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TOWARDS A PROOF OF THURSTON’S GEOMETRIZATION THEGOREM
FOR ORBIFOLDS

Teruhiko Soma, Ken—ichi Ohshika and Sadayoshi Kojima
ABESE NEAE- ) EEE
§ O Preface

This is a very informal note based on gur discussian concerning
Thurston’s geometrization theorem for orbifolds mainly at Topaology
seminar of Tokyo Metropolitan University in 1984/85. The main
purpase of that seminar was to understand its proof. The discussian
at the seminar was based on the arguments Thurston gave in his
caurse of 1984 spring, which the first author had attended. There,
Thurston had described a basic idea faor the proof and some details.

Our intention was thus to fill up logically and reasonablly
understandable details. However, uwe have quite often faéed
difficulties of translating his idea to "usual' mathematics for us.
The main cause seems ihe lack of terminalogies to describe it.
Consequently we could not complete our aoriginal intention;

The purpase of this note is thus to describe only our
understanging aof Thurston’s idea until the deadline of submission of
this article. We have tried to give a careful explanatian as much
as we can except §S8. The argdments in the first five sections are
faithfully based on Thurston’s lecture. The arguments in $6 and §7
are rather selfish interpretation of his assertion. For example,

Proposition 6.1 is our translation of Thurston’s word, ane
rescalling factor will work everywhere". We gave up to complete the
last section, since there are obviously crucial assertions of which

we have not been able to understand the proof. We just reminded his



2

basic idea there.
Since our discussion was held without Thurston, any mistakes
are ovbiocusly due to us. UWe are very willing to hear any

suggestions, comments, criticism, pointing out mistakes +....

§ 1 Backgragund and Theagrem

We first recall the basic concepts of the orbifald and then
state the geometrization thearem for orbifolds.

Befinition ¢ The orbifold O 1is a topolagical space with a
structure laocally modeled an R" modulo a finite group action.
More precisely O is an underlying topological space XO with a
system of laocal charts {(Ui, ®.))  in the sense that
(1 {Ui} is an open caover of Xq closed under the interseﬁtiun,
(2) for each chart (Ui’ ¢i),’ there are an open set U, in R

i
and a finite group Fi Faithfu]Ty and diffeaomorphically aciing

s

an Ui so that Py Ui - Ui/I"i is a homeomorphism, and

(3) if Ui C Uj, there are a maonomorphism f T TJ and an

ij i
inte homeomorphiém wij H ﬁi 4‘UJ which make the following diagram
commute,
¢1J : Ui UJ
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Definition : The orbifald O is a covering of an aorbifald O
if there is a praojectian p : Xﬁ - XO such that far any x € XO’
there exists a neighbarhaad of x, U = UM, so that for each
compaonent -Vi of p_l(U), there is Fi cr sati;?ying Vi = U/Fi-

Definition ¢ The orbiFa]d 0 1is good if there is a covering of
0 without singular locus; It is bad atherwise.

Definitian ¢ Let (G,“X) be a pair of a resl analytic manifald

X and a group of analytic diffeomorphisms G. The orbifold ‘0 is

a (G, X)-grbifold if its charts are lacally maodeled on (G, X).

" Prgposition 1.1 + A (G, X)-grbifeld is good-

Proof. See [T31 §13.

Assume that X 1is a smooth simply connected manifold and G
is a group of diffeumcrphismé which acts transitiveiy an X with a
campact isotropy subgroup for each x € X. Then X admits a
complete G-invariant riemannian metricﬁr By Montgomery-Zippen’s

theqfeﬁ [MGI, G becomes a Lié group and X = G/G, becqmes’an



analytic manifaold with analytic action by G. Assuming further thati
G is maximal, we call (G, X) a geametry.

Befinition ¢ O 1is a gegmetric grbifald if there is a geametry

(G, X) so that O admits a (G, X)-orbifald structure. :
DeFinition : When O 1is a (G, X)-orbifaold, let vol(3) be the

volume of XO - ZO with respect to some G-invariant metric of X.

Notice that the condition "finite wvolume” does not depend on the

choice of a G-invariant metric.

Theorem 1.2 ¢ A 3-dimensional gegmetry which possesses at least

one compact geometric orbifold is one af the Thurston’s eight

geometries.
Progof. See [S].

Remark. For any 3—dimensiona7;0rbifold O, the valency of a
vertex of ZO is 3.

Definition ¢ O » 0" 1is a fibration of orbifolds with generic
fiber F if it is based an a continugus projection f @ XO = X
such that each point x € 0’ has a neighborhood U = U <(uwith U
cRrRM satisfying F_I(U) =Ux F/T for some action of T an F
(where T acts by the diagonal action). The product structure is

consistent with f ¢ the diagram below must commute.

UxF A L
ey | | s
U 4\ u .

Theorem 1.3 : A 3-dimensional orbifold which fibers over a

2-dimensignal geometric orbifold of finite area belangs to Seifert



gegmetry of finite volume. A 3-dimensianal orbifold which fibers

gver a caompact l-dimensignal grbifold with euclidean fiber belangs

to either euclidean, nilpotent or solvable geagmetry.

Proof. Apply the method in [S] ar [K] to orbifalds.

This thegrem will be used implicitly later without refer
whenever we find a fibration. That is ts say, when we find a
fibration, it will mean autaomatically that the arbifold in question

‘is gegmetric.

Definition : 0°™ € 0" is a suborbifold if it is a subspace
XO’ C XO Wwith an orbifald structure so that for each x € X
there is a neighborhood U, in X such that U, = U/rx, UNR™ =
Vo is Fx—invarlant and (Ux’ Ux N XD,) = (U, V)/Fx.

Definition : A 3-dimensional aorbifold O is irreducible -if:

every spherical 2-subarbifold of O bounds an arbifold of the form

B3,r where I C SO(3).
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Definition ¢ A non—-spherical 2-subarbifold O of 0 s
incompressible if a simple claosed curve af 02 which bounds either
a disk or a disk with an elliptic singular point in 03 - 02 baunds

it alsao in 02.
The faollowing is Thurston’s geametrizatian thearem faor

orbifolds of which we shall describe the (unfortunately incomplete)

proaof in the sequel.,

" The main theorem : Let O be a compact oriéntable irreducible

3-orbifaold with (possibly empty) incompressible euclidean boundary.

If O admits no bad 2-suborbifold and dim ZO =1, then there is a

finite (possiblly empty) collection af mutual]i disjoint




incompressible euclidean:2-subarbifaolds 01; ..,fOn -such that each

companent of 0 - O, U ... U 0 is a geometric 3-grbifold. In

particular, O is good.

This big theorem has a quite many coraollaries, however We state

anly ane Which is towards Thurstan’s geometrization conjecture.

Corgllary ¢ 1f a closed grientable prime 3-manifogld M admits

a nontrivial orientation preserving periodic map with nanempty fixed

point set, then M admits a geametric decompasition.

Proof. Let O be the quotient aorbifold of M by the periodic
map. Then by the theorem, O splits inta geometric orbifalds.
Pulling back these structures to M, we get a geometric

decomposition as desired.

§ 2 The first reduction and hyperbolic 3—cone—manifaolds

In what follows, we denote by 0O the arbifold that satisfies
the condition of the main theorem. Let Ui be a small ball
neighbaorhood of each vertex. vy ; ZO and denate XO - U-Ui - {toral
baundary} by N and NN ZO by ZN. The bgundary of N consists

of 2-spheres with three or four punctures. QOur first reduction is,

The first reduction ¢ If the theorem is true provided that

N - ZN admité a complete hyperbalic structure of finite volume with

totally geodesic boundary, then the theorem is true in general.

To see this, we refer to the following unifaormization thgorem

for Haken manifolds which is ‘in our convenient form [SmJ, CCSI.
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Theorem 2.1 : Let M be a Haken manifgld without boundary but

UithvinCGmpressible toral end. Then M either contains a

ngnpeﬁiphefal torus, is a Seifert fibered space or admits a complete

hyperbglic structure of finite volume.

Proof of the first reduction ¢ Let DN be tHe double dFﬂ N.

The complement M = DN - DZN is a Haken manifold without bgoundary
but with incompressible toral end since 0O has no bad 2~sub0rbifold
(téardrap‘in fact). Notice that M admits an obvious orientation
reversing involution 7 which reflects M along F = 3N - gyt F
cansists af 2-spheres with three agr faur punctures. By Theorem 2.1,
we have three cases far M.

Case 1 ¢ M contains an essential torus Tl‘ We first think of
the case when T1 TN - ZN' If Tl "is compressible in 0. Then
there is a compressing disk D with a cone point and (Tl'— MDY
U Dl‘U D, becomes a spherical subarbifald 0’ where B, and 0,
are frontiers of 4U(D), Since O 1is irreducible, 0’ must bound

Ba/Zn. This means that T

1 is either 3d-parallel or compressible,
and we get contradiction. Thus T1 must be incompreséible in 0.
Then by cutting 0 along T,, we get a new orbifald which still
satisfies the condition of the main4thearem. By Haken’s finiteness
praperty af incompressible surfaces for N - £y» we have reduced
hierarchy to get simple pieces, which is the last two cases in
Thegrem 2.1.

We next deal with the case when Ty intersects F
essentially and mihima]ly{ Ue'thenvhave tuo cases. One is that
some intersection circle bounds a puncture in F. The other is that

any intersection circle bounds two punctures in F. UWe first deal



with the farmer case.

In this casé, we can find a properly embedded annulus A C N
which is a part of T1 and whase baundary has that éirc}e as a
campanent. The other\camponeht bounds aone ar two punctures. UWhen
it bounds two punctures, it is on a compaonent af F uhich inhérits
an euclidean boundary of 0, and also bounds a disk with a cone in
0. This contradicts the incompressibility of &0. Hence we may
assume that the ather component of &84 bounds a puncture on F.
Now fill up &A by tugs diéks with a cone in 0O, and get &
spherical suborbifold 0’ € 0 since O has no bad subaorbifold.

Then O0? bounds 83

/Zg in O since O 1is irreducible, and hence
A becomes parallel tao 85%42N)- Do the same argument to an
adjacent essential annulus again and again and we finally conclude
that T1 is d-parallel. This is contradiction.

Let us deal with the case when any intersection circle bounds
two punctures in F. In this case, any intersecting caomponent of F
must be a four punctured sphere which inherits an euclidean boundary
of O. Since Tl intersects essentially with F, we can again
find a praoperly embedded annulus A in N which is a part of Tl'
Fill up 0A by two disks with two cones on 30 and get an
euclidean suborbifold 0’ C 0. Suppose that Of is incompressible
and not d-parallel. Then pushing 0’ inta the interior of O and
cutting O along it, we get a new orbifold which still satisfies
the assumption af the thearem. Thus we have reduced ta the simple
cases similarly as before. If 0’ is compressible ar d-parallel,
then 0’ baunds a suborbifold P to which the fibration : A = SIXI

- I extends. We next fill up dA by the éomp]ementary regiqn of

the disks used previgusly and get ancther euclidean suborbifoid O"



c 0. 0" 1is a torus aor Sz(z,x,x,x) according to whether JdA

stays on a campconent of &80 ar not. If 0" is incompressible and
not d-parallel, then we are done similarly as befare. Thus the rest
is the case when bath 0’ and 0" are cumpreésib]e or d-parallel.
If 0" 1is compressible or d-parallel, then 0" bounds a
syborbifold @ again to which the fibration : A = 81XI - 1

extends. Mareover @ 1is the compiement of P in 0. This means
that 0 =P U Q@ admits a circle fibration asvan arbifald. In
particular, O is gegmetric.

Case 2 :+ M admits a Seifert fibratian. Suppose F # ¢. UWe
may assume that T preserves the fibration. Since F cannot be
fibered, a fiber must intersect transversally with F. Since F 1is
the fixed paoint set of T, T maps each fiber tg itself. Thus N -
N has an I-bundle structure and hence (N, EN) must be
hameomorphic to (82, 3 ar 4 pts) x I. This shows that 0O admits a
spherical or euclidean arbifald structure.

Assume F = ¢¢. Then M is disconnected and £y forms a Tink
in N. - Subcase a) when each fiber on M 1is not homqtopié to
meridians of the link. Then the fibration extends to a fibration oan
N and O becomes a fibered orbifald, and we are done. Subcace b)
when some fiber on &M 1is homotopic to a meridian of a component of
ZN' If a base orbifold aof a cﬁmpanent containing this fiber is.

