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CONNECTION FORMULAS FOR INVARIANT EIGENDISTRIBUTIONS
ON CERTAIN SEMISIMPLE SYMMETRIC SPACES

SHIGERU AOKI and SUEHIRO KATO

(F A &) (ha e RJL)
INTRODUCTION

The harmonic analysis on hyperbolic spaces has been studied by
many authors (cf. Faraut [1, p.424, Bibliographiel). The purpose of
the present paper is to derive "connection formulas® for invariant
eigendistributions (I.E.D.”s) on certain hyperbolic spaces.

In the case of semisimple Lie groups, Hirai [2] gave an answer
to the following problem. '

Problem: Let n° be an invariant analytic function on the set
G’ of all regular semisimple elements in a semisimple Lie group G.
Then what is a simple necessary and sufficient condition that =°

defines actué}ly (i.e., is extendable to ) an I.E.D. ® on G7?

A& kind of boundary. conditions, which we call "connection
formulas®, appear in the above condition. Ue study a similar
problem for the following semisimple symmetric spaces of non—compact
type: X = Ulp,q;F)/(UCL1:EF) x U(p-1,qg3F)) with Pz 2, where F =
R,C,H. D ’ |

In the above case, all I.E.D.’s on X were determined by
Farautl1l. Ue determine them in relation to the connection
formulas by a s]ight]y different‘ method. An advantage of our
approach is . that all the 1.E.D.’s supported on the nilpotent
variety of X are determined 1in the early stage. ( Faraut [1] did
not mention whether such I.E.D. s exist. Cf. Remark2.5. )

Contrary to the case of semisimple Lie groups, the I.E.B. s
are not necessarily locally summable in our case. Moreover, their
restrictions to the set X’ of all regular semisimple e1¢ments in X,
which are analytic as in the case of semisimple Lie groups, are
scarcely extendable to locally summable functions on X. These

fgéts cause some difficulties. That is, Tirst we have to consider
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the contribution of the invariant distributions with singulap
support(i.e.,supported on X-X’). In Section 2, we study these
invariant distributions supported on the nilpotent variety N of
X, in the frame work of Faraut [13. As a by-product of this, al}
the 1.E.D. s supported on ) are determined ( Corollary 2.4 and
Proposition 3.7). On the other hand, we need treat some divergent
integrals, so we regularize them by taking their finite parts in
Section 3. After these studies, we -obtain our main théorem
{Theorem 3.2 or Proposition 3.7). At the end of the text,
we briefly compare er approach to the determination of all the
1.£.D."s, with that of Faraut [1] (using the notations of the
present paper) (Remark 3.10). In Appendix, we study the invariant
distributions supported on the set of singular semisimple elements,

This exposition is based upon the joint work [7] with Professor

S. Sano.

1. Preliminaries.

Let F =R, € or H be the field of real numbers, comple:
numbers or quaternions, and put d = dimR F. We define a reductiw
Lie group G = U(p,q; F) as follous:

6= {ge6Glin, F); g1 g=1_ 13,

P,q P,q
where
1p 0
Ip’q = 0 -1 e GL(n, F)
a
and n = p+tg. Let 0 be an involutive automorphism of G definet

by the formula
cl(g) = Il,n—lgll

sn—=1"

By H we denote the subgroup of G consisting of all elements ¢
G satisfying the condition c(g) = g. The group H is
isomorphic to Uty F) x U(p-1,q9; F). The group G operates O
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the coset space X = G/H. Moreover, X is endowed with the

pseudo-riemannian structure induced by the Killing form of the Lie

algebra % of G.

Put v _
0 -1 0 6 O 1
H0 = ( é g» g ), H1 ={0 0n-2 0 ' ’
o n-2 1 0 0
jo' = R HO- and jig = R Hi' Let 6, t be arbitrary real numbers
and put ug = exp(BHO) and a, = exp(tHi), where exp stands for
the exponential mapping. By simple calculations ‘we get the

following results:

UGH = U¢H if and only if 8 = ¢ (mod x),
(1.1) ' ‘

H.uaH = HuoH (-n/2% 6,0< n/2) if and only if @ = d¢;

+s.

atH = aH if and only if ¢ = s;
(1.2) S

HatH = HasH if aﬁd only if <t |

In the7F011ouing, the subspaces JO = exp(jo)H = {UGH; # € R} and
Ji = exp(j1YH = (atH; t € R} of the space X play a role
analogous to Cartan subgroups.

