytic structure and a subanalytic 'triangulation®



(in this case a subanalytic 'triangulation' consists of open
subanalytic simp;ices and may not contain the boundary of the
simplices) without the locally compact assumption. But the
description, e.g. the definition of equivalenceﬂrelation of sub-
analytic structures, will be complicated, because the composition
of two subanalytic maps is not necessarily subanalytic in the
usual sense (but always "locally subanalytic" [10]); and to make
matters worse a subanalytic finite 'triangulation' (=a decompo-
sition into finite open subanalytic simplices) of a subanalytic

set is not unique in general.

Let g:X-X/G be the natural map for a transformation group
G of a topological space X. The following is the key lemma to

the main theorems.

Lemma 3.1. Let (G, Ml) be a subanalytic proper transforma-

tion group of a subanalytic set (X, Mz) and x a point of X.

0
Assume that X is locally compact. Then there exist a neighbor-

hood U of x, in X and a G-invariant subanalytic map

0
f:GU—ﬂR2k+l, k =dim x, such that the induced map £:GU/G- £ (U)

is a homeomorphism.

Proof. Properly embedding M in a Euclidean space we can

2
assume M =IRn and x,=0. It is sufficient to define a

2 0
2k+1

G-invariant subanalytib map f:GU-1R 2k+1

so that f:GU/G-IR

is one-to-one, because GU/G is locally compact. Put
Z ={(x, y) €XxX: g(x) = qly)}.

Then Z 1is the image of the projection to XXX of the graph

of the action GxX-X. As the problem is local at 0 we can
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assume by the properness condition that the projection to

R” xR" of the closure of the above graph is proper and hence
by (2.6),[9] Zz is subanalytic in R"xR®. Let B(e, a) and
S(e, a) for e> 0> and a€R" or € R"xR" denote the open

e-ball and e-sphere with center at a respectively.

We shall construct open neighborhoods V0 D e DV2k+1 of

0 in X and G-invariant bounded subanalytic maps

fi:Vi-»IRl, i=0, ..., 2k+1, such that

£i41 = Ely, v 954900 V3 = XNB(ey, 0)
i+l .
for some subanalytic function 941 and some €; > 0, and
Z; = {(x, y) €V, xV, -2 : £ (x) = £.(y)}

is of dimension £ 2k -1i. If we construct these and put U:V2k+1

and f =the extension of f2k+1 to GU then f:,GU/G->]R2k’+1

will be one-to-one, because dim Z -1 means that if

2k+1
X, YEU belong to distinct orbits then £(x) = £(y)-.

We proceed the above construction by induction on i. For
i=0 we put trivially VO=XnB(1, 0) and f0= 0. So assume

that we have already constructed Vi and fi’ Clearly Zi is

subanalytic in R" xR". Assume dim Z;, =2k~ 1, otherwise it

suffices to put Vi1 =V and g. 0. Then using a subana-

i+l =

lytic stratification of Zi in the same way as Lemma 2.3 we

obtain a subnalytic set Yi (c:Zi) in R" XIRn, closed in

+1

V. xV. -2 and of dimensions<2k-i-1 such that 2Z2.-Y, is
i i i i+l

an analytic manifold of dimension 2k-i. For every large
integer m we put Wm = (Zi - Yi+1) nNsS(l/m, 0). Then Wm is an

- 10 -



anlytic manifold of dimension 2k-i-1 since (Zi -Y 0)

i+1’
satisfies the Whitény condition (Prop. 4.7, [7]). Choose a

sequence of points {a.}

j'9=1,2,... in UW_ so that for any large

m and xEWm, B(exp(-m), x) contains at least one aj. Write

aj=(aj, a'j'). Then GaaﬂGa':'.l=qb. put

G, = {g€eG: gV

0 {1§O:t¢}

0

where \70 denotes the closure of V . Then we have G51=G0,

G0 is compact by the properness condition, and hence X0=G0VO

is compact. Let {Pa} be the decomposition of XO such that x

and y in X0 are contained in the same Pa if and only if

there exsits a finite sequence X=X, X917 «eoy X, =Y in XO

with gixi=xi+l for some 95 of GO‘ Here =3 1is sufficient

for the following reason. Let XO' ceer X be a sequence in

X0 chained by 9gr c+-r Ip_q in GO as above. Then by

definition of X, there are y,, ..., y, in \70 and hy, ...,

h in G such that x.=h.y.. Hence we have
L 0 i if1

—4 -l e o o
Yo = B 951" 9oBe¥0-
Therefore, by definition of GO’ h-y:lgz_l---goh0 € GO' Hence the

sequence Xg, Yqgs Ygr Xg is chained by the elements haly

-1 . _ . .
hz 991 goho, h,Q of GO’ which proves that #£=3 is sufficient.