2 2

neither D nor D with a cone, then by elementary cut and paste

construction using meridian disks, we get an essential spherical

subarbifold in O. Houwever since 0 was irreduéib1e, this is

impaossible. Therefare a base‘arbifold must be either . 02 ar 02

with a caone. Since it must be hameomorphic to S1 x 02. by

changing fibration, we can reduce this case to the subcase a).
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Case 3 ¢ int M admits a complete hyperbolic structure of
finite volumes ~Then T s hdmotopic to an isametry to which
Fixes a surface hamotaopic ta F. Since this surface is tBe Fixéd
point ‘set af an orientation reversing isametric involutien, it is
totally geodesic and we may conclude that N - ZN admits a complete
hyperbolic structure of finite volume with totally geaodesic boundary
F. This conditiaon is the starting point af the whole argument in

what fallows.’

We have reduced the argument to the case when N - ZN admits a
complete hyperbalic struthre of finite volume with totally geodesic .
boundary. We further assume for simplicity that 0O 1is clogsed, that
is to say, N 1is compact and 4aN - ZNY consists of three punctured
épheres. This is just for simplicity and will not be essential
restriétion. Let us emphasize our ‘starting point under this

condition again.

Initial setting : N - ZN admits a complete hyperbolic

structure of finite volume with totaly gegdesic boundary,—uhefe N

is compact and 4dN - ZN consists of three punctured spheres.

The main idea is to deform a complete hyperbolic structure on
N - ZN to a gegmetric structure of O continuously alang geometric
(mainly hyperbﬁlic) spaces only with cone type singularities. To
say more precisely, we need explicitly to define the cone-manifold
structure. The cone-manifold structure is a generalized caoncept of
the orbifold gtructure. It is locally mode]fed on not necessarily

R” modula a finite group action but on identification of a
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rotation along some axis with arbitrary angle and their combinatian.
Mare visually for hyperbalic case, we have

Definition ¢ A hyperbolic 3-cone—manifold C  is a topolagical

space Xp with a singular hyperbolic structure locally modelled on
one of the following sets.

(1) A neighbarhood of an elliptic axis of cone angle « (O<af27).

o

A neighborhaad of an elliptic axis U# cone angle = 2n
corresponds to a neighborhood of a non singular paint. UWhen
‘a tends to zera, the structure approaches a neighbaorhood of a
CUSP -

(2) A neighborhood of the vertex where more than two elliptic axis
meet. The summatian of their cone angles are assumed to be
“greater than 2(n-2)x  where n 1is the number of axis which

meet there.




(3) A half neighbaorhood of an elliptic axis splitted by a totally
gegdesic plane which intersects perpendiculaﬁ]y. This is a
model for the paints an boundary and in particular the boundary;

is a totally gecdesic hyperbalic 2-cone-manifaold.

The set I, = { x = Xe [ x 1is an some singular elliptic axis aor a
vertex} 1is cal]e@ a singular locus.

Si;ce Wwe are anly interested in a special type of hyperbaolic
3-cone-manifolds, we just describe such for better understanding.
What we are interested in is a hyperbalic 3-cone-manifold of finite
volume with spherica) totally geodesic boundary. Furthermare, the
case when exact]y three axis meet at each vertex, exactly three axis
meet at nontoral infinity (end) and exactly three axis meet each
component of boundary, is in our exclusive concern. Let «, 8 and
7 be cone angles af three axis which are subject to the above
situation. Then whether a+8+7 is >, = or < 2r reflects to
whether thase three axis meet at the vertex, at infinity or they
meet the common boundary cnmponent; Althaugh we get at the limit of
deformatiaon a cone-manifald with an end ghere four axis meet, we
always assume that our hyperbo]ic 3-cone-manifald is of this type
without specifying otherwise.  We note that since our cone-manifold

is of finite volume, its end is either a usual taral ane or




sz(a,B,T) x [0,») where a+B8+7 = 2x. The boundary must be a

hyperbolic 2-cone-manifold based an 82

Wwith three cone paints.

We leave the precise definition aof another geagmetric cane-
manifold to the reader since what we need is fairly simple rather
than its complicated strict definition.

Definition ¢ The holaongmy af C is a haolonomy af a hyperbolic
structure 0“»,XC - ZC. That is a representatiaon o : II(XC - ZC) -

PSL2£.

Definition ¢ A combinatarial type AC of a hyperbolic 3-cone-

manifold C 1is a pair of topological spaces obtained fram (XC, ZC)
by collapsing boundaries and compactifying each nantaral‘ends to ane
paint.

Remark : If cone angles are large enough, then (XC, ZC) and
its combinatorial type are topologically same.

Exceptiognal definition : We shall define the combinatorial type’

of a complete hyperbalic manifold based an N - ZN in the first
reduction to be (XO, ZO) just faor gur convenience.

We first wish to see that any structure can be s]ightTy changed
along small algebraic deformation. To see this, we first need

lemmas in hyperbolic geometry.

Lemma 2.2 : Let a and 8 be elliptic elements of IsomlH3

o}

with axis £, and 23‘ Then if Ba 1is elliptic, then there is a

totally geodesic plane P in IH3 which contains za‘uuzs.

Proof. Assume the contrary and choogse the shartest geadesic
sedment s =-xy which connects 2a~ and 23.. Let R be a plane
containing s and perpendicularly intersect with 2, -at x, and

let Q@ be a plane containing s and perpendicularly intersect with
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EB at y. Let” vy ~and v2' be geadesics an R which intersect s

with angle = ratation angle 0?'ia1/2 at x and let ll‘ and -12
be geodesics an ~Q which intersect s with angle = rotatiaon angle
of 8"~ at y. "Againh let t1 = albl and t2 = a2b2 be ﬁhe

1 u2 and 12

respecfive]y. Then if we let r be a 180 degree rotation around

shartest geodesic segments which connect ul and A

s, then r(tl) = t2 and alsoc we have d(x,ai) = d(r(x),r(ai)) =
d(x,az). Therefare a(ali = a,. Similarly B(bz) = bl' Since

r(ti) = t2 and r(Q) ='Q, the angle between t and Q .= the

1
angle between t2 and Q. Hence t1 and ’Btz are on the same

-1

geadesic. Similariy a “(t,), {1 and hence B(tz)"are on the

1

2

same geodesic £. Therefore since Ba@) N D« ~(t,), Ball) =2.

2
This means that Ba 1is a loxodramic transfarmation, which is

cantradictian.

Lemma 2.3 : Let « and B8 be parabolics with fix(a) # fix(8)

and suppgse a8 is a parabolic. Then there is a totally geodesic

plane P with «a(P) = 8(P) = P.

Proof. By changing basis, we may assume that «a = [é i} and
8 = [é ?]. Then a8 = [lgb %} and trace(a8) =2 + b. Since
a8 is parabolic, b = -4, Thus we can easily see that the plane on

the real line is invariant.

We now discuss the ekistence of geometric deformation in
general. .Let (X, £) be an underlying space aof same hyperbolic
3-cone-manifald, let €1y vy € be edges of X and let Cys v
Cn be circle components aof X+ Denaote by ki’ cees Mpin thg

elements af ’nl(X =~ $Y which correspond to meridians af €1y

—- 14 —



ey Cis oo Cn respectively.

Theorem 2.4 ¢ Let /X{O gg a hyperbolic cone-manifold structure
on (X, £) or a complete hyperbolic structure an X - £ and let
24 be its haolonomy representation. If p is sufficiently close to
o in R (X - I)) with p(u,) elliptic (or parabolic), then

there i1s 3 hyperbolic cone-manifold with the same combinatorial type

—— e —

(1) its structure 'J/I is close t Afb band

(2) 1its holonomy representation is o.

Eiggi. Denate X - ZL@X U Z) by U. Then by [T1, there is a
hyperbalic structure ‘*jl on U which is close to ,xfofU and
whose holonomy is #2. UWe will first show that if /K/O\ is a cone-
manifold structure father than a cdmplete structure, ,&f; "éctually
extends to a hyperbolic cone-manifold structure on the topaological
space (X, £) when the structure '*/0 has no cusp end. Then we
will sée that when «k%g has a-cusp end, the structure '*fl extends
to a cone-manifald structure on slightly modified space according to
whether a cusp comes into interior or blows up at infinity. Lastly
we maodify those proaf to cover when ,@po is a camplete hyperbaolic
structure. |

Since 'p(#i) is el]iptic; ;J% extends to all of X except
on neighbqrhoods of vertices of &£ and dX. If the three edges
€ ey g intersect at v in the structure »Mpo’ then since
By #o, are elliptic and the‘prdduct Bybn ='ﬂ3. is also elliptic,

thereris a totally geodesic plane P D ﬂﬂ U zﬂ under the
. i 1 2
structure ’kﬁl by Lemma 2.2. We may alsg assume that zﬂ
' : , , 1
intersects with ,ﬂu because /Jﬁ is sufficiently clagse to ,kpoo
2

-15 -
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Thus three axis £, , 4 and £ meet at one point. This means
1 2 #3 | -

that ‘k/l extends to a neighbarhoaod of v. If eyr  ©5 and e

do not intersect even at infinity but ﬂ3 is the product #1ﬂ2,

17 5 and P3 so that

P, N PJ = e, (i,isk} = {1,2,3} by Lemma 2.2. Again we may assume

then there are totally geadesic planes P P
that P1 N P2 N P3 = ¢ since **/1 is sufficiently close to )490-
Then by easy hyperbolic geometry, there is a unique taotally geodesic
plane P which intersects perpendicularly to all aof Pi’s. This
means that /)Ji extends up to dX where P comes down as a
totally geodesic boundary. UWhen e;» e, and eg intersect at
infinity, they form & cuspidal end. However mixing thase arguments
according to how cone angles are changing, we can see the claim.
When .kfo is a complete hyperbolic structure, we follow the last

argumenf usingyLemma 2.3 instead of Lemma 2.2.

Let us go back tao our situation. We had a tapoiogica]»space
(N, ZN); We first name their edges and circle components of ZN in
the same way as I above. Our starting point was that N - ZN
admits a complete hyperbalic structure. Let 24 be the holgnomy aof
this strutture, then po(ei)’s and pO(cJ)’s all are parabalic.
By Theorem 2.4, we have a small deformation of hyperbalic structure
keeping its combinatorial type constant so that a cone angle of each
axis increases if there is such an algebraic deformatiun. Thus we
may expect to have defaormation Pt to the structure so that the
cone angles around meridians are equal to '2z/ni ‘uhere ng is the
order of the isotraopy subgroup of the i-th akis af ZO’ provided
there is an algebraic deformation. It is nofhing but a hyper?o]ic

orbifold structure on O. This is impossible in general however
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this tells us the target of the deformation we construct. We thus’
wish to see how we can defarm algebraically next.

Let us denaote by @I the Fundamenta].group xl(N - ZN) =
xl(xo - ZO). Then Py can be Tifted to a representation to SL2C
by the argument in [CSJ]. Let R(I) be a complex affine variety
formed by all the representation of [I to SL2£. Then there is a

basic fact,

Thecrem‘2.5 s Let RO be an irreducible companent of R

containing Lo Then
dimERO 2 ~3x &) +m + 3

where m 1is the number of circle components of Z.

Proaof. See L[TJ or L[CS].

Let o be again a meridian of the i-th axis of ZO' Then
since “, . is assumed to be elliptic during a small deformation oy
of Theorem 2.4, trace pt(ui) = 2 cos 8/2 where 8 is a cone angle
at t. Thus the final target should have the value 2 cos x/ni-

Let f RO - Ck+m be a regular map defined by f(p) = (trace(ﬂl),
.+, tracels, ). Assuming that e,(x;) all are 1ift to SL,C
with trace = 2, we will find an algebraic path of deformatian
starting from such a representétian. Let L cck*™ be a complex
line containing p = (2, .., 2) and . q = (2 cas n/nl, vee, 2 COS

x/nk+m) and let £(t) be a real line in. L parametrized by t

such that £(0) = p and £(1) = q.

Theorem 2.6 : There are a complex algebraic curve D in RO

and a piecewise real algebraic curve 7 : [0, t) » D (0 < t £ =)
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(1) 7(0) 1is a holonomy of 3 complete hyperbolic structure,

(2> f(r{d)) = £(t) and

(3> 7 1is maximal under (1) and (2).

Proaf. Since #(edges of ZN) = k, #(vertices of ZN) = 2k/3

and hence Z(ZN) = -k/3. Since dimERO 2 —3I(ZN)+m+3, we have
dimeRy 2 k+m+3. Now L 1is of dimension ane, and hence each

-1

component of §7 (L) has dimension ) dimgRy-(k+m)+l 2 4. Take a

ccmpnnént C containing po. By Lok’s local rigidity CL31, a

neighborhood of sy in g1

(p) has complex dimension 3. We can
choose a camplex curve D in C which cun{ains Py and aof uhich
the image by f is Zariski dense in L. Then we are almost done
since F_l(ﬂ) no ?orm piecewise real algebraic curves with which

we can chaogogse a required path.