We define the functions Di on X = G/H by the formula:

-1 dim G ;
- Ad.(go(g 7))) = z B.(gH) £t .
o) G : .= i
i=0
Let k be the least natural number satisfying Dk $ 0. Then an

det((t+1)Id

element gH € X is said to be regular semisimple or X-regular if
Dk(gH) # 0. UWe denpte by X’ the set of all Eegu]ar,semisimp]e |
elements. ( Cf. Oshima-Matsuki [5, p.4043.) An element gH € X is
said to be nilpotent if AdG(gU(g—l)) is a unipotent endomorphism
of ¥. The set of all nilpotent elements is called the nilpotent
variety of X. In our cases, it consists of two H-orbits. Put J;
Ji N X* (i=0,1), then we have by definition

Jl—Ji = (H(=a0H)} ’ JU_Jé = ‘{H(=UOH)} (d = 1)

{{H, u soH) (d=2,4).

As expected, the open subset X’ is the disjoint union of HJ6 and
HJi. The space X is the disjoint union of X* U Hu_ ,oH and the

nilpotent variety JVZ And we havé ﬁji= HJith/(i = 0,1).
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Let (X)) be the set oF.aT1 functions of class, C on ¥
with compact support. The invariant integral F: of a functio,
f in X is defined by the following formula;

(1.3) FelgH) = S f(hgH) dh,

' H/ZH(gH)
where ZH(gH) = {h € H; hg € gH}. The invariant integral F_F is 3
function of class c® on Jl' U JO'. For simplicity, we
write often  Folup) and  Felal) instead of FeCugH)  and
Ff(atH), respectively. Since we have Hexp(jO)H N Héxp(jl)H = H

and the Haar measure of {6 - (Hexp(jo)H U Hexp(jl)H) is null,

we can express the integral of f € (X) over X in terms

of the invariant integral. Namely we have the following Weyl’'s
integral formula (see Sano L6, p.1951):

(-]

(1.4) S y f{x) dx = 71 go F_F (atH) Al(atH) dt
n/2
+ To S 0 FF(UGH) AO(UGH) dé.

Here

b taH) = (sh £)9PFI72) (gp 207971,
(1.4 bis) _ ' e

Bglugh) = (sin e)3P¥I™2) (g4 2¢)971
and T1 and TO are positive constants independent of F;

Hereafter, we normalize the invariant measure appearing in (1.3) anc

(1.4) so that the constants Ti are 1. UWe often write briefl)

AO(US) and Al(at)’ instead of AO(uGH) and Al(atH)
respectively. The invariant integral FF itself is expressed a:
follouws:

Lemma 1.1 (c¢f. Faraut [1, p.19070). Let & = d(p+g-1)/2 - 1
Then we have for f € &X),

F.(u

£lug)

Isin 9|—2u 30(c0529) + ﬂo(sin29) gl(cosze)

F

' -2u 2 2 A
£(a) Ish tj 50<ch t) + 7m(-sh“t) $1<ch t)
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for some 30, 51 e J([0,=)). Here the function no is given as

follows: .
0 vo(sinza) = o, vo(—shzt) =1 (p,q: odd and d = 1)
W 7y(sin®8) = 1, 7w (-sh?t) 20 (gt even or d =2, 4)

i my(sin®8) = loglsinZ8l, my(-sh?t) = loglsh?t|

(p:even, q:bdd rand d = 1).

Let Q be the pseudo-lLaplacian of X = G/H. A distribution ©
on X in the sense of Schuartz .is cafﬁed invariant if it is
invariant by the subgroup H. This is written formally as

O(h.x) = 0(x).
A distribution ©® on X is called an eigendistribution if
' Qe =216
for $ome A € €. We denote by SSA(X) the set of all invariant

distributions on X. The set of all invariant eigendistributions

with eigenvalue 1 is denoted by fji H(X).
’
Now we note that there exists a unique differential operator
9 (Q) on J{ such that

- ol
(QF)!JE =9 (Q)(FIJ;)

for any H-invariant function f in CQ(H.Ji) with i =0, 1. Thus
we have for any f e T (X)

(1.5) F =9 ) F .
qug HINA

The differential operator il(Q) is called the radial component

of Q. Its explicit form is given as Tollowing:

‘ , 0 1 4 d_
(.o S A €} 0lug)” g7 Bolug) S

"
I
>

1 = 31 d_ d_
(1.7) Py = AT Fp B,0a) Sp

The restriction to the open subset X’ of any © 6.5'1 H(X) is a
?

real analytic function on X’. Put u; = @IJfo Then we have
i
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(1.8) St oy = 2y,

1

Solving this differential equation, we get the following.