The above proof shows also that (i) for each o and

XEPaﬂVO, P0L=GO(GOanO) and PaﬂVO=GxﬂV0 (i.e. {PBﬂVO}

is the family of intersections of G-orbits with ‘\70) . From the

first equality in (i) it follows that each Pa is
compact and subanalytic, because Goxn \70 is compact and sub-
analytic. Moreover £=3 shows the following. (ii) Let g

- 11 -



ay

o .. be a sequence such that there exist b, €P , b_e€epP ,

27 1 oy 2 a,
. 0 [o] T__-— L] 3 ]
... converging to a point b. Then nr=lUi=rP0Li is identical

with Pa which contains b.

Define a map A:C0 (XO) —>C0(\70) by

Ah(x) = sup{h(y): y€P  for a with x€P_ } for xex'zoc

Then, by (ii) and by the fact that X is compact, (iii) A 1is

0
well-defined (i.e. AhEC0 (\_70) for hEC0 (XO)) and continuous
with respect to the uniform CO topology on CO(XO) and

CO(\70); (iv) by (i) Ah are G-invariant for hECO(XO); and (v}
if h 1is subanalytic then Ah is subanalytic for the following

reason. Let h be subanalytic. By (i) the set

D = {(x, y) €XgxXy: X, YEP for some a}

is the image under the proper projection Xg X \75 X GS—»X% of the

subanalytic set
. L2223 _ _ _
L&y 1Y 1 %pr¥5097195,9) € X ¥ Vo x Goi Xy =91 %), ¥1 = 9¥5r X =9Yp)-

Hence D is subanalytic. Now by definition Ah(x) = sup{h(y):
(x, y) €D}, and the graph of Aah is the boundary of the image
by the proper projection \70 x Xy xIR 3 (x, ¥y, t)» (x, t) € Vg xIR

of the subanalytic set

{(x, y, t) e\'foxxoxm: (x, y) €D, tzh(y)}.

Therefore, Ah is subanalytic.

Assertion: Let (pj € C0 (Xo) , Jj=1, 2, ..., be sequences
satisfying Acpj (a:'.]) #Aq)j (a;j') . Given also bj > 0. Then there
exist ¢.20, 3j=1, 2, ..., such that cj < bj’ chcpj uniformly

- J

- 12 -



converges to some ®€C0 (XO) and Anp(a:']) ?:Aco(a'j') for all j.

Proof of Assertion: We define cj inductively as follows.

put- <y =b1. Assume we have already defined cl, ooy cj o)
i = 00w <5
that if we put wl c1m1-+ -+c2m2 for £ <3 then
] n
(1)2 Awl(al);tsz(az) and
L-p+1
2 c A a')y |+ A a" < 1A a')y-A a 2 for p< 2.
(2), ey tlae, (@) [+|ae, (ah) |) s [ay (al)-Ay_(al) [/ P
. . - < 1
We want cj+l satisfying (1)j+l and (2)j+1p’ psj. If
1 " 3 > —
Axpj (aj+1) z A\bj (aj+1) ; it suffices to put cj+1 =0. If
1 - n . .
ij(aj+l) ij(aj+l), then we choose positive cj+1 so that
(2)j+1p’ p<j, hold. 1In this case
1 - n = H - "
Bsyp(@fyq) =AWy, (350) Sy Ry (a5, ) —Rey (al 1)) =0,
hence (l)j+1 holds. Thus we obtain a sequence cl, 02’ ceos

with (1)2 and (2)2p for p< . Then for any integer p>p'>0
A 1 - n > ' - " .
(3) (2w, (ag,) = Ay (@t )| 2 (A, (al,) Ab,.(ag,) [ /2

Furthermore, diminishing cj if necessary we can assume wj

uniformly converges to some ©. Then it follows from (3) that
A¢(a3):ﬁA@(a§) for all j,

Which proves Assertion.