By Theorem 2.4 and 2.6, we eventua]]f get a defcrmation oy
hyperbolic structure alang the path in the Theorem 2.46. The
defarmation stafts at the complete structure and stays in cone-
manifald structures Reeping its combinatorial type constant. Let

t (£ t) be the terminal time where we cannot go over by geometr

0
deformation. That is the end of our deformation. If to > 1, it
means that we get a hyperbo]ic orbifeld structure on 0.  The rest
of our task is to see what happens otherwise. Thus we will always

assume in the ﬁequel that to £ 1.

§ 3. Limits of metric spaces
In this section, we quickly review Gromov’'s thebry uhichAuiTI

be used to analyze the limit of our deformation.

of

ic



Definitiagn ¢ Let X and Y be compact metric spaces. A
relation RC X x Y is an e-approximation between X and Y if
(1) prx(R) = X and er(R) =Y and
(2> For any x, x’ € X and vy, y’> € Y with xRy and x’Ry’, we

have [d(x, x*) - d(y, y’)] <e.

Definitign : Let Xi (i =1, 2, ... > and Y be metric
spaées. Xi canverges to Y (Xi - Y) 1if for any €, there is iO
such that if 1 > iO’ then there is an g-approximation Ri,a
between Xi and Y.

Propasition 3.1 ¢ Let X and. Y be compact metric spaces. If

there is gg g-approximation between X and Y for any e, then X

is isometric to Y.
Proaf. Choose {xi} C X so that far any n & N, the subset

of the first kn paints, {xl, ses Xy }, forms a 1/n-net, i.e.,

n
k
n - (n) (n) .
Ui=1 Bl/n(xi’ X) = X. Take Y € Y so that xilenyi . Since
Y 1is compact, there is a subsequence {n} D (nl} such that. Yl(nl)

converges. Define l(xl) ta be 1im yl(nl). Similarly take a

subsequence (nl} o (n2} such that yz(n2) canverges and define

(n,y)

I(x,) to be 1lim Yo 2°. This praocess eventually defines Il{xi}o

2
We claim that Il{xi} is-an isometry. To see this, fix Jj, k

<N sothat j < k. Then (n;) D (n) and I(x)) = lim yJ.(”J) =

(e and Itx,) = 1im yk(nk). For any n € (nk}, we have

, (n) (n)
relatians kal/nyk and XJRl/nyj

d(yk(n), ijn))l < 1/n. Since n can be arbitrarily large in

lim vy,
yJ

and hence Id(xk, xJ) -
(nk}, we have that d(xk, xJ) = d(yk, yj).

Obviogusly 1 1is continugus. Since {xi} is a dense in X,

we get an isometfy of X ta Y by extending I <continucgusly.



Corgllary 3.2 : If X, converges tgo compact metric spaces Y1

an Y2, then Y1 is isgmetric tao Y2.

Definition : Let (X, xo) and (Y, > be complete metric

70
spaces wWith base points. A relation R C X x Y 'is an
g—approximation between (X, xo) and (Y, yo) if

(1) there is y € Y such that xoRy and d(yo, y) < g,

(2 PPX(R) > B X, PrY(R) o B (yo, ¥) and

178 %0°
X) x B

1/¢e

(3) RN (B l/s(YO’ ¥)) is an e-approximatian between

176 oo
Bl/s(XO’ X) and Bl/a(YO’ Y).

Definitian (Xi, xi) converges ta (Y, y) if for any ¢,
there is iO such that there is an e—-approximation between (Xi,

xi) and (Y, y)> for all 1i > ige

Proposition 3.3 ¢ Let Xi and Y be complete metric spaces sg

that Br(xi’ X.) 1is compact for each i. If (X,, x.) converges

i i i B3 AEA A ER-A-0-1

ta (Y, y), then BP(y, ¥) 1is compact.
Proof. It is enough to show that B (v, Y) is totally
bounded. Let ¢ bé an arbitrarily small number. Then since (Xi,
xi) converges ta (Y, y), there is an e/2-approximation between
B.(x,, X,) and B_(y, Y) for some k. For each x € B (x, X0
take y(x) so that xRy(x). Then R(Ba/2(x’ Br)) c Ba(y(x), Br)'
Hence if we let (21, ces zm} be a e/2-net of B_(x,, X, ), then °
Br(y, Y) 1is covered by UJZI Ba(y(zj), Br(y)), which shows nothing

but {y(zJ)} is an g£-net of Br(y, Y.
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Coraollary 3.4 : Let (X, ;s Yy, yy) and (Y ) be

2 72
compact metric spaces with base points. Suppose that Br(xi’ Xi)

is compact for any r >0 and i =1, 2, ..., and if (X yy)

canverges t (Yl’ yl) and (Y2, Y2)’ then (Yl, Yl) is isometri;

-t__ﬂ_ (Yz’ Y2)v

Proof. BrFyl, Yl) and Br(y2’ Y2) are compact by Proposition
3.2. Thus oy the previous corgllary Bp(yl, Yl) and BF(yQ, Y2)
are isametric. Since r was arbitrary, (Yl, yl) and (Yz, y2)

turn out to be isometric.

Theorem 3.5 (Gramov [GJ) : Let {(Xi, xi)} be a sequence gof

complete metric spaces saog that BR(x.

50 i Xi) is compact for all R >

0 and 1. Then the faollowings are equivalent.

(1) There is a subsequence {j} € (i} so that (X, xj) converges

to a complete metric space (Y, y).

(2) There is a subsequence f{k} € {i} so that for any R > O and

€ > 0, there is a constant KR c sa{isfying

N(g,Bp(x,, X)) = min #{e-balls covering BR(xk,‘Xk)} < Kp oo

3 C

Where KR,s depends gnly an R and ¢.

Proof. That (1) ioplies (2) is easy. Let {k} = {j}. By
Proposition 3.2, BR(y, ¥} 1is compact For any R > 0. If k is
sufficiently large, there is on e/2-approximation betuween BR(xk’

X, )) and

X, ) and‘.BR(y,bY). Then N(&/2, BR(y, Y)) 2 N(e, BR(xk, K

k

we are dane.
Let us show that (2) implies (1). We may assume without lass
of generality that ({k} = {i} and X; 1is compact with diam(X,) <

. _ 5N -
2R by laocking anly at BR(xi, Xi). Let on = 2 and Kn Kan,R

which should be an integer. Let A be a finite set (am1m2'°’mn l

- 21 -
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m, is an integer with 0 ¢ m, < Kp—l where. p =1, 2, «v, n }.
Obviously # An = Kl,x e X Kn. There is a canonical embedding An

by identifying a with - a and hence uwe

< An+1 mlmz..mn mlmz..mﬁo

have an increasing sequence Al C A2 C .i. Now let A = G An.

Define a map Ii P A= Xi inductively so that Ii(An) farm an

e -net of X. satisfying I.(a ) € B (a_ ). Let F
n T i %myeem Epmy Myeem _y

be a set of real valued bounded functions an A with sup narm I I,

and define a map hi : Xi - F by Hi(x)(a) = d (x{li(a)) for x €

Xy

Xi and a € A. We claim that hi is an isaometric embedding.

Because for X1 %o € Xi, we have

M

2’

Hhi(x ) - hi(x Ii(a))i

1

5 sup Id(xl, Ii(a)) - d{x

g d(xl, X2)°

On the other hand, we can choose Ii(a) arbitrarily close to Xy
and hence

CIan | ) dix

sup Id(xl, Ii(a)) - d(x2,

1° x2).

Thus we are dane.

Let K be the subset {(rerF| lF(am)l { 2R for a, € Al’

and lf(am1’°mn¥1) - F(aml.;mn)l {e,_q forall ne N}. Then K
is compact. Since d(li(aml"mn—l)’ Ii(aml. mn)) < €n-1"
'hi(x>(8m1"mn—1) - hi(x)(aml..mn)l <&,y and hence h (X)) is

cantained in K. Thus there is a subsequence {il} C (i} so that

{hillil(aml)} converges for all am1 € Al since A1 is a finite
set. Taking the same procedure again and again, we get a chain of

subsequences (i) 2 {iy) 2 ... ~uwhere {hinIin(amimZ"mn)}
converges for all a € A . Let {j} be the diaganal

miMoeem n
sequence. Then (hjlj(am)} canverges for all a € A, and hence
let us define ¢(am) to be its limit and Y to be the completian

of {¢(am) ta e A}. Then obviously XJ converges to VY.
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We go back to the notation aof § 2. Let »p (0 £t <ty be

t 0

the deformation of hyperbalic structures constructed in § 2. UWe use
Ct to denote a hyperbolic cone-manifold at time t and we simply
denate (Xct, th) by  (Xy, £,). UWe wish to investigate what
happens when t - tO{ Since Ct 'is not a riemannian but complete
metric space, we may apply Gromov’s theory to this situation. Let

{tn} be a positive increasing sequence which converges to tO and

denate Ctn, XCt and th again simply by Cn’ Xn and Zn

f n n
respectively.

Propasition 3.6 : Let X be an arbitrary point in Cn. Then

there is a subsequence (k} € {n} sg that (C,.» %) converges to a

complete metric space (C*,y).

Proof. We use Gromov’s criterion. We may assume that Xn ¢ Zn

since we may change X slightly. Let Pn be a starshaped
fundamental domain of Cn. Namely Pn is an expansian in jH3
along the shartest geadesic segments fraom X Then

N{e, BR(xn, Cn)) { N(¢, B

R(xn’ Pn))
3
{ N(e, BR(XO,IH ))

The last term is bounded by a constant which depends only on €& and

R. Hence we are done by Theorem 3.5.
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§ 4 Injectivity radius and when it is uniformly bounded

The purpose of this sectiaﬁ is to define injectivity radius for
the hyperbaolic¢ cone-manifaold in general and to see that Cn must
have a thin part for sufficiently large n. Mare strictly, we sth-
that if {Cn} has unifarm lower bound of injectivity radius, then
it converges to a hyperbolic 3~cone-manifold, which contradicts the
definition of terminal time.

Following the previous sectians, we let C be-a hyperbalic
3-cone-manifald, II = 7{1()(C - ZC) and £ be its holonaomy.

Definition (Volume of p) : Assume first that 8C =¢. Let B
= XC - ZC and let p : B> B be the universal covering. Each
element « of 01 acts on B as a covering translation Ta
Denate the fiber product @ﬂHs/(Txp)(H> by E. Then the map gq : E:
- B defined by q([x,y1) =[xl (x ¢ B, y e1H3) becomes a fiber ‘
bundle aof fiber HS with the structure group = IsomﬁH3. Let D é‘

*IH3 be a develaping map. Consider a sectibn 5o ¢ B - E which

makes the diagram below caommute

id x D : B x H3
l /T l /Txp
Sg : B E .

This certaihly exists since D+*T_ = p¢o +D. Define wvol_ (p) to be
«a « o

fB so*(dv) where dv is a volume farm aof a fiber 1H3 of E.

Notice that vn]S (p) = val(B) = vol(C). In case QC # ¢, define

0
vol () -to be a half aof wvol (dp) where d¢ and ds
50 dso 0

correspand to the double of (XC, ZC).
Let us think of anather sectian Sy t B> E which still

catisfies the condition (AY ¢ let U be a fundamental domain of B(

- 24 — i




in B and think of s; as amap of U to E!U = U x H3, then

pr'Sl(X) = D(x) for x € XC -2 which is very close tao e

C
where pr  is the secand prajectian : U X$H3 AIH3. Then again by

the same farmula, we can define the volume volS (p) with respect
1
to Sy Howewver

Claim : wval () = vol (g).
51 50

Proof. Since IH3 is contractible, there is a hamotaopy Sy
cannecting £ and 54 such that S5t stays constant an a
neighbobhood of ZC' Then

* k
VDISO(P) - vo]sl(p) = [B S (dv) - fB 54 (dv)

*
= f (dv)

8 (Bx1) St

*
ds, (dv) = 0.

= g1 954

Thus volumes of ¢ with respect to a section are identical as

long as a section satisfies the condition (A).

Propgsition 4.1 voI(Ct) is uniformly bounded on 0 £ t <ty

Proof. Since vo](Ct) is a continuous function on 1, we
only need to check boundedness near tO' We may further assume that

c has no euclidean ends for ty -¢ <t <ty with sufficiently

t
small & because of our assumption that O has no baundary. UWe

may alsa assume by taking & sufficiently small that the

topological type aof (Xt’ Zt) stays constant. Let us denaote this

(3

topological space by (X, Z). Then there are homeomorphisms ht :

(X, Z) 4 (Ct, Zt)o

Take a triangulation K of (X, £) so that the l-skeleton
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contains I. We further take a second barycentric subdivision K"
of K. Then the intersection of £ and a 3-simplex af K" is
cannected. Let us take hy (X, ) - (Xt, Zt) 'sa that for a
’3—simplex T which intersects with Z, ht(r) is a hyperbolic
3-simplex, and ]et Kt be a topological triangulation h{(K”).