Lemma 1.2. Put # = S(p+ta-1)-1, s = V 2+ 2, a= Lis+usdy
Lemma 2 2 20sta),
d d

B = l(—s+/.£+—) and 7T = 3. Let wu. be the functions on JI
2 2 2 i i

satisfyiﬁg the differential equations (1.8) and the conditiong
UO(US) = UO(U-G) and ul(at) = ui(a_t).~ Then the following holds.

i) If u € % + Z, then we have
I 2
ui(at) = ClF(a,ﬁ,a+B 7+13 —-sht)
+ C,lsh £172% F(1-a, 7-8, T~a-B+1; —sh2t)
u-(u,) = C.F(a,B,a+B-7+1; sinZ6)
0 3F (s By ; ﬁ

+ Calsin 9|—2u F(r-a,7-8, 7—a—8+1; sin29),

ity If u e 2, we have

— . o2
+C, (Fy Ca, B, 1415 —ShZ£)+F (@, B, #+13-sh”t) Tog Ish’t |)
W (U, = CoF(a, B, 241 sin28)
O 9 3. 9 ’ ] »

+ Co(F (o, B, 4413 sin8)+F (e, B,2+1; sin’)loglsin®el),
where F is the hypergeometric function which is analytic on
{(-1,1) with F(0) = 1, and
(1.9) Fl(a,B,ﬂ+1; z)

R I ey (1) umk=1) k

ki (a—u+k) - (a=1)(B-utk)---(B-1) %

k=0
+ 3 a(a+1)--(a+k-1)B(B+1)--(B+k—1)h(kgl( 1,1 1 1 4k
k=1 ktCu+l)- - Cutk) j=g ati  BtJ JHl prl+] g
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Remark 1.3. Assume that u., = @, .
—_— 0 IJO

for some © eijl’H(X),
:Then, UO(UG) is exteﬁdab]e to a Functioh analytic in 6 at 6 =

én/2, although Un/2H is ndt X-regular for d = 2, 4. This follows

fFrom a similar argument in the proof of Proposition 3,7 (cF.
pppendix). Thus, we have the following linear relations:
i) If u e (1/2)+2, then

_ () T(1-a=8) _T(7) T(a+B-7)

S T 2 % Tmrem 2 (aek),
it) If u e Z, then
_ =D pgag-w
C3 = b1, 4) a, C4 = Mo TCB-m) a! * 2 (a < R,

. where bo(l,u) are certain constants.

2. Invariant distributions with singular support.

In this section, we study the 1invariant distributions '

~ supported on the nilpotent variety, introducing the space ;f;.

The invariant distribtions on X with support in the set of singular

: semisimple elements are studied in Appendix. For f -e€J(X), set
MECch?e) = Ish £]9PTITD72 (o £)972 £ oa)
and '
Mf(cos28) = |sin g19¢PTI™1)=2 (o 4)d72 Felug)

In view of Lemma 1.1, the functions MFf are accordant with those in
Faraut [1, p.380]. Thus one has
Mf(T) = d>0(r) + n(r)obl(r). for tTEZO0,

where 7(7) = 7 (1-T)(1-0* and 6.(1) = V27 F (). The

following lemma is due to Faraut.

Lemma 2.1 (Faraut [1, Theorem 3.11). Let )#ﬁ denote the
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space of all functions Mf for f eJ(X). Then, with respect
to a certain topology on H%, the following properties hold.

i) The mapping M of HX) to H% is continuous.

i) Let M  denote the transposed mapping of M. Then we have
Mﬁfn = f?H(X). )

i) We have Q@ M =M L, forL = a(D32 + b1, uhere

d
a(t) = 4t(7-1), b(7) = 4{(d/2+u+1)71-d/2}.

Remark 2.2. UWe definerfunctiona1s Ak’Bk (k=0,1,2,--°) by the
asymptotic expansion @(T) ~ 2 A (¢)(1—T)k + T S B‘(é)(i-T)k.
= k < k
k=0 k=0
Then we have Ak’ Bkeh‘n' Moreover, the subspace of #fn consisting
of finite linear combinations of Ak's and Bk's is precisely
the orthogonal complement of J(L0,1) U (1,=)). Henceforth, we
denote by Kk the distribution M'Ak €£3Q(X). Similarly M'Bk is

denoted by §k.

