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Uniformization, automorphic forms and
accessory parameters*

by Irwin Kra

Let X be a compact Riemann surface of genus p > 2. Then

X can be rea]jzed in many ways; for example:

(1) X is the ‘Riemann surface of an algebraic function field
K(X) = €(z)[w], where z and w satisfy an irreducible polynomial

equation P over [.

~(IT) X can be represented (in an essentially Onique way) by
a Fuchsian group T acting on the upper half-plane U. The
group T can be chosen to be isomorphic to the fundamental group

of.X and hence generated by Aj’Bj e PSL(2,R), j = 1,2,---,p,with

-10...0 ;10 -1 =
1 Ap Bp I.

A, oB. oAll

1°By°A;7°B

(ITI) X can be represented (in many ways) by a Schottky group
G; that is, by a free group on p generators Cj e PSL(2,C),

j = 1925"'5p-
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It is a difficult and importaht problem in function theory
to understand the relations between the various representations

of X; for example, between P, I' and G.
"As an illustration of the type of solution one would like,
consider the classical uniformization of a surface X of genus 1

by an elliptic group T generated by the two translations
7 z+1, z » z+t (Im T > 0).

Then the a]gebraic equation for X = C/T 1is

wl = (z-eq)(z-e,)(z-e5),
where
e1 = P(3)s &, = P(3), e = P,
and ‘
P(z) =5+ 1 (=15 - 1), ze.
z yel'-{I} v(z) v(0)

The torus X can also be represented by a,cyc1ic lToxodromic

group with genekator
zw Az, 0 < [A] < 1.
Again, the relation between T and A is well known. We have

\ = e2ﬂ1T.
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sl. Riemann surfaces represented by Kleinian groups (the

fpndamenta]»prob]em).

Let I be a finitely generated non-elementary Kleinian
group with region of discontinuity @ and 1imit set A. The
most important result and the,starting,point of all investiga-

tions concerning such groups 1is

AHLFORS' FINITENESS THEOREM ([1]). The orbit space /T is of

finite analytic type; that is, @/r has finitely many components,

each is a compact surface punctured at finitely many points, and

the canonical projection @ - ¢/r is ramified over finitely many

points.

It is quite easy to conclude that each component of o (thus
also of @/r) carries a unique complete Riemannian metric r(z)|dz|
of constant negative curvature -1. As a matter of fact, there

is a quantitative improvement of Ahlfors' result:

BERS' AREA INEQUALITY ([4]). If r is generated by N elements,

then

Area (@/T) < 4n(N-1).

PROBLEM. Assume that we know all the topological properties

of the cover @ » /T, and the algebraic properties of the

roup r. Determine the equations of the algebraic curves

represented by a/r.

We are interested in recovering the complex structure

of o/t from r. Thus, in particular, if a component of Q/r is
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a punctured sphere (here & =€ U {=}):
‘X=m'{)\1,.'.’>\n},

then (n 2 3 and) we would like, as part of the solution of
our problem, a formula for determining either the covering

map of X or for evaluating the punctures Aj, 1 <3 < n.

§2. Spaces of cusp forms and Poincaré series (the basic tools).

We fix an integer q 2 2, and consider the space of cusp

forms for T of weight -2q (the space of g-forms, for short):

Aq(F) = {¢ holomorphic on 2; (¢°v)(v")% = ¢ for all v ¢ T,

and

fjg/rlz—q(2)|¢(25dz dz| < =}.

If A is a F-invariaht union of compOnents of o, then we define
/Aq(I‘,A) = {¢ sﬁ\q(r); ¢ = 0 off A}.

In particular, |
/Aq'(r,Q) = /Aq(r)'.

It is an immediate consequence of Ahlfors® finiteness
theorem and the Riemann-Roch theorem (see, for example, tll,;pp.
261-269]) that ﬂqgr) is finite dimensional. The dimension of
this space depends only on the topological nature of the cover-
ing o » Q/T.