We now define a section s, : By = E, to ccmpﬁte volumes, Let
¢ ¢ By °

domain. Think first of a 3-simplex af Kt which does not intersect

D - H be a developing map and let U{ C ét be a fundamental
with Zt. It can be 1ift to Et‘ Since we can choose Ut
simplicially with respect toc the triangulation Kt’ we further can
assume that it is lift to Ut' Far such a 3—-simplex, define Sy S0
that Pres, becomes a straight map in }H3 fixing 4 vertices.
Think next of a 3-simplex A which intersects with Zy- Since such
a simplex is already hyperbolic by the definitian of ht’ sy can
be cananically defined sa that pr'-stlﬁ__zt = DIA_Zt.

By definitian, S4 satisfies the condition (A). Hence
vnl(Ct) = VO]st(pt) < nvs, where n = # 3-simplices of K and V3
is the volume of a regular ideal 3-simplex.

Definition : An e-ball B_(x) in a hyperbolic 3-cone-manifald
is standard if it is one of the followings,

(1) around axis of elliptic,

— 26 —



(2) % on the boundary,

o
&

(3) x 1s a vertex of Z.

N>
x

Definition ¢ Let C be a riemannian 3—cnne—mahi?o]d. Then the
injectivity radius at x € C, denoted by 1inj(x), 1is the supremum
of € so that there is an e-standard ball containing x. Such a
ball may not have x as a center. Do not confuse ! For ¢ > O,

define the e—-thick part, C to be all the union of

thick(e)’
standard e-balls in C and the e-thin part, Cthin(a)’ to be the
complement of the thick part.

Again go back to our situatian. Recall that tn is a positive
increasing sequence which converges ta td and {Cn} is &
corresponding sequence of hyperbalic 3—cane—maniF01ds which
converges to a metric space C* in Gromov’s sense. Notice that C*
is not a hyperbalic 3-cone-manifold with AC* = fXU, ZO) because aof
Theorem 2.4, 2.6 and the definition of t

Theorem 4.2 ¢ If there is an ¢ >0 so that C. ypiiey = ®

- 27 —
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for all n, then there are a subsequence ({k} € {n} and a

hyperbalic cane-manifold C* with AC* = (XO, ZO) such that Ck

converges to C* and alss P, converges to p* which is the
In.p

particular, this cannoct happen.

holonomy of C*.
Proof. By the construction of Cn’ there are a uniform lower |
bound of cone angles and a uniform lower bound of 2r-(a+B+7) where
«, 8, 7 are cone éngles argund a vertex. Thus there exists a |
nonzero unifarm lower bound of the volume of £/2-balls in Cn' On
the other hand, we have vnl(C{) < x by Propasition 4.1. Let m
be a number of 5/2—bajls which pack Cn' Then by taking e-balls
with the same centeres, we get an open cover and hence we have N(e,
Cn) £ m e This implies that N(e, Cn)vO £ m. Vo £ va](Cn) $x, and

hence N(e, Cn) < /v This shows that diam(Cn) £ 2ex/v

OQ Oo

We now come to the situation where we can use Propogsitiaon 3.3.

Taking a sequence x_ € Zn, we get a subsequence {(k} € {n} which
makes (C , x ) - converge to (C*, %x*). Then since diam(Cnﬁ R,
diam(C*) ¢ R. This shows that BR(x*, C*> = C* and hence C*
turns gut ta be.cnmpact by Proposition 3.2. Furthermore C* dose
not depend on the choice of a sequence X by Proposition 3.1. UWe
let Rk be an ak-approximatidn between Ck and C* where ey > 0

when k - @, and for any y € C*, we‘let Y be a paint of

-1
k

R, IBs () between By (v,) and Bs(y).

R (y). Then for any 6 > 0, there is an ek~appr0ximation

Case 1 : There is a subsequence {j} C {k} so that d(yJ,‘vJ>

- 0 Wwhere vJ’s are vertices of ZJ corresponding to some vertex
v G.ZO. If we let aj, B\j and TJ be cone angles around VJ in
C;» then they must converge to a, B and 7 respectively and

Bé(yJ) approaches a standard 3-cone-ball illustrated below,



‘dj Y | , O{J Q{B
> (BJ —
477

| %) Ly
Since the limit is unique, Bé(y) must be isometric tao this

standard 3-cone-ball.

Case 2 : There is a subsequence {j} C {k} so that Sdly, e
-» 0 when | 2 = where eJ’s are edges of ZJ corresponding to

sgme edge e C ZO' By the same argument as in the case 1, B (y)

)
must be isometric toc a standard hyperbolic 3-cone-ball ar a half
3-cone-ball according to whether 1im d(yJ, 8CJ) is positive or

zerg.

&

o ol
__-> b 4
Yy =

J N
\

NL_‘ ~
e | ™~

Case 3 : There is a constant ¢ such that d(yk, Zk) > ¢ for
all k. Let m = min(d,¢), then Bn(yk) is isﬁmetric to a
possibly truncated standard hyperbolic ball. Hence Bn(y) also
must be a possibly truncated standard hyperbolic-ball, and in

\

particular, vy .is in a standard 3-ball or a half 3-ball.
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Thus we have proved that C€* 1is a hyperbolic 3-cane-manifold.

Moreaver we have &hown that the relation Rk carrespands the

singular lacus Zk tao ZC*‘ and the boundary @4C to aCc*. Ue

Kk
then show that (XC*’ ZC*) is homegmorphic tao (Xk, Zk) far
sufficiently large k and in particular, QC* = (XO, ZO). Take a

“hyperbolic triangulation K of C* so that o« 1s contained in.
the l-skeleton of K. Then every four vertices which span a
3-simplex is lacally in general position. Since C* 1is compact,
there are anly finitely many vertices. Define a hameagmorphism of
{vertices of K} to Ck> by corresponding a vertex v to any w €
C, which is related to v by R,. Since {vertices of K} is a
finite set, the image of four vertices which form a simplex by this
map is still locally in general positian for sufficiently large k.
Thus they span laocally a hyperbalic simplex in Ck and we get a
hyperbalic triangulation of (Xk, Zk) which are combinatorially

equivalent ta K. In particular, (XC*’ 2 %) is homeomorphic to

C*
(Xk, Zk). This completes the proaof.

§ 5 Noncompact euclidean 3-cone-manifalds

When thin part dﬁes not Qanish, we must lgok at what haépens
when inJ(xn) - 0. To see this, we look at the geometric limit by
rescalring its metric by l/inj(xn).- In this case, the metric in
the limit beFomes flat. If furthermore inj(xn)/diam(Cn) - 0, then
as we will seé later, it becomes noncompact euclidean 3-cone-
manifold with cone angle { m. The purpose of this section is to
classify thase.

Let E be a noncompact euclidean 3—coné—manif0]d with cone

angle { = and p be a base paoint in E. Then tlet PP' be a



a starlike fundamental daomain C]E3 centered at p.
Claim : Pp is convex.

Proof. Exercise !

Let Br(p) be ‘an r-ball centered at p and let Sr be its

2

poundary 8Br(p). We call area(Sr)/r the visual area af Sr'

Let A(t) be a visual area of S Then it is monotone

exp(t)’
nonincreasing function since Pp is convex.

We call the following singularity a crease and their

intersection paint a valley.

CYease Crease

T Crease

Vauy

We will see hou the crease and valley contribute to A(t).

Case 1 ¢ Crease. Look at the picture belaw.

We can see that tan a approaches Ar/w when Ar = 0. Let s be
the length of a crease in question. Then ‘area R1 = area R2 = area’

R and we have



- _ 2,2
Area(Sr+Ar) = (area(Sr) 2 area R){(r+Ar)~=/r~.
If we let V(r) = area(SP)/rz,
V(r+Ar) = V(r) = -2 area(R)/r2.

On the other hand, areaf(R) 1is approximately equal tg sw and
hence <sAr cot a. That implies the derivative dV(r)/dr =

-25 cot a/r?. Since A(1) = V(r) and r = exp t, we have

A(t) = -dV(r)/dy-dr/dt = =25 cot a/r.

- area(R)/r2,

Case 2 ¢ Valley. Again since V(r+Apr) - V()

area(R) has the same order as (Ar)z. Hence V(r) 0 and the
valley does naot contribute the change of A(t).
We have shown by these observatiaon that A(t) is.

differentiable except when the crease is newly praduced.

Proposition 5.1 ¢ If A 1is constant for all t, then E is
of ,
Y G
@ P o 3
P —2 oo [E
T~

Progf. Since the visual ares of Sr is constant, the crease
cannot be. produced in the process. This means that SP intersects
with neither itself naor a singular locus. Hence the only possible
euclidean cone-manifold uwhich passesses such a base point is the

above three.
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In what follaws, ue‘afe concerned with the behaviar of A(t)
as t - = tog see what the end of E 1looks like.

Let P be a (non geadesic) n-—gon in'\E3, K a Gaussian
curvature, dA an area form, ’kg a geadesic curvature of 4P.
Then by Gauss Bannet, we have

@,

—fPKdA=/ | %

M2

ap kg ds + (n-20x - .

where a; is an angle of the i-th vertex of P. This is the
general formula.

Let us now divide Sr by n;-gans Pi’ 1 {1 f, so that

each crease is contained in saome aPi and each valley 1is contained
in the vertices of same Pi‘ Let I' be a l-complex which consists

of U aPi. Denote #{edges af Pi} by m. and #{edges of T} by

m. Then m =2 mi/2. Alsao denote #{vertices of T} by n. At
each vertex Vj gf 'y finitely many Pi’s meet, Let us denate

them, say, by P. , .. P. and also denote each angle of P, at

vJ by aJi' aj = aj1+"'+ajk is the taotal angle centered at VJ-

It is aobvious that 2 aj ie equal to the summation aof all the tatal
J

angles af Pi’s at vertices. Also notice that each aj is 2%

unless vj is a valley.

Again by Gauss Bonnet,

I I I

1 2
(i) » i
-2 [oK.dA. = T S k ds + 2 (m.-2)m = 2 a,.
j=1 Py yzy TPyl =1 1 j=1 Y
We interpret each terms. Since -Pi is on Sr’ Ki = l/r2 and
hence
= oy p2 =
11 = ~area(8r)/r = -A(t).
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Think of I2 next. On each nansingular edge aof I where Pi
(i) (Jj)
q and kg

needs only on the edges which are crease., Let €y cevs eq be

PJ meet, k are cancel gut. Thus the integral

and

edges of I' which are crease and let Sys v sq be their length.

Since the crease is on the circle aof radius r sin «, we have
= 1/r sin a. Thus kg(s) = -cogs a |r"l = (-1/r)cot a and
q . q 2s. )
Io= 2 [/ _ kg(l) = -2 “Fl cot @ = A(t).
i=1 e U e i=1

Finally we haQe

3 .
I, = (m,-2)r - o,
S TR j=1
n
= (2m-2f)x - 2nw + 2 (ZR—aj)
. Jzi

n
272 (S ) + 2 (2nx-a )
r =1 J

The following is the derivative formula we have obtained.

(A) A(t) = 272 (S ) - A(t) -

Mo

exp (1) 1(2”'“47‘

J
"Remark : Choose a base point p € E. For‘a paint x € BPP,
Tet v be the ray which runs froam p to x. If d(p,x) = =,

then 8PP and v, becomes gradually parallel. Simultanecusly

and 8Pp intersect gradually perpendicularly each other.

[r

S

Think of é polygonal division of Sr naturally arisen in the

we

r

fundamental domain. Let P be a fundamental polygon. of Sr which’

is contained in Pp. We have by Gauss Bannet that

0 > —/P K da = /BP kgds + (n=2)zn -

nmMs
@

i
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yhere m = # of vertices of P and 91 is an angle aof the i-th
vertices. We claim that the first term approaches zero when t = =.
This is because kg approaches zero with order r72  however the
length of 3P approaches = with order r. Hence we have that for
any & » 0, there exists tO sag that

n

2 (t—a.) < 2n+e.

‘o i

i=1

When ajl’ e, ajk\ meet at valley Vj an Sr C E where aJ1+...

gy £ 2n, we must have

N Mx

; 1(z~aji) = kx - (ai1+...+a1k) 2 (k=207 .