Lemma 2.3. Let Q be the pseudo-lLaplacian of X. Put Kk

=0 and gk =0 for negative integers k. Then the invariant

4

distributions Kk s and gk's satisfy the following equalities:

, ~ - _ _ ~ - N _ ~
(2.1) [ QA = 4(k+1) {(k+1-u 2/d)AK (k+1 u)Ak+1} |
. + d(2k—y+2—d/2)Bk_u - (2k~u+2)Bk_u+1)
(for d = 1, p: even and qg: odd)
\QAk = 40k+1) (Ckt1-p=d/2)A ~(k+1-)A_,)
(otherwise),
,(2'2) QB = ACurk+1) {(k+1-d/2)B - (k+1)B_,,)

(for all d, p and qg).



Proof. Let ¢ = 6. + 1 ¢,, and let ¢.(T) ~ I A () (1-T)K
‘ = %9 @1 0 2o Tk
and ¢1(T) ~ Z Bk(¢) (1—?.’)k be asymptotic expansions of ¢0
k=0 ‘
and ¢1, respectively. We note that
* 2 2
L= & atm - &, b
dt - dt
; d2 > d :
=4 — {(1-7)° - (1-7))} + 4 T {((d/2+u+1)(1-7) - (u+1)d}.
dz ’ t o

Hence it follows easily that

* @
L o (T) ~ F Alk+1) ((ktl=p=d/2)A (3)+(k+1-)A, .. () (1-1)K,
0 o K k+1
& w
L ((1-10%0, (1)) ~ § 4Cutk+1) {(k+1-d/2)B, () — (k+1)B, .. ()
147 o b k k+1
x (1-7)KT#,

‘ w * !
On the other hand, we have 'L (7$,)(7) = m(1-7)L ((1—z)”¢1<r>> +

R(T), where

R(T) ~ kEO 4 {(2k~-u+2 d/z)Bk—ﬂ (Zk'ﬂ+2)Bk—u+1} (1-7)
(for d =1, p: even and q: odd)

=0 (otherwise).

In view of Lemma 2.1 i), it 1is now straightforward to prove

Lemma 2.3. g.e.d.

Noting the equality (2.1) ( and Corollary A.4 in Appendix ),
we obtain the following corollary that shows the existence of (non

trivial) invariant eigendistributions on X with singular support.

Corollary 2.4, Put A = {23 2 = 4(k+1)(k+1-p-d/2) - (0sk

<
d,u =
pk-1))} = {A(s); s = +(p+2r) (r = -1, =2, -+, =)}, with ils) =
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SZ-PZ and p = u+d/2. Then, in the case of [d = 1, piodd, aieven)

or [d =2, 43, tbere are invariant eigendistributions supported on

the nilpotent variety with eigenvalue 2, for any 1 € Ad u
b4

Otherwise, there are no invariant eigendistributions with singular

support.

Remark 2.5. After writing the paper [71, the authers uwere
informed that the fact comformable with the above corollary was
announced in Kengmana [3, Remark 1)] and proved in his thesis (May,

1984; Harvard University).

3. Main theorem.

4 ’

Let UO(UG) and ul(at) be functions on JO and Jl .

respectively, satisfrying the conditions:

1) ii(Q) Uy = 2 ug for some A € C (1 =0, 1

i) uglug) = uglu_g) and u,(a.) = ula_J).
Then the integrals:

-

(3.1) ‘So uCa) Fela) A Ca) dt
and-

/2
(3.2). : S . glug) Felug) Bgluy) do

are not convergent in general. (By Lemma A.2 in Appendix, the
integrals (3.2) are always convergent around & = =/2.)
Nevertheless, the following lemma can be proved with the use of

Lemma 1.1 and Lemma 1.2.

Lemma 3.1. For functions UO(UG) and ul(at) satisfying the

above conditions i) and i), we have

(3.3) g Gaul(at) Fela,) B,Ca,) dt

Z4p —
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-2u+1 . -2u+1 ;
= T a.(sh &) + £ B,(sh 8)" log(sh &)
i=—1 ! i=-1
+ 7Clog(sh 8))2 + G(sh &)
and
/2
S . Uolup) Felug) 8gCuy) do
—ourl . i —-2u+1 )
(3.4) = T a(sin O + £ B (sin ) loglsin 6)

i=-1 i=-1

2 + G (sin §)

for 82>0. Here a. Bi’ Ti; a;, B;, T; e C and G, G° are the

+ 7 (log(sin 6))

functions such that G(8) = lim G(sh §) and 6°(0) = 1im G’ (sin

5+0 §+0
) exist.
We set
(3.5) P.f. So uCa) Fela) A,(a) dt = G(O)
and .
/2 ‘ :
(3.6) P.f. S . uglug) Felug) Agluy) dé = §_<o>,

which are called finite parts of the integrals (3.1) and (3.2).