For every aj the polynomial approximation theorem assures

the existence of a polynomial 5 on R" such that

A(mjlxo)(aﬁ) # A(cpjlX ) (af) .

0

Let bl’ b2, ... be small positive numbers such that the power

- 13 -



series %bj@ is of convergence radius « where ﬁj(x) means

)

z|d lxa when we write . (x) =3d x°*.
G a 3 G a

Apply Assertion to these and b.. Then we obtain

cjz 0 such that Z§=1cjwj converges to an analytic function
@ on R” and

A(mlxo) (aj) ¢A(wlxo) (a%) for all j.

Put g!

-— ]
l+l-—A(w[X ) on V.. Then we have already seen that 93

0
is subanalytic. Hence we only need to see that

+1

2,0 = (00 V) €2 ¢ 83, (0 =), (1)

is of dimension<2k-i-1 in some small neighborhood Vi+lxvi+1

of 0. In fact g, is what we wanted.

=9 ]
i+l i+l Vi+1

Assume the dimension of Zi+l at 0 1is 2k -1i. Then

! (2. -Y

ier M (25 m Y )

there is a subaﬁalytic analytic manifold Ni(c:Z
of dimension 2k -i whose closure in R" contains 0. Recall

the subanalytic version (Prop. 3.9, [2]) of a theorem of Bruhat-
Whitney which states that there exists a real analytic map

p: [0, 1]-*Nilj{0} such that p(0)=0 and p((0, 1])c:Nia

Define a continuous function x on [0, 1] by
x(t) = dist(p(t), Z, —-Ni).

1

Then it is easy to see that Y is subanalytic and positive

outside 0 and hence that
d
x(t) 2z clt|”, telo, 1]

for some C, d>0 (the Lojasiewicz' inequality). These imply

- 14 -



(W9
[

d
B(C|t]™, p(t)) N2z, N,
in other words

9iv1 (¥ =954 (¥) for (x, y) €B(c[t|?, o)) n Z -

On the other hand, by definition of gi+l
1 i 5
gi+l(aj) # gi+1(a3) for all j.
Hence
d .
(4) ay g B(C[t| , p(t)) for all j.

Consider now the Lojasiewicz' inequality to the inverse function

of |p(t)]|=4dist(0, p(t)). Then, we have

C"Itld for some C" and 4" > 0.

IA

lo(t) ]

Hence it follows from (4) that for some C' and d'>0
4’ .
ay € B(C'|[p(t) ]|~ , p(t)) for all j.

But this contradicts the fact that for any large m and xé?Wm,
B(exp(-m) x) contains at least one aj. Hence Z£+l is of
dimension£ 2k ~i~1 in some neighborhood of 0. Thus -we have

proved that f is one-to-one.

Remark 3.2. In Lemma 3.1 we can choose f to be extensible
to X as a G-invariant subanalytic map by retaking U=V 1q

= XNB(e 0) with Indeed let ©6 Dbe a sub-

2k+27 €2k+2 < Cok41”

analytic function on X with support in Vo such that 0£6<1
and 6 1(1) is a neighborhood of ©. Put
g A(eixo)(y) on GV,

hix) = 1
0

on G - Gﬁo.

- 15 -
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Then ¥,y .5 is a G-invariant subanalytic function, and

F=(f, LD2k+2) : X—>]R2kJr2 satisfies moreover

(3.2.1) F(GU) N F(X - GU) = ¢

For such F it follows from (2.6), [9] that

(3.2.2) F(X) is subanalytic in ]R2k+2

because of F(X) =F(XNB(l, 0)) and because the closure of graph

F}an(l, 0) 1is bounded and subanalytic.

Theorem 3.3. Let (G, Ml) be a subanalytic proper trans-
formation group of a locally compact subanalytic set (X, M2) .

Then there exist an open neighborhood Mé of X in M2 and a
2k+1

G-invariant subanalytic map ¢ : X-IR with respect to sub-
analytic structures (inclusion, Mé) and (identity, IR2k+l) such that
@w(X) is closed and subanalytic in IRZIH_1 and that the induced

map ®:X/G - @(X) is a homeomorphiém, where k=dim X.

Proof. For each point x of X let Ux be an open neigh-
borhood of x in M, such Ux.n X 1is contained in a neighbor-
hood of x in X which satisfies the requirements in Lemma 3.1

and Remark 3.2. Let Mé be the union of all UX._ Properly

embedding Mé in a Euclidean space, we can assume Mé =R" and

we give always X a subanalytic sturcture (inclusion, IRn) .