Thus if we take tO sufficiently large, then the summation of the
left hand side in terms aof | must be less than 2rx+e by the

-

previous inequality. That means k <can be at most 4 .and moreover

if k=4, then 1 which means there is anly one wvalley, and

if k

3, then j £ 2 wuwhich means that the number of valley is
less than three.

We rewrite the formula by

ACt) = 2rx (S - A(t) - P(t) - Q(t),

exp (1)’

Wwhere P(t) 1is contribution of valleies which are not contained in
£ and Q(t) is contribution of S N Ec. Notice that lim P(1) =
0 (t »=®), This is because when t gaoes to «, each crease
aPProéches geaodesics and hence the tota] angle around the valley,

whase number is at most two, tends to 2x.

Proposition 5.2 ¢ E has at most two ends. If E actually has

two ends, then 'E is a product of a compact euclidean 2-cone-




SRS

manifold and a l-dimensional euclidean space. [More precisely E is

gne of the followings.

s* g S
X E' X [E’ sz LEl
) |
(Xi‘ﬁ’*‘wn‘jﬂl

Proof. For each end of E, we can choose a ray in Pp from
p to infinity. So éiven two ends, we have twag rays vy and Vs
which tend ta each infinity. Suppaose vy U v, is not a straight
line, then since Pp~ is convex, a convex plane bounded by vy U Vo
is contained in Pp and we cannat have a compact face which
separates given ends. This shows that E has at most two ends and
if E actually has tuwo ends,'then corresponding half lines fcrm a
straigh{ line in PP.

Suppose E has two ends. Then since any face of PP~ does nat
intersect with vy U Vo it must be pgra]]el to vy U Voo Maoreover
since E actually has two ends, the faces of PP must surraund vy
U Voo Let Q@ be a 2-dimensional polygon which intersects

perpendicularly to the faces. Then 8Q must be glued with 3Q wvia

the identification of Pp to produce E because PP is starlike

and hence the identification does not contain the translation factor

along ul U Voo This proves the propositian.

In what follous, we will be exclusively concerned with E with

only ane end. In this case, S is connected if t is

exp(t)

sufficiently large.

- 34 —
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Propgsition 5.3 ¢ (1) There exists tO such that (S )

exp(t)
is nan negative and increasing far t 2t

0

=0 for all t 2 tys then there is no axis of

(2> 1f z(sexp(t))

ZE Wwhich tends to infinity.

(3) If there is t

®
I

to sg that (S ) =2, then the number

) exp (1)
of axis of ZE which tend tg infinity is ¢ 4. Moregver if it is 4,

then their cone angles all are equal to =x.

Proof. RecaIJ that we have s faormula

A(t) = 2721 (S - A - PO - Q)

exp(t))

where the last three terms are ngn—-negative.

First aof all, z(S ) is constant when t is sufficiently

exp(t)

large because then 428 intersects with Pp in almost right

exp(t)
angle and there is no chance to produce or to reduce genus. If

¥ (S )y < 0, then‘ A(t) < const ¢ O far all t > tO and hence

exp(t) v
A(t) becomes zero when t 1is sufficiently large. This means that
E 1is compact which is out aof ocur argument.

If z(s ) =0, then A(t) (- Q(t). If there is an axis

expft)
which tends to infinity, then A(t) -(2n-a) { -& where « is its
cane angle. then again by the same reasan, E becomes campact
which is out of our argument.

Assume that we have the cpndition of (3). In general lim P(1D
=0 (t-=). Since E 1is noncompact, there is a diverging
sequence {tn} so that 1im A(tn) = 0. For this sequence, we have

@(tn) < 4n+e (¢ =» O when n = «). Let €1y ceey € be edges of ZE

which tend to infinity. The summation of angles araund

ej N Sexp(tn)’ denoted by aj, is obviously more than the caone
angle zJ of eJ. Hence we have
. k k
dr+e > Q(t ) > T (2n~a.) P T (2m-:.) 2 4m .
T =t 7= $oE

- 37 —



Hence k g 4, Maregver if k = 4, then since 2n—zj =gx, the caone

angle of each eJ must be =x.

We are now ready to classify noncaompact euclidean 3-cane-
manifolds with cone angle L.

Case 1 : ZE = ¢. E 1is then a noncompact euclidean 3-manifold.

Namely, E =!E3/F where [ is a discrete subgroup of IsomQE3).
When [ 1is trivialg then E =lE3. When T is cycltic, then E is
S1 xlE2 where the product may be tuisted.- Far the rest case, there

is an abelian group I’ of T af finite inde# which are generated
by translations. Since E is noncompact in our case, I’ is
isamarphic ta Z x Z. Alsg since ZE # @ and E has only one end,
E must be a twisted product of & Klein battle with the
1-dimansional euclidean space.

Case 2 : ZE cansists of lines. Since there are at most four
axis which tend to infinity’by Propasition 5.3, ZE must consist of
one or two lines. Also we may assume that there is an increasipg

2

sequence (tn) so that S = §“.

exp(tn)
(1) UWhen ZE consists of a line. Take a base point p on

z Then since an g-~ball is standard if & is sufficiently small,

£
we have A(log &) = 4n(a/2n) = 2x. On the aother hand, we do have
ACt ) = 4n - A(tn) - Pt ) - QCt ). UWhen n o=, ACt) >0, Pt
- 0, ‘Q(tn) - 4n-2c, and hence Alt D = 2x. This shows that A
stays constanf and we arerdone by Proposition 5.1.

(2)  UWhen ZE cansists of two lines 11 and 22. The cone
angles both must be =x by Praposition 5.3. Let p be the center

of the shortest path connecting 21 and 22, Since their cone'

angles are =, Pp must be contained in the following picture in
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A lz

Since aother face af Pp does not intersect either 21 ar 22, Pp
is actually equal to the picture sbove if ﬁl is not parallel to
Lo When Pp does not have anather face, then Pp is still the
same even if £, is parallel to L,
Thus assume that PP has another face and ﬁl is parallel to
Lo Let Q@ C Pp be a hyperplane cut which intersects vertically
with ﬂl and 22 éhd which contains p. Then by the same reasan
as before, 09Q is identified with itself by the identification tao
pqoduce E. Let @ be a 2-cone-manifold obtained from Q@ by
identifying edges containing QN 21 and @ N 22. Q@ is still
convex and hence Q@ must be a rectangle and further more each

2

vertex must have angle =®/2. Therefore Q@ becames P with twao

cones of angle =m after identfication. This impfies that . E 1is a

twisted product of P2

with two cones of angle =z and the
l-dimensignal euclidean space. |

Case 3 : ZE consists of circles. Take a base paint. p on a
circle of ZE with cone angle «a. Since PP is divided at the

antipaodal point of p on the circle, it is contained in the picture

belaouw,

- 39 —
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<. Rc

When Pp does not have another face, then E must be the product
of a circle with a 2-dimensional agpen disk with a cone of angle «.
Suppgse that Pp has another face. If «a # m, then since
a hyperplane cut \S illustrated in the picture becomes compact by
convexity of Pp, E itself alsoc must be compact. This is out of
our argument. Thus we assume that «a =7x. Let v be a ray from
to infinity. PP is still canvex after identifying faces alang
singular locus containing p and hence anaother face must be
parallel to v. Since a hyperplane cut which is vertical to these
faces has genericalTy no intersection with a singular locus, it
turns dut to be either a torus or a Kiein bottle after final

identification. Hence we can have the fallowing two cone—-manifalds

as

Case 4 : Z

consists af the uniagn af circles and 1ines‘and

E
hence it has no vertices. Take a base paint p on the circle of



41
Tce Then we do have the same picture as in the case 3.

/P’
P

By Praopositian 5.3, the number af axis of ZE which tend to
infinity‘is 2 or 4. Suppose we have tyo such. If we rechoose a
base point p an this line, then by the same argument as in the
case 2, A(t) stays constant and ZE cannot have circle. Thus
assume that we have 4 axis which go to infinity. Again by
Proposition 5.3, their cone angles all must be =x. Since they are
on the face of Pp, they are paraltlel ta v. This shows that a

2 Lith 4

hyperplane cut S which doges not contain p becaomes S
cones aof angle 'x after identification. We can draw the picture of

PP as fallaous. S

it

Hence E must be

Case 5 : ZE has a unique vertex v and moreover each edge
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from v goes to infinity. If there is another line which goes to
infinity, then we get at least 5 axis which tend to infinity. This
contradicts Propagsition 5.3. Hence any other companent aof ZE isg a
circle. Let us take 'p to be v and let the cone angles around v
be «, B, 7T respectively. Then A(l) = a+8+7-22 for
sufficiently small t. On the other hand, as t 5 =, St

intersects only with three axis. Recall that there is a diverging
sequence {t )} so that A(tn) - 0 when n = e since E is
noncompaét- Far such a sequence, we have 4x - A(tn) - @(tn) - 0
when n - =. Since Q(tn) - (2r-c)+(2x-8)+(2x-7), lim A(tn) =
a+B+T-2x. This shgows again that A(t) stays constant since A1)

was monotone nonincreasing. Hence E must be

by Proposition S.1.

Propgsitiaon 5.4 ¢ Let @ be g'spherical 2-cone-manifold

2

S (a,B,T)-

(1) 1f «, 8, 7 { ®, then its diameter is { . In other words,

d(p, q) { /2 for any p, 9 € Q.

(2) I1f furthermore a, 8 < m, then its diameter is < x. That is
to say, d(p, 9) < = for any p, 9 € Q.

e assume that the curvature of Q@ is 1.
2

xI
®
-

Proof. Develop Q@ on S and enjoy your spherical geometry

- 42 -
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Case 6 : Otherwise.

(1) If X contains an edge which is closed at the vertex v.

E
The other edge from v must go out to infinity. Take a base point

on the center of the closed circle and we get a fundamental dmain
Y
; F

- P

p

PP as follouws.

D)

A

The lines vy and Vo in the picture, which come down to the other
edge fraoam v, must intersect perpendicularly to the edge containing
p since atherwise PP becomes compact. Alsa vy must be parallel
to Vo again since otherwise PP becomes compact. - Suppase that «
< . Then it produces a cone of angle > 2x after identification.

This is.contradiction and hence «a = z.- Thus Pp is the product of
a fundamental domain of & 2-cone-manifold and [O,»). A hyperplane
cut which does not contain p becomes an euclidean 2-cone-manifaold

and hence E must be

(2) ZE cantains at least two vertices and.does nUt contéin

and edge which is closed at a vertex.

Claim ¢ There is an edge which connects two vertices.

- 43 -
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Proof. Otherwise either there are 6 axis which ac to in?inity.

Take a base point p on the center of the edge in the claim.

Then we have g picture of Pp as follows.

v

L \Eo
\JYkﬁ
s

If 8, 71 <=m, then applying Proposition 5.4 to an e-sphere

centered at v, we have that & < m/2. This implies that PP is
compact, which is out of our argument. Thus we may assume that 8 =
x. Suppose « < ®, then again by Proposition 5.4, 6 < z#/2 unless
7'= m. Since the case 6 < x/2 is out of our argument, we may
assume that 7 ==.

(a) When a <x and B8 =7 =xr : There cannot be anqther

face. Thus E 1is

(b)Y When a =x ¢ Let us name the cane angles as follouws

— 44 —
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yhere either 8, or 7, and alsg either 8, ar 7, are =.

(b=1) when 71 = 72 =n. If Ul is naot parallel to Vo

then there cannot be another face and hence we have

’1/,
TC

—7 yz ‘ “IC

- T

When vy and Vv, are parallel and there are na‘other face, the
picture ui11 be the same as abave and we are done. Hence assume
that vy is parallel to Vo and with anofher face. Then such a
face must be parallel to a hyperplane cut containing vy and Voo
Thus Pp turns out to be a product of a double of a compact
euclidean 2-cone-manifald along an edge and [0,»). Since the cone-
mani?o]ds we discuss in the next case have the same type of the
fundamental domain, we leave a classification of this case by the
end of (b-2).

(b-2) When Tl <=z (72 = Bl = ). Then vy must be parallel
to Voo Because if not, and further if 75 ( z, then E becomes
compact, which.is out of our argument. If 72 = x, then two lines
which are the intersection of the roaof of Pp containing v, and
the base of Pp, is nat paralﬁe] ta Voo Thus E becomes compact,
is

which is again out of sur argument. UWe have shoun that pl

Paraliel to Voo Thus Pp is a product of a compact half euclidean
2-cone-manifold along an edge and L[O0,=). Ue noQ classify
noncompact enclidean cane-manifolds having a fundamental domain of
this type. First notice that there are three compact half euclidean

2-cone-manifolds illustrated below.