Thus, in terms of the functions Ug and ulg one can define a

functional © = © . on.iﬁ(X) by
‘uo,ul,(ak),(ﬂk)
(3¢7) <, > = P.f. go ul(at) Ff(at) Aigat) dt
n/2
4 P, g L Uotup) Felup) Bglug) d@
+ T @ A(F)+ T 8 B (H)
k=o < K k=0 < K

for f €f(X). Here the third and fourth térms of the right hand

side are finite sums. Ue write © = @

in the
UO?ul UO,UI,(ak)’(gk)
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case of o = Bk= 0 for all k. As is seen easily by Faraut [1,

Theorem 3.1], © 1is an invariant distribution on X. Similarly,

one can define an invariant distribution ©° = @; U on the set
' 0’1
X’ by
(3.7) <@, > = SO ul(at) FF(at) Al(at) dt
n/2
+S | U0tug) Felup) Bglug) a0

for f eJ(X).

Now we shall state our main theorem.

Theorem 3.2. Let UO(UG) and ul(qt) be functions on Jé and

Ji, respectively, satisfying the following three conditions:

i) ii(Q) u; = 2y for some 1 € C (i =0, 1.

i) UO(US) = UO(U-G) and ul(at) = ul(a_t). (Note that

UO(u6+n) = UO(UO) always holds in view of (1.1).)
iii) In the case of d =2, 4, UO(UB) is extendable to a
function analytic in 8 at 8 = wn/2.

Let @; U be the invariant distribution on the set X’ defined
0’-1 ’

by (3.7)°. Then, a necessary and sufficient condition in order that

Ug Yy
the following:
Case 1t d=1, p, g, odd.

is extendable to an invariant eigendistribution on X is

(3.8) lim H,(A,u,)(a,) =0
tosg 117175
and
. 2u+1 - 2u+l =
(3.9) 1lim {Hl (AjuydCal) - Hy (Aouo)(ut)} = 0,

t-+0

Case 2: d =1, p, g, even.

(3.10) lim H.(A~u~)(u,) =0
gorg 0°70%07 g

- 12 -
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and (3.9).

Case 3¢ d=1, p, even, g, odd.

(3.11) Tim H,(A,u,)(a,) = 1im HL(ALus)(u,)
and (3.9). .
Case 4 a): [d=1, p, odd, g, evenl or [d =2, 43,
¢ "d,u‘

The equalities (3.8) and (3.10).

Case 4 b): [d=1, p, odd, q, evenl or [d= 2, d]%

A € Ad,u‘

The equalities (3.8), (3.9) and (3.10).
CNote that the set Ad P has been defined in Corollary 2'4°3

The above conditions in Theorem 3.2 are called connection

formulas for uo(uo) and ul(ét).

and Jl

Remark 3.3. Let Ug and uy be functions on Jé

respectively satisfying the conditioni i) and ). Then Ug
satisfies the condition W, whenever @; g is extendable to an
. 0’1
element of f?i H(X) (cf. Proposition A.1 in Appendix).
td

Remark 3.4. In the case where there exist no invariant
eigendistributions on X with singular support with eigenvalue 1,

the distribution @; u in Theorem 3.2 is uniquely extendable to
0’"1 :

an invariant eigendistribution on X.

In the following, we shall prove the above theorem by a series
of lemmas.

Lemma 3.5 For 6>0, it follows that

1,
Sé uptay) @M@Fa) 8 (e de
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_ 1
= Sa {2 <Q>u1<at)) Fela,) 8,(a) dt

- d_ - d_
Al(at) E(dt ul(at)} Ff(at) Ul(at) It Ff(at)J (t=5
and '
n/2 0
S , uglug) Q (Q)chu9>} Aglup) d6
w2 g 7
= S . @7 ugluyd) Foluy) By, dé
F A (U [ U (u) Falua) - uatunSe Focud
0 %o de “0'Ye £ Y 0'Ye’dg "£'Ye’" le=5"

Proof. Notice that Ff(at) = 0 for a sufficient large number

t. On the other hand, since (an extension of) UO(US) is analytic

in 8 at €&

n/2 and Ug . and FF are H—-invariant, we have

d_ - d_ =

Thus the lemma follows from (1.6), (1.7) and integration by parts.

g.e.d.