The case where X=G(KNX) for some compact set K in

R':As K is covered by a finite number (say s) of Ugr there

2s (k+1)

exists a G-invariant subanalytic map V : X-R by Lemma 3.1

3

and Remark 3.2 such that the induced map ¥ : X/G- U (X) is a

homeomorphism. Here we used (3.2.1) for the existence of i'ﬁ"l,,

- 16 -
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N

2s (k+1)

and we see that ¢(X) is subanalytic in IR for the same

reason as (3.2.3), because we can choose subanalytic K, e.g.

B(e, 0) for some large €, so that ¢(X) =9 (KN X). We note also

2s (k+1) by the compactness of KANX.

2s (k+1)

that ¢(X) is closed in IR
Let (K, 1) be a subanalytic triangulation of 1R compatible
with P (X) (see Lemma 2.3, [6]), K' the family of o0 € K whose

IR2k+1

interior is mapped by Tt into ¢(X) and w: |K'| =~ be a

PL embedding. Then @=To T T o ¥z X ->R>¥™ is what we want.

The case where there is not a compact set K in RY such
that X=G{(KNX): Let 8 be a G-invariant subanalytic function
on X such that for any compact set H in IR there exists

a compact K in TR such that 6”1 (H) = G(X N X)
(e.g. 6(x) = inf{|gx| : g € G}).

and let o be a subanalytic function on IR such that for each

integer i

{ 1 on [2i, 2i+1]

0 on [2i-2/3, 21i-1/3].
For each.. i consider the G-invariant subspace

X, = 0~1([2i-1/3, 2i+4/3])

of X. By the property of 6, (Xi’ G) corresponds to the first

case. Hence there exists a G-invariant subanalytic map

Rr?K*1 guch that (Bi : XJ._/G--upi (x;) is a homeomorphism,

- IR2k+2

LR R

Define ¢ :X by
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(do 6(x)p, (x), B8(x) for x€ X,
o (x) ={ . i i

(0, 6(x)) v for xgi_g_lxr
Then ¢ is G-invariant and subanalytic, CD](UG_l((2i—1/3,21+4/3)))/G

is a homeomorphism onto the image, and for any integers Jj=3j'
dist(e (671 ([3+1/3, 3+2/31)), o(871([3'+1/3, 3'+2/31))) > 0.

In the same way we obtain a G-invariant subanalytic map

2k+2

! :X-—fIR such that is a

'l (el ((2i-4/3, 2i+1/3)))/c
i IR4k+4

homeomorphism onto the image. Hence Y= (¢, &') : X is
a G-invariant subanalytic map whose induced map ¥ : X/G- ¥ (X)
is a homoembrphism. Recalling the property of 08, we have a
closed neighborhood U of x and a compact set K in Rr"

such that YP(KNX)=¢(X)NU £for any point x in JR4k+4c From

C . . +
this it follows that ¢ (X) is closed and subanalytic in IR4k 4,
since we can choose a subanalytic K. Moreover we can diminish

4k+4 to 2k+1 in the same way as the first case. Therefore

the theorem is proved.

Corollary 3.4. Let (G, Ml) be a subanalytic proper trans-
formation group of a subanalytic set (X, M2) . Assume X is
locally compact. Then X/G admits a unique subanalytic struc-

ture such that g :X-»X/G is subanalytic.
Proof. Trivial by Theorem 3.3.

Corollary 3.5. Let (G, M;) and (X, Mé) be as above and
give X/G the above subanalytic structure. Then there exists
a subanalytic triangulation of X/G compatible with the orbit

type stratification and uniquely in the following sense. If

- 18 -~



w

there are two subanalytic triangulations (X, 1) and (K', t'),
we have subanalytic triangulation isotopies (X, Tt) and (K', t!)

t
“toa,: K|~ K] is

of X/G such that To=Ts 16==t' and (Ti)
a PL map (see [6] for the definition of subanalytic triangula-

tion isotopy).

Proof. Follows immediately from Lemma 2.4 in [6], Corollary
3.4 and the next fact. Let {Xi} be the decomposition of X by
orbit types. Then Lemma 2.3 tells us that {q(Xi)} is a locally

finite family of subanalytic subsets of X/G.
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