- 45 —
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T £ —

G(+F+3’=17Q 20(+(Q = 2.‘7C;

Summarizing the arguments above, we have

Theorem 5.5 ¢ Let E be a noncompact euclidean 3-caone-

manifold with cone angles { . Then we can choose a fundamental

domain P of E  in the followings.

(1) A product of a compact euclidean 1-grbifold and & noncompact

euclidean 2—coﬁe—manifuld.

(2) A product of a noncompact euclidean l-grbifold and a compact

eucl)idean 2—cone—manifuld.

(3> 0One listed in Proposition 5.1.
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§ 6 Rescaling geametric limits

The following propostion is a key for analyzing injectivity

radius of cone-manifolds.

Propgsition 6.1 ¢ Let C be a riemannian 3-cone-manifald with

constant curvature -1 { K £ 0. Suppose there is a caonstant K, > O

1
¢g that the angle of each elliptic axis is greater then K1 and

less than or equal to =® and the sum of three angles gf elliptic
axis which meet at a vertex is greater than 2r + Kl' Then given R

and K2 > 0, there is a constant § > O which depends only on R,

Kl' K2 and does not depend on C g that if inj(x) > Kz, then

inj(y) > & for any vy € BR(x,C).

Proof. We split the argument into three cases. The first ane
is when y is a vertex of I. Let r, be sﬁp( r 1B .(y) is
standard }. We then further split this case inio two parts.

Case 1-a) UWhen BBPI(y) contacts some edge of . Let p be
this contact point and let q be a central point of the segment

connecting p and y. Develap C centered at q. The following

is an abstract picture of this fundamental domain Pq,

Y
f&v

"By Proposition S:4, the both angles indicated in the picture are at
mast =z/2. Now since 1ipj({x) > K2 by the assumption, there is a
paint «x in C so.that B, (x.) 1is standard and contains x.

0 K2 0
Think of a ball of radius r1+R+2K2 centered at 4q. This obviously

cantains B, (xx) and we get the inclusion :
K2 o
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B (q) O BK (xo)

r1+R+2K2 5
The volume of the right hand side is bounded from below by some
constant which depends only on Kl since that is a standard Ba]].
However the volume of the left hand side approaches zero when r4
goes to zero. That is contradiction and there must be a lawer baund

of in terms of R, K and K

! 1 2°
Case 1-b) When 8Br (y) contacts itself. Let p be this
1
contact point and develop C centered at p. Then we get the
fallowing abstract picture and again by Propaosition 3.4, we have

angle conditions indicated in the picture.

P

~ Z |3
P2 s
N AR

The same argument as in the above can be applied to this case.

We then discuss the second case when y 1is on the edge ei af
. Let r, be sup{ r | B.(y) 1is standard }. We may assume that
the distance between y and any vertex of X is bounded by a
lower bounding constant 54 af ry obtained in the previous case.
That is to say, ry £ 51/2. We further split this case into two
parts.

Case 2-a) aBrz(y) contacts an edge €5 of . Let p be
this contact point and let q be the central point of the segment
3, connecting y and p. Then develop C centered at q and
dengte it by Pq. Imagine that the face F of Pq cantaining e,

is almost parallel to ey when the angle between e and the

segment connecting y and p 1is near n/2. Let €(r2) be 'the
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angle between O and =xn/2 so that cos'ﬁ(rz) = 2r2/s Then

K
9(r2) approaches =n/2 when ro goes ta zera.

Suppaose that there is a sequence af ro of this situatian
uhich converges to zera. Furthermore suppose carrespanding angles
g’s all are greater than 9(r2)’5. Then since F becomes almost
paralliel to ey the volume of BR+2K +p (q) approaches zerg when

2 2
goes to zera. This is again in contradiction with the inclusian

r2
of the standard ball. Thus s has a lower bound and we are done.
If corresponding angles &’s all are less than €(r2)’s, then the
argument will be a‘litt]e bit complicated, however we can deduce to
contradiction. Let a; be the shortest segment in H connecting
e, and e,. Ue are thinking that P_ is in IH>. If there is no
singular locus in the rectangle bounded by ey €5y 3y and ay,
then developing C centered at the midpoint ¢’ uf .al, we get a

ball Br +RHK (q’) whose volume converges to zero when length a; g

s gce52t0 zzro- This is in contradiction with the inclusion of a
standard ball. Thus there must be a singular locus es fn.the
rectangle. UWe may assume that the distance between the intersection
paint oF"“e3 and the rectangle and either e, or e, is £ r2/2-
Choose one that satisfies the inequality and do the same argument as
above to this locus and eé. The situation is completely same as
one at the beginning of the prévinus argument except‘that the
distance_between two edges is less than r2/2 < 51/2, which is a
half of the original situation. Do the same argument again. This
process terminates by finitely many steps and we find the shortest
segment a connecting tuo singular loci in C within a small
distance from y. More precisely, d(y, a) < ; 51/2k = 5y Thus

k=1
by choaosing the central paoint q aof a and develaping C centered
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at g9, we get a ball B2r2+R+K2(q) Auhose vaolume converges to zero

RS Ry

when ro goes to zero.. This is in contradiction with the inclusian

of a standard ball within a small distance from v.

We remark to clarify the situatiaon that the }ength of a,

. . . . 4
cannot be zero in the above process since if it happens, then e,

and &1 have a cammon vertex which is contained in Bs (y). That -

1
contradicts the assumptiaon.

Case 2-b)  UWhen 8Br(y) .contacts itself. Let p be the
contact pocint and develop C centered at p. We get the almost
same fundamental daomain PP as in the previous case.  Actually the
same argument can be applied tao this Pp.

Let S5 be the minimum of the lower bounds obtained in the
previous two cases. Then actually for any point vy 1in the
52—neighburhaod of £, 1inj(y) 1is greater than Soe The last case
is thus the following.

Case 3) UWhen y is in (C - #L_ (£)) N By(x). Let

. 2
sup{ r | Br(y) is standard }. We may assume that

r3 be

ra < 52/2. Then

B. (y) looks like the following picture :
3

P

Let « be a homotopy class of a loop indicated in the picture. «a
represents some transformation g in the holonomy group. Let £
be the axis af g 1in case ‘g 1is naot paraboiic. Suppase that
either g is parabolic or d(p, £) 2 s,/2. .Then develop C .

centered at . y. The faces Q@ and Q@ of Py containing the
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deve10ped'images of P becomes almaost parallel when ra is very
emall. In particular, if ra is not bounded by same constant, then

the valume of B (y) approaches to zero when r5 goes to

r3+R+K2

zero. This is in contradiction with the inclusion of a standard
ball within a small distance from vy. Thus we may assume that d(p,
g) < 52/2. Then £ is freely homotopic to « in C because of
the distant assumption. In particular g 1is not elliptic. Thus by
developing C centered at a point an £, we get a thin fundamental
domain. The length of £ cannot be arbitrarily small by the same
reason. We thus get a lTower bound aof r3 Wwhich .depends aonly on R,

Kl and K2" This finally completes the praoof.

We now follow the notation in the end of § 3. Namely we have a
positive increasing sequence tn which converges to ~t0 where a
cone-manifold structure degenerates. That means Cn canverges to.
some degenerate metric space in Gromov’s sense.

Since we will deal with the case when thin part does not
vanish, by rearranging a sequence, we may assume that Cn,tsin(l/n)
# . Choose a base point x_ from the 1/n-thin part of C_.

n
Rescaling Cn by a homothety of multiplying l/inj(xn), we get a

cone—-manifaold (En’ ;n) of constant curvature —(inj(xn))z. Notice
that inj<§n> = 1.
Propasition 6.2 ¢ There is a subsequence (k} € {(n} sg that

(En’ ;n) converges to a complete euclidean 3-cone-manifold (E, ¥)

other than one listed in Proposition 5.1.

Proof. By the previous propasition, given R > O, there is 0

(D)) = @. Think of a sequence of coner

so that  (Bp(x,s € 94hins)
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manifaolds {BR(;n’ En)}. Then by the same way as in the proof of
Theorem 4.2, there is a subsequence which canverges to a euclidean
3-cone-manifold with boundary. Since R «can be taken arbitrarily
large, we have the limit euclidean 3-cone-manifold (E, y) by the
diagonal argument. Since inj(y) must be equal to 1, E cannsat

be one listed in Proposition 5.1.

§ 7 When thick part live

In this section, we deal with the case when there is ¢ so

that ¢C # ¢ for all n.

n,thick(e)

Choose a base point X in the thick part of C,- Then
slightly modifying the argument in the proof aof Thegrem 4.2, we get
a subsequence {k} € {n)} so that (C_, x, ) converges to a complete
hyperbolic 3=cone-manifold (C*, x). Thus we assume from the
beginning that (Cn, xn) converges to (C*, x) and see how the end
of C* looks like in the belou.

Case (i) : each component An of Zn stays in the thick part
or tends to inFinity. More precisely, there is & > O and Ny > 0
so that An is in the d-thick part of Cn faor all n > ng or for
any 8 > 0, there is ng so that A~ does not intersect to the
6—-thick part of Cn for n > Ny Then choose a decreasing sequence

{6n} which converges ta O and let Bn be the difference

c Then Cn converges to C* and the

n,thin() ~ Cn,thin(dn)'
6-thick part converges ta the d-thick part of C* and Bn
converges. to B where B is the 8-thin part of C*. Since B
does not intersect with the singular locus, it consists of finitely

many toral cusps. We will see in Praposition 7.2 that this case

cannot occur in fact.
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Case (ii) : otherwise. That is to say, there are a subsequence

(j} € {n} " and a decreasing sequence (5j} and a component AJ of

J
B(Nj,thick(dj)) N ZJ. Then by the similar methad in the proaof of

Zj so that a(cj,thick(éj)) N AJ # ¢. Choose a base point y. an
Proposition 6.2, we have a further subsequence satisfying

Propogsition 7.1 : There is a subsequence {k} € {n} so that

(Ek, ;k) converges to a nancompact euclidean 3-cgne-manifold (E,

y) with non empty singular lecus. E has the properties that

every cone angle of the singular loci is £ and that inj(y) = 1.

Recall that the fundamental domain of a noncompact euclidean

3-cane-manifold E of cone angles < = has one of the following
forms. Type a) (compact l1-dimensional) x (noncompact
2~dimensioné]). Type b) (noncompact 1-dimensional) x {(compact
2-dimensional). We further split Type a) into two cases.

(a~1) When (E, y>» is isometric to (2-dimensianal apen disk

with a cone of angle £ ®) x 81. For given R > O and ¢ > O,

there 1is k0 so that there is an e—-approximation between (BR(;k.

Ek)’ ;k) and (BR(y, Ed>, yv) far all k > ko. They actua]]y

homeomorphic each ogther for sufficiently large k by the same
argumént in the end of § 4. Take R to be very large. Then since
inJ(?k) =1, 1inj(y) =1 and hence 2  has length 1. Since vy 1is

on £, B (y, E) is standard, that implies Bl<§k, Ek> being

standard. Hence for any z e 81(;k’ Ek)’ we have inj(2) 2 1.

This means that inj(z) 2 6k far any z € B (yk, Ck). On the

)
k
other hand, since Y, was on the baundary aof the dk—thin part of

Ck’ there is 2z € Bék(yk’ Ck) so that inj(z) < 5k. This is
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cantradiction.

(a-2) When there is an edge of ZE_ whase cone angle is =x.
This means that the deformation along the patb reaches to the final
target and C; is a complete hyperbolic 3-arbifold aof finite
volume. Thus by a theorem of Margulis, there is § > 0O so thatfthe
6-thin part consists of finitely many cusps. |

We naow split Type b) into tuo cases.

(b~-1) Sz(a,B,T) XEEl ‘where a+8+7 = 2x. Ue méy assume that
to < 1 because of the argument in (a-2). We further split this
case into two cases.

(b-1-i) UWhen for given & > 0, there is k so that the

0
d-thin part of Ck contains noncuspidal compaonent Ek for all k >
kO' Choose a base point Y on aEk. Then (Ek’ ;k) canverges to

a noncompact euclidean 3-cone-manifold. Assume that E = Sz(a,B,T) E

1

x E as in the assumption of.the case (b-1). If we take k and R

to be sufFicient]y‘large, then BR(Ek’ ;k) is homeomorphig to

2 1

B,(S“(x,B8,7) x |[E") which is homeamarphic ta SQ(a,B,T) x [a,bl.

R
Since a+8+7 = 2n at t = to <1, +the sphere of these three cones
uriginatéd from a spherical subarbifold in O <(notice ihat the sum
of three cone angles at the final destination is supposed to be
greater than 2n). Hence by irreducibility of 0O, the sphere
bounds a standard cone ball and in particular three axis meet at the
vertex. Thig means that Ek ~1s a cusp which contradicts the
assumption ofb(b—l—i), and hence this cannot occur.