Lemma 3.6, Keep the assumptions of the theorem. Then fbr

each invariant distribution © = @U y, ® one obtains the
0’1

following equalities.

(Q-2)0

= (C1~C3) Au AO - C2 ap Bo (Case 1)

= (Cl—Cs) dﬂAO + Caﬂﬂ'BO (Case 2)

= <CA_C2)a[ kio{(ﬂf2k—2+d/2)fu_k_1 + (-H*Zk)Fu_k] Ak + ufo A#]

+<cd—c2>a<¥0§0—A0> + (Cy-Cy)auR,
(Case 3, u # 0)
= (CA—Cz)A(FOBO—AO) + (C3—C1)ABO
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(Case 3, u# =20, hence d=1,p =2, qg=1)
u-1 -

= (C,- C,)4 kzo (p-2k=-2+d/2) ?ﬂ_l_k A

u b
+ (CADCZ) 4 E (Zk-u)fﬂkak
k=0
+ (CZ—CA) AAO + (Cl_CS

where Cl’ C2, C3 and CA are the coefficients as in Lemma 1.2,

)ﬂuvAO + CAA#FO BO (Case 4>,

and ¥k is the coefficient of zk—u of the function in (1.9).

Proof. UWe suppose that d =1 and that p, g: even (Case 2).

In view of Lemma 1.1 and Lemma 1.2, we have for t, >0

d d
(3.12) ﬁl(at) E{a;ul(at)} FF(at) - ul(at) EEFF(at)J

_ d -, .2 d 24 &, 2. \q ; < 2
=[C, FFF(-sh“t) + C, (§glsh ¢l F(-sh“t)}1 Ish tl ¢q(1+sh t)

2

~(C,F(=sh?t) +C,lsh £]72#4 B(-sh?t))(sh t)2#4*L

xg;{!shztl—”¢0(1+sh2t)}
and
d
(3.13) Ao(ua) E{aguo(ua)} Ff(ua) - uo(u )

6
=CC, ggF( sin?6) + C, (gglsih 81724 P(sin?8)

f(UG)J

had QLQ
(] @

2

fsin 9] ¢0(1—sin 8)

+IC4 S5 Fsin 20)+C, Tl(sin )72# F(sin?8))1(sin 0241
2

X¢1(1—sin &)
~(CF(5in%8)+C,(sin 6) 72 F(sinZ9)) Isin 012441 §§{<sin g) 24
.2
X ¢0(1-51n 8}

—{C3F(sin29) + € (sin 9) 2% B(sin28)) Isin 6124%1 é§¢1(1—sin28),

Q.

where F(z) = F(a,B,a+B8-7+1; z) and F(z) = F(7-a,7-8,7-a-B8+1; z).

WUe expand (3.12) (resp. (3.13)) with respect to *shzt (resp.

- 15 -
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sin29) and calculate the constant term. Thus our lemma
follows from the definition of ©® and Lemma 3.5. One can verify

the assertion of the lemma similarly in the other cases.

g.e.d.

The following proposition follows from Lemma 3.6 and Lemma 2.3.

Proposition 3.7. Keep the assumptions of the theorem. Then

© = ®U0’u1’(ak)’(8k) isyan eigendistribution on X with eigenvalue

A if and only if

C2 = 0, C1 = C3 and % s 8 0 (Case 1)
a4

k

Cc 0, C1 = C3 and x s Bk =0 (Case 2)

C, =C

5 4 Cl = C3 and o s Bk =0 (Case 3)
C2 = Cd = 0, Cl = C3 + C{laCu+d/2-1)+23)/74u7 aq and -
k _ A (k+2)(u+d/2-k=2)+2 . <L € oo
T TUTS DI X .pq  with 02 k= u-2
(Case 4,

where Cl’ CZ’ C3 and Ca are the coefficients as in Lemma 1.2,

and & s Bk are the numbers in (3.7). L[In virtue of the fact
that Yg is (extendable to) a function ava]ytié in 8 at 6 = =n/2,
there is a certain 1iﬁear relation between C3 and CA (see

Remark 1.3).1

We note that gk's are supported at the origin of X = G/H
and that Kk's are supported on the nilpotent variety JY° of X.
As is seen in the above proposition, gk's never appear and Kk's

appear only in the case of [d = 1, p: odd, g} evenl or [d = 2, 4]
(Case 4). '

Lemma 3.8. Under +the same assumption as in the theorem, it
follows that *

1) C, = 1lim H, (A, u,)(a,) and C, = 1im H. (A~ u~)(u,)
2 tﬁ+0 1 1 -1 t 4 6-+0 0 0 -0 e’
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in We assume, moreover, that & € (1/2)+Z or that C

Il
O

2

in the case where 4% 1is an integer. Then, the condition C

1 = C3
holds if and'on1y if

2ﬂ+1(£ u )(at)} = 0

. ey 241
(3.9) 1im {H (A 0 0 Yo

u, Y(u,) - H
£+0 1 1 71 t

)] In the‘case that v € (1/2)+2, (3.9) is equivarent to the

condition

(3.9 lim H 2“+1<A0 updlugd) = lim H12“+1<a

)(at)
6-+0 +-+0

1 Y1

Combining Proposition 3.7 with Lemma 3.8, we complete the proof
of Theorem 3.2.

Bs a corollary to Proposition 3.7, one can show the following.

Corollary 3.9 (Faraut [1, Theorem 3.21).. i) If d=1 and
q is odd, then for all 2 € C

dim &, 40 = 1.

i) If [d=1 and q 1is evenl or if [d =2 or 4J(case
2,cased), then for 1 # 2r (2r+d(p+q)=2), r = 0,1,2,--+ (i.e., % ¢
{2(s)s s = 2(p+2r), r = 0,1,2,---1),

- dim & 40O = 1,
and for 2 = 2r{(2r+d(p+g9)-2}, r = 0,1,2,°°",
dim 57, X0 = 2.

In the above corollary, whether dim &, (X)) =1 or 2, is
determined ~ by the linear relation between iC3 and. C4 in

Proposition 3.7, (cf. Remark 1.3).

Remark 3.10. In this remark, we shall first summarize how
Faraut [1] dérived Corollary 3.9, dividing into several paragraphs.

0) In view of Lemma 2.1, one has only to consider the egquation
" . : LS = 1S

in #;?o
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1) To investigate the differential eguation (*) around 7t = 1,
put h‘nuo,wn = (¢ «¥,5 supp & C (0,=)) and K, ([0,1)) = (¢ < ¥

supp ® C [0,1)). The dual space )#%((0,0)) of the former corre-

sponds to the space of all H-invariant distribution on X - HUn/ZH

and +that of the latter corresponds to that on H.Jé U H’UZ/ZH'

2) As is known, the solution of (*) in & ((0,=)) is

3-dimensional. One gives a basis (SO; Sl’ 82> of this vector
space explicitely so that each Si is naturally extended to an

element of #';7((0,@)).

3) Faraut [1, Appendix] showed that two of <SO’ 81, 82> is

the solution of (*) and that these two solutions constitute a basis
of the space of all the solutions. These facts are deduced by
verifying that
LS, ~1S, ={ By (c#0)  for one S,
0 for the others

and

k
LBk = 4(k+1)(kfﬂ+l)8k+l + jEO Bijj (Bkj e O)

( cf. Lemma 2.3 (2.2) in this paper ), since the complement of

JU0,=)) in }¥%((0,°)) is spanned by Bk's.

4) The solution of (*) in }#% must be regular at T = 0.

Hence one gets the 1-dimensional space of the solutions of (*) in

¥1(C0,1)). Seeking the continuation of a solution in ¥HEE0,1))  t

solutions in )f;((O,m)), which has been obtained in 3), one gets

Corollary 3.9.

On the other hand, our program to find all I.E.D.'s on X is

more simple. We shall summarize it, taking as example the case tha-
F=C or H. UWe recall that

X = (Huz/2H U HJé) LJAfL}HJi . (ef. §1).

L’0;(:3,0 » Y4 T Y4sc

Let wu. =
0 4

c. be the solutions of ii(Q) U,

1°72 !
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= lui defined in Lemma 1.2. We extend the corresponding invariant

distribution on H.J; to an invariant distribution P.f. u;, on X

a

supported on the closure H.J; of H.J;. Kk's, Bk's and gk's

are defined so that < Kk ’ gk s k =0,1,2,...2 1is a basis of

{® GQTH(X); supp ® C N } and {ék; k =0,1,2,...) is a basis of
(0 €£¥é(X); supp © C H.un/sz}.