(b-1~ii) . When there is & > O and a subsequence ({j} C {(kJ}
so .that the d-thin part of CJ consists of cusps for all J. Then

the cusp can be deformed furthermore, which means C* is not a

degenerate geometric limit. -
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(b=2) UWhen {here is an edge of ZE whose cane angle is equal
to m. Then by the same argument of (a-2), this is the final
"destination.

Summarizing those, we had seen

Proposition 7.2 : The end of C*  consists of finitely many

CUSPS -

Let C* be the closure of C* - cusps.

Proposition 7.3 : Under the assumptiaon of this section, C’

can be embedded in O as a suborbifold whase boundary is

incompressible.

Proof. We have a homeomorphism Fk : (Xk, Zk) - (XO, ZO)
uhose»homotopyﬂc?ass is canonically determined by the original
continuous algebraic deformation of the holonomy. Choose & so
that C’ is the 8-thick part of C*. Then there is an
approximation between C’ and the §-thick part of Ck' Choose this
by an intg homeomaorphism ¢k : (XC,,'ZC,) - (Xk, Zk) for
sufficiently large k = and moreover such that the images of Fk°¢k
stay canstant in X0 while k wvaries. (We assumed here that this
can be done since it sounds roasonable, however ue‘may have tao prove
it.) Passing subsequences, we may further assume that Fk'ék maps

.a component af aXC, to a constant surface in XO while &k
varies., Identfying XC,' with the image of fk-dk’s, we regard
XC’ as a subspace of Xge Then the map f +¢, will be a self
homeomorphism of XC;"]eaving the component of boondary invariant.

We should noticé here that the homotopy class of Fk°¢k depends an
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what k is. From now on, k 'is always assumed to be large encugh.
We have already shown that a camponent of 2&C? is either a

torus, Sz(z,z,n,x) ar 82

(a,8,7) with a+§+T = 2z. UWe will prave
this proposition by showing that XC’ does nat have a toral
boUndary, C' 1is embedded in 0O by Fk‘¢k as a suborbifold and it
has an incampressible boundary.

Let us first show that C’ does not have a toral boundary.
Suppose XC’ hasha toral boundary which is not @-parallel but
incompressible in XO - ZO, then it contradicts to the simp]icity
of our initial setting. Hence we can assume that ali of toral
boundary is either d-parallel or compressible in XO - ZO' Choose a
a loop £ lcn a taeral boundary of XC’ sa that it bounds a»disk
paossibly with a cane in XO' Since it bounds a disk in XO, fhe
holonamy P of Ck must map - fk_lﬁﬁ)i to a trivial eiement or an
elliptic element with dehded rotafgnn angle. We denate

-1

_(Fk‘¢ ) ()Y by ﬁk' Notice that every Ek represents a.parabolic

k
element in C’. Suppose that there is a subsequence (i} C {k} so

that all zi represent the unique class £* in xl(XC, - ZC,).
This means that Fi_1<£) canverges to the loaop representing this

-1

class. In particular, pi(Fi (2)) must converge ta p(2%) where

p 1is a holonomy of C’. However this is contradiction since
pi(Fi_l(z))’s are trivial or elliptic of bounded rotation angle and
cannot converge to a parabalic element £(£*). Hence we have the

other case. That is, zk all are distinct in nl(XC, - ZC,). Then

think of a homeomorphism gJ $ XC, - XC, defined by .

-1 . . _
(FJ,¢j) Fk ¢k for > k. Obwviously gJ(Qk) = zj. Take a double
of XC, along its sphericl baoundary and denote it by DXC,. Then
M= DXC, - DZC; is an irreducible and Haken manifold and hence it
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admits a geometric decomposition. By doubling thé maps gj’s, we
get a family of self homeomorphisms of M which leaves the
component of the boundary invariant. Futhermore the restriction of
‘the family to the components aof 8M containing a copy of &
provides infinitely many distinct homotopy classes as maps. This
can happen only when a geometric piece of ™M <containing a copY of
g an its boundary is a Seifert fibered space §S. Mareaver S

must have another boundary component which is a boundary of M .and
to uHere the restriction of our haomeomorphisms provides infinitely
many haomatopy classes. This is because the restriction of a
homeomrphism of M to the torus appeared in the torus decompaosition
can provide only finitely many homotopy classes. Nou,’the gther
boundary component either inherits a toral boundary oaf XC, ar a
boundary aof a tubular neighborhood of a component of DZC,. In the
second case, a fiber of a Seifert fibration restricted to 34%(DZC,)
must be homotopic to a meridional loop since otherwise we cannot
have infinitely many homotaopy classes of maps which extend to a map
of DXC,. We now have a saturated essential annulus A connecting
these two boundaries. Cutting A along the central surface of M
Wwhich was the spherical boundary of XC” we get as a part of A

an essential annulus A’ in XC’ - EC,. One caompanent of 24’ is
on the toral boundary af XC"_'ZC’ containing £. This represents
a parabalic element in the halaonomy of C’. The other component is

either on a taoral boundary of - X - ZC, or on a spherical boundary

C!
of XC" Thus in any case, it represents a parabo]ic or an elliptic
element in the holonomy of C’. . Hence A' turns out to be an
essential annulus in XC’ - ZC’ which joins a cusp with either a

distinct cusp or an elliptic axis in C’. This is imposssible and
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hence 'C* cannot have a toral boundary.

2(a,B,7)’s where

Nouw, 8C’ consists of Sz(z,z,z,x)’s and S
a+8+7 = 2r. UWe next show that the inclusion XC’ C XO becames an
inclusion of orbifolds C’ € 0. Tag see this, assume first that aC?
consists only of Sz(a,B,T)’s where a+B8+7 = 2z and none of &, 8,
7's is equal to =&x. Then every companent af GXC, must bound a
cagne ball in XO since 0 1is irreducible. By Theorem 2.4 and 2.6Q
we can further deform this cone—-structure towards the final target.
This means that C’ is not the geometric limit, which is
contradiction. Thus we have at least ane cone point on 48C’ with
angle = x. This shows that our deformation reaches to the final
destination. Hence a cone-manifold C* is an orbifold and the
inclusion XC’ C XO by the map fk-¢k supports an embedding of
C’ to O as orbifaolds.

Let us identify €’ with the image of the embedding to O and
regard C’ .as a subarbifold of O. Last of all, we show that oC’
is incompressible. The argument is quite similar to the above ane.
Assume if not, then there is a disk paossibly with a cane in Xg‘
whaose boundary is a nontrivial and nonperipheral logop £  on

axc, - ZC,. Thus this represents a parabaolic element in C’. Since

it bounds a disk possibly with a cone in XO’ the haolonomy Py of
Ck must map Fk—l(z) to either a trivial element or an elliptic

Ly

ellement of bounded rotatiaon angle. UWe again dengte (Fk'¢k)—
by zk. Suppose that there is a subsequence (i} C {k} so that all

£.'s represent the unique class £* in my(Xey = Z). Then, if

1 C’
we Jet p be the holonomy C’, the sequence pi(fi—l(ﬁ)) must
converge to ©2(2%) which is a parabolic element. However this is

impossible. Hence we have the other case. That is, all ﬁk’s
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represenﬁ distinct classes in’ xi(xc, - ZC;). Define a -

1

homeomorphism gJ H XC’ - XC’ by (Fj'éj) 'Fk-ék for J§ > k.

Notice that gi(ik) = zJ. Byfsimp]e argumenf, we can see that N~=
DXC’ - DEC, is irreducible and atoroidal. Thu$ it admits a
camplete hyperbolic structure of finite volume by the uniformization
theorem. On thebother hand, we can canstruct infinitely many
homotopy classes of self homeoemarphisms af M by doubling 'gj.
This is again contradiction and we have shoun that &C’ cannot be

compressible.

We have shoun up to here that we get a hyperbolic 3-suborbifaold
¢ of 0O and a torus decomposition of 0. Since Haken’s
finiteness theorem even holds for this situation, we can reduce the
arguhent to the other case by induction of the maximal number of

companents splitted by incompressible euclidean suborbifalds.

§ 8 When thick part die

We first see how geometric limits without rescaling look like.
We see it locally by thinking of the geometric limits of

3 Lhich

H3/<¢m> where {¢m} is a sequence af elements of IsomﬁH
converges to the identity element.
Case 1. UWhen @m’s are elliptic, then its Vimit is a

half-plane.
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Case 2. lWhen ¢m’s are parabalic, then its limit is !H2.

Case 3. When @m’s are hyperbolic, then again its limit is

14

| f S R
? * R-? / ///4/
— ’

Case 4. UWhen ¢m’s are loxodromic, then there are mainly

three cases. To see this, let us define the twisting angle &

@ by
7
GM

m

m :

2

If 9m approaches m/2, then its limit is IH<, if 8m approaches

0, then its limit becomes a half-line. Otherwise, the limit is

homeamorphic ta R2 whose metric looks like

Qi o
| - 60 - |
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The computation of the metric on the limit shows that it is a
surface of revolutiaon.

Go back to our situatian, that is, far any ¢ > 0, tHere is
ng o that the e-thick part of Cn is empty far all n g‘no. Then
we may choose a decreasing sequence {sn} canverging O so that
the & —thick part of C_~ is empty. Choose a base point x, € Cpe
Since the an—thick part of Cn is empty, if € > £ then Be(xn’
Cn) is not standard. We then have two cases a) Baﬁxn, Cn) n Zn #
¢ and b) B (x, CONEZ_ =o.

We will see here that if b) is the case, then (C_, x)
converges to a naoncompact euclidean 3-manifald (E, y) with inj{(y)
= 1. Thg existence of the limit has been already done. E does not

C ) daoges

have singularity since. Ba(xn) and hence Ba/inj(xn)(xn’ n

not have singularity. E cannot be compact since otheruwise, (XE 5
n

ZE ) is homeomorphic to (XE, ZE) for sufficiently large n and
n

hence E must contain thersingularity. This is contradiction.
We thus have a fairly clear picture for E. That is éither

g3z, €3/z+7 or [Eg/nl(Klein bottle).

Proposition 8.1 ¢ Fgr any R > 0 and € > 0, there is &

which depends only on &, R (and does not depend on n) so that

(1) RO <e and (2 if x s Cn,thin(é) and Ba(x, Cn) is a
proper subset of C, then ~(BR-inJ(x)(x’ C)» x> is homegmorphic
to ‘(BR'inJ(y)(E)"y) for some noncompact euclidean 3-cone-

manifold..
Proof. We are given R and &. Let us assume contrary that

for any & = 1/k satisfying R/k < &, there is x, € C with
) , y



9
b

inj(xk) < 1/k so that an R‘inj(xk)—neighborhood of X1 in C

X

never be hameaomorphic to B {y, E) for a naoncompact

Reing (y)

C., %)

Ny k

be a metric space obtained by rescaling Cn by multiplication of
K i

l/inj(xk). Then inJ(Qk) = 1 and sectional curvature is =

euclidean 3-cone-manifaold E and a base point y. Let (C

'

i 2 - - . -
1nJ(xk).. Then the sequence (Be/inj(xk)(xk’ an), xk) canverges

to some noncompact euclidean 3-cone-manifold (E, y) with inj(y) =

1. If k 1is large enough, then s/inj(xk) > ek > R, and hénce

(Bo(x,, C_ ), %,) 1is homeomorphic to B (E, y) for further large
Rk ny k R
ke The first one is homeaomorphic to (BR»inJ(xk)(xk’ an), %)

and we get contradiction.

Corollary 8.2 ¢ Faor any R > O and & > 0, there i d >0

so that if x € C  y,i,¢5) 23nd B 00 Nz =¢, then

(x, C))) is isomorphic to either Z, or Z+Z.

%1 BRuin(x)

Proof. This is a direct corallary to Propositiah 8.1 except
for the fact that the Klein bottle gragup does not appear. Assume
that =, is isomorphic ta the Klein bottle group. Then c, >

c cantaines a tuisted I-bundle over the Klein bottle K.

n,thin(s)
Since Xn - Zn was simple, K must either be parallel to a

component of aém<zn) or bound a solid torus in Xn - Zn' In both
cases, Wwe get contradiction with the initial setting.

Let us call B Cn) a local neighborhood of x -and

Reinj (x) <%
its fundamental group a lacal tl of x. Fix R > O wvery large

and take a decreasing sequence (8n). Then for any m > 0, there

is n_>0 so that &¢1/m, R) > e, + UWe remark here that 6. is
m

less than 1/Rm and hence 1/m. To make notation simple, let us
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denote the new sequence {Cn‘} by {Cm}. In relating notions, we
m
replace a]? of N by m.

Let us denote Cm - ﬁ%l/m<2m) by €’ . Since 1/m > 46 > 5h >
inj¢(x) for any x € Cnh» the neighborhaod of Zm we take is fairly
thick. We then have two cases.

Case a) C’m # @ for infinitely many m. Then the geometric

1imit of (C’m, X ), denoted by (C*, %), 1is isometric to the

m
geometric limit of the original sequence (C» %) since there is
a 1/m—approximation between Cm and C’m‘ far each m.

Case b) There exists My S0 that C’m =¢ for all m > My
Then 4$1/m(zm) and hence Zm canverges to the geometric limit C*
which is expected to have dimencion at most one.

To see what happens mare precisely, we analyze a relatian

between O and C* by assigning some foliation structures aon C’

and qij/m

For each paint of C’m, we associated the local fundamental

m
(Zm).

group Which is generated by nearly straight short loops. Thus each
generator_corresponds to a nontrivial element in the holonomy group.
Let us foliate this region C’m first.

Think first of the part whose 10caf fundamental group is Z+Z.
Since abelian graoup of rank two in PSLQC must be generated by two
parabalic elements with the séme fixed paint at =, ar twa loxodromic
elements uiih commgon axis. Thus in both cases,jue have a cangnical
neighborhood consisting of a family of equi-distant euclidean tori
from the fixed point or the axis respectively. Foliate this part by
these tori.

The remaining is the part of which the local =y is Z.

First, we show that a component of this part has a unique generator



for the local fundamental grgups. This means that any lacal %4 is
generated by some power of thé unique element in the holonamy graoup.
Because, for any x 1in this part, a loop ﬁx representing a
gnerator of a local fundamental group in a laocal neighborhood
represents a nontrivial element in the holonaomy group. If we lef ¢
be its primitive element in the holonomy group, « has a family of
equi-distant euclidean tori from its cusp or axis according to
whether it is parabolic or not. UWe may assume that - 2, is
homotopic to a loop on this taorus. If we take x' in a small
neighborhood of x, then the corresponding loop Ex, is: alsa
homotaopic to a loop on the parallel torus to oné far ﬁx' Since
z*, is nontrivial in the haolonomy graoup, it represents saome power
of «a. By taking the method analogous to analytic continuation, we
can see that « is a unique element for generating each laocal
fundamental group within a component of the part of local Ty = Z.

Far each nontrivial element in the halonamy, we have an
equi-distant euclidean torus in Cm. For a component of the part
whose laocal =y is Z, we have associated the unique nontrivial
element « in the holonomy group. Let us first foliate this part
by equi-distant tori of «. Then choose ane torus whose diameter is
greater than €ne Such one must exist since the local fundamental
grgup is generated by one e]ement. Foliate this torus by intrinsic
shartest geodesicé. Then extend this foliation to all aof the part.
The extension may have singular leaf as in the Seifert fibration at
the axis of «.

We have ta warry about anather singular fashon. That is, a
equi-diatant torus may not be embedded in C’m. We will see thét

this cannot occur in fact. The equi-distant tori form a continuous




family which starts from the cusp aor the axis of d according to
whether «a is paraboliic ar not. In both cases, we have an embedded
torus near the start position. Hence if it will be a singular torus
as grouwing, theré must be a critical equi-distant torus which
touches to itself in C’m. Take a base point near the start
position and think of a based loop which stays in a family of
equi—-distant tori up to the critical time‘and passes through the
touched point. Let B8 be its homotopy class. Nouw let £ be a
logop Which represents the lacal %y of the touched point. Since £
was on this critical torus, £ and B8 must commute in the holaonomy
group. In particular, « and 8 ’commute and hence they have an
commaon axis. This shows that the action by 8 cannot produce a
touched point of an equi-distant tdrusbcf a. Thus the
1-dimensional foliation we constructed becomes well-defined.

Summarizingrthe above, we get a faliatian ﬁn C’m by tari,
circ]eé and a part of them.

We next construct a 1- and 2-dimensignal foliation on
¢%1/m(zm)' Since it is a part of Cm, ‘the injectivity raaius is
bounded by € for any point in there. By Proposition 8.1, each
point there has a small but nat very small neighborhood which is
homeomorphic to a neighborhood of some noncompact euclidean 3-cone-
manifold E. Also this homeumﬁrphism can be chaosen almost
conformal. That is to say, each{cone ang]esjof Zm is very near to
that of ZE. Since our not small neighborhood is not standard, E
has a fibered structﬁre. Furthermore if there is an edge df ZE
whose cone angle is ‘m, we may assume that E 1is an euclidean
orbifold since that is the final déstination of our deformation.

We can check that this ié the case by the classification of
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naoncompact euclidean cone-manifolds. Hehce a fibration becomes a
fibration of orbifolds. The following is the laocal picture of

fibrafians to a 2-dimensional abject :

/ civele action

N

cf

Choose a circle .fibration in this case so that a fiber is the
shortest locop on the torus illustrated in the above picture. The
followings are local pictures of fibrations to the 1-dimensional

objects ¢

]
Sz(m,m) x[E! S(ol,{e.r) xIE'

1, . ‘ J, d+r.»+ ¥ =21
IE' E' -
Zm) rby

Thus pulling back these local foliations to 9%]/m(

approximation homeomorphisms, we get a foliation there. .We actually
need some compatible arrangement of the foliatien along paching
part, however this logks easy.

We thus got foliatieons on C’m and 671/m(2m). Let D_ and

Jm be the aorbit spaces of such faoliations aon C’m and éﬁ/l/m(zm)

respectively. Both Dm and Jm admit a metric naturally induced
by the leaf distance. The set of x € Dm caontained in the 8-
standard ball is called the 6—-thick part of Dm' We can easily
verify that there is an am—appruximation bethen Dm and Cfm.

There is also a 1/m-approximation betuween va‘ and C’m; Hence we . |
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have an Cam+1/m)—appruximation between O and C, and therefare

D, converges to the geometric limit C* of. C,+ The geometric
limit of _Jm is obvigusly a part af C* provided the distance
hetween Cm,thick and Zm is unifarmly bounded, because aof the
uniqueness of the limit. When C* 1is of 2-dimesional and with
pgundary, the boundary is a‘part gf the geaometric limit of _Jm.
Now, what follows is the unfortunate part of this note. Since
there are several assertions of which we have naot been able to
understand, we just give up to check details and describe only an
ontline. However, since we write several paragraphs without being

convinced, it may be unreasonable even as an ocutline. Hence we wish

the reader to regard it only as our waorking hypothesis.

Propaesition 8.3 ¢ The 2-dimensignal area of Dm is bgunded by

a constant B for all m.

Prggf. ? 7 7

Assumeing this proposition, we go forward.

Case a) UWhen there are ¢ > O. and sg that the g-thick

mov
part of Dm is nanempty for all m >»mo. A campaonent af the thick

)

part corresponds to a componept of the part whose local o3 Z.
Since the geometric 1imit of D_ is the geometric limit c”

of Cm, it is going to be a hyperbclic 2-cone-manifold or a surface
of revalution as was observed previously. Notice in this case that
if ac* # ¢, it is a geometriﬁ Timit of a ccrrésponding component
of J « Suppose C* 1is a surface of revolution, then by its
creation manner, the boundary if any must be geodesic and must go

out from the center of C* (recall that @ . inherits 9Jm .
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Since there is only ane center on C*, the area of C* becomes
infinity. This contradicts Proposition 8.3. Thus C* must be a
hyperbolic 2-cone-manifold of finite area. Then as we have gbserved
befare, the tuistingAanglé of a generator of a laocal ) of C’m
approaches n/2 and the direction of a fiber in C’m approaches fthe
direction aof a fiber in 4711/m<zm> when m tends to infinity.
Thus we may assume that we have a fibration p @ Xcm - C* for
sufficiently large m. :

Subcase a-1) UWhen the d-thin part of Dm is empty for all m
> mey e Then C* 1is a compact hyperbaolic 2-cone-manifold with
nonempty boundary. Because if it is closed, then a fibration p
becomes a Seifert fibration of N - ZN' which contradicts the
initial setting. Nouw since C* has the baundary, there must be
a singular locus whose cone angle is =&. Then XCm is haomeamarphic
te XO and p becomes a Seifert ?ibration of orbifolds ¢ 0 - C*.

Subcase a-2) When for any 6 > 0, there is m so that the
6-thin part of D_  is nonempty. Then C* is a complete hyperbalic
2-cone-manifold with cusp. Since the preimage aof cusp has a circle,
fibration, it szt be either a taorus cusp or its quotient by fiber
preserving involution. The sectiaon is Sz(n,x,n,x). Suppaose either
one of the ends is the last one or C* has a boundary, then by the
same reason as above, p supplies a Seifert fibration of the
orbifald which is the final destination. So we assume that C* has
no boundary and every cusp corresponds tao a toral end. Then
actually. N - ZN admits a Seifert fibration which cantradicts the
initial setting.

Thus our fibered structure on X’ = XC - p_l(cqsps) becomes

m
an orbifold fibration of the final destination. Hence X' can be



regarded as an underlying space aof a praoper suborbi?old 0 of O
at the beginning.  Suppaose 20° is incompressible in 0O, then it
gives a torus for the torus decomposition. If it is compressible,
the fibration an @80’ extends to a fibration on Dehn filling
resultant aorbifaold. Thus again,ue get a Seifert fibration on 0’ U
(solid torus) C O.

. Case b) UWhen far any & > 0, there is my SO that the
e-thick part of Dm is empty for 2ll m > My This is equivalent
to say that C’m is thin for all m > My Thus C* will be of at
most l1-dimensignal. Since the sequence of rescaling cone-manifolds
Em converges to a noncampact euclidean cbne—mani?old Wwith at most
two ends, C* will be a manifold. Thfs means that C* is either a
circle, a closed interval, a half open interval, an ogpen interval or
a point. By Proposition 8.1, a neighbrhood of any point in X is

m
2 1 2

homegmorphic ta S (a,B,?) x |E with a+8+7 = 2x ~or S (R, 7,7, &) %

1

E faor sfficiently large m. Thus we again have a fibratiqn p

X. = C* for sufficiently large m.

C
m

Subcase b-1) When C* 1is a circle. A neighborhood of

2(a,B.7) x E1 with a+8+7r = 2=n

p_I(pcint) was homeamorphic to S
or Sz(z,x,x,x) XIEI. The first case cannot happen since every
homeomorphisms of Sz(a,B,d) bis homotopic to a periodic map and
hence N - ZN admits a Seifeft fibration which contradicts the
initial setting. Thus we dao have aonly the last case. This shauws
that we have reached the final destination since it contains a
singular locus of cane angle =. This can be seén to be a sglvable
orbifold because if not, O must be an euclidean or‘nilpotent

arbifold and hence N - ZN contains an essential torus, which

contradicts the initial setting.
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Subcase b-2) When C* 1is not a circle but 1-dimensignal. If
C* 1is a closed interval, then the fibration gives an euclidean
2-orbifold bundle over I. If C* is a half apen interval, then N

shauld be the followings

rs
X =
~ —Tc ;
T - N euchAemm
) 1t U P o | o vl =

If C* 1is an apen interval, then we have

Sanmmm x &'

‘ . VST ocew”
S?Cd,ﬂ.k) x E'

Subcase b-3) When C* 1is a point. Then again enlarging Jm

ta J so that diam J_ = 1.
m m

b-3-1) UWhen there is € > 0 so that J

m,thicke) * ¢ for all

m. Then by Proposition 6.1, there is & > O sg that Jm,thin(é) =

¢. Thus jm converges to a caompact euclidean 3-cone-manifc]d E.

If t. =1, then E 1is nothing but O. Even if t. < 1, the

o

cambinatorial type of E - is the same'as that aof O.

0

Theorem 8.4 : If t, <1, there is a deformation of a

0]
euclidean metric on E to a metric of O with pasitive Ricci
curvature.

Prgof. 2?2 7 7
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Assumé this thearem, then by the orbifold version of Hamilton;s
thearem [HJ, such a metric on O can be deformed to a’ﬁetric of
cansiant #dsitive curvature. That is to say, 0O is a spherical
orbifaold.

b-3-2) UWhen far any €, there is sag that J

Mo m,thick(e) =
¢ for all m > Mgy Then jm converges to an euclidean cone-
manifold E as in tBe case al.

When E 1is an euclidean 2-caone-manifald, then tO =1 and O
must be an euclidean or a nilpaotent orbifold. Notice that E
cannot be a surface of revolution since diam E = 1. When E |is

gne dimensional, then E 1in this case must be a closed interval ar

a circles In any case, 0 is a so]vable agrbifald.
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