Any element © €£}i H(X) is expressed as the form:

0= P.fY u, . FPET U, + 3 (e B + BB +57.E.
1,C1,C2 | O,C3,Ca K k' 'k k“k K k
Hence, ca]cu]ating Q(P.f. ul;cl’cz), Q(P.f. UO;C3’C4)’ QAk, QBk

and ng explicitly (Lemmmas 3.6, 2.3 and (A.3)), we determine all

the invariant eigendistributions on X. In carrying out the above
program, we utilize some tecniques used in Farautll1l(e.g. 02).
As uwe have seen above, the point of our method is to decompose

0 €£9é(X) into invariant distributions with support in various

Subsets(nakivbjf'gfiugH) In particular, inuvestigating the

contribution of Ak's and kas directly, we can determine the

invariant eigendistributions supported on nilpotent variety.

Appendix

In this appendix, we shall prove the following assertion stated
- in Remark 1.3.

Proposition A.1. Let Yg be the restriction to J6 of an

invariant eigendistribution © on X with eigenvalue 4. Then

/2.

UO(UH) is extendable to a function analytic in 8 at 68

Since uz/ZH is a regular semisimple element for d

1, the
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above assertion is trivial in this case. Thus we assume that d =

2, 4 in the following. First we recall that Ff(ue) is of the

form:

(A.1) Falug) = ¢lcos?8)

for some ®(7) €9 (L0,=)) (Lemma 1.1). On the other hand, sipce
Ug satisfies the differéntia] equation iO(Q)u0 = lud by the
assumption; Uy can be expressed as

(A.2) uglug) = Cs Fla,8,d/2; cos28)

+ C ((cos?0) VD) B (a,8,d/2; cos28)
.2 2
+ F(a,B8,d/2; cos“8) log(cos“8)}

where ?d(agﬁ,d/Z; T) are certain analytic functions in T € [0, 1)

with ?d(a,s,d/zg 0) # 0.

The following lemma follows from (A.1) and (A.2) immediately.

Lemma A.2. The integral:

/2
S . uglug) Felug) Agluy) db

converges absolutely for 0< 6% n/2.

Now we consider any invariant distribution E with support 1in

HUR/2H0 By gk we denote the invariant distribution on X defined

by the asymptotic expansion:

(A.1)° Felug) ~ = B (P (cos?e)k (F e&X))

k=0
(cf. (A.1)). Then we see that E can be{expressed as a finite

linear combination of Ek's; 1.4,

E(f) =
k

Il ™M 8

. Ty €k<F) ~ (finite sum)

for f €eD(X).

Let T =T be an invariant distribution on X defined
uo,(Tk). e :

by
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<T

n/2 ©
UO,(Tk S

uplug) Felug) Bglug) db + kEO T, §k<f>

y? > =
n/4

for f eJX)., If all Tk are zerd; we abbreviate TU  for
. : ~ 0

T . 0@ing~the above facts, to prove Proposition A.1, it is

sufficient to show the following:

Lemma A.3. Under the assumptions of Proposition A.1l, an
invariant distribution T =T satisfies the condition:
QT, > = KT, >
for F ef}b(X), if and only if C6 = Tk = 0 Ffor all k. Here

is of the form (A.2) and

TyX) = (F e T Folug) = dlcos?0), supp ¥ C [0, 1/2)).

Proof. First, by a similar method to the proof of Lemma 2.3,
we get

(A.3) Qék‘= a{(d/2)+k}{<k4ﬂ>Ek-(k+1>E

k1)

with 0% k<€ . On the other hand, it Fo]Tous from integration by
parts, the assumption 20(Q)U0 = luo, (A.1)° and (A.2) that

(A.4) <QT, > - LT, >

_ d _ (9
= Bglup) {uglug) deFf(ue) (Gaup ug? P etugdd |pop /2
= i -4 C, E0<f> (d = 2)

4 cy ?d(q,ﬂ,d/Z;'O) E0<f) (d = 4)

for f etfb(X). Now our lemma follows from (A.3) and (A.4)

immediately. g.e.d.
In view of the proof of Lemma A.3, we Tind the following:

Corollary A.4. There are no invariant eigendistributions with
support in Hun/zH.
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C13

C£23

£33

C43d

C53

L6

C73
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