Let ¢ and y be two non-trivial elements of ﬁh(F); Assume that

A is a I'-invariant union of components and that neither ¢ nor



Y vanishes identically on any componenf of A. Thén ¢/¢ is a
meromorphic automorphic function on A (its projecfion to A/T
extends to all the punctures) that is non-trivial on any com-
ponent of A. _ 4
The best known method for constructing cusp forms is via
Poincare series or re]ative Poincare series. Let f be a holo-
morphié function on 2. Let TO be a subgroup of T and assume'

that f is Fo—invariaht in the sense that (fey)(y')d = f for

all v ¢ %. Then we can define the relative Poincaré series

of f by the formula

- = 1yq,
0f ®r0\rf ,Ysrii T(f°Y)(Y )7
o\

the summands always make sense (that is, (f?Y)(Y')q is independ-
ent of the choice of representative vy for the coset Fa'of I')s;
however, the sum might not converge. There are no convergence
problems for Fo the trivial group (in which case(DF \rf is
0 «
writteniDrf and called the Poincaré series of f) and f in

Ll(Q) with respect to X(z)z'qldz dz|.
"More generally: if’Fo < T, then QO > Q and Ao < 2. Let

w be a fundamental domain for I'. We may choose w < w_ (the.

0
subscripted quantities refer, of course, to the group TO), and

as-a matter of fact we take

w_ = U v(w)
yeFa\F,

(for some choice of coset representatives). Then for f e/Aq(Fo),

5
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[] 25%2) | (0F)(2)||dz dz| s = H A(z) 279 f( Yz)y (z)qdz dz|
YEI‘O\I‘ L

[ M)¥Yf(2)dz dz| = [ x(z)z'q|f(z)dzda
YeI NI y(w) g

H Zq]f )dz 7| .

In

We have shown that

or s AalT) g

is a bounded linear operator of norm less than or equa] to one.

It is not hard to see that each element ¢ € A (r) is also

bounded in the sense that A'q¢ e L(Q). It fo]ToWs that‘Aq(P)

becomes a Hilbert space with the Petersson inner product

<¢,w> = TXJQ/P )& 2q¢(z (2) dz dz, 6,0 & A, (1),

An e]ement of,m (F) is ho]omorph1c on Q and sat1sf1es the
cusp cond1t1ons (van1shes at parabo11c f1xed po1nts correspond-
ing to punctures) ‘The Petersson 1nner product is def1ned for
the w1derc1ass of funct1ons ¢, that are T—lnvar1ant have
f1n1te1y many 1nequ1va1ent s1mp1e poles and are ho]omorph1c at
the cusps—as 1ong as ¢w has on1y simple poles and sat1sf1es

‘the cusp condition.

§3. Eichler cohomology.

The dimension of the Banach space Aq(r) depends'only on
topological data. We discuss next a vector space associated to.

I' that depends only on algebraic data. When these two spaces
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have the same dimension, we will be able to obtain interesting

consequences. Let

H2q-2 = {p e C[z]; deg p < 2q-2}.

The group T acts on the right (Eichler action) on Toq-2 bY

(p'Y)(Z) = p(YZ)Yl(Z)l-qs'p‘s qu_za Yy eTl, z ¢ C.
A mapping x : T ~» qu_z is a cocyle if
x(v1ovp) = xlyy) vy +x(vy)s all vy, v, €T3

it is a coboundary if there exists a p € I such that

2q-2
x(y) = py - p, all y e T.

The cohomology space»Hl(F,H 2) is defined as the vector space

2q-
of cocycles modulo coboundar?es. A cohomology class is parabolic
if it can be represented by a cocycle that‘restricts to a coboundary
on each parabolic cyclic subgroup of I'. The subspace of para-
bolic cohomology classes is dénoted by PHl(F,qu_z).

It is quite clear that PHl(r,qu_z) is a finite dimen-
sional vector space and that it depends only on the presentation
of the group I (we alWays assume that the presentation of T
specifies which elements of T are parabolic and which of these
parabolic elements correspond to punctures on Q/T). '

Ahlfors [1] and Bers [4] used with great success the in-
jective conjugéte lTinear map

*

(3.1) 8 Ag(r) > PRI, )

that we proceed to define. Let al""’an-l be 2q-1 distinct
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points in €. Let b el - {a1,°'3a2q_1}. Define
29-1 b-a,
= -1 _1 __J (1)
(3.2) f(b,z) 5 7B ,g. T Z € C
=1 =7
and
(3.3) ¢(b,z) = £ f(b,yz)y' (z) » Z € Q.

’ yel
If aJ and b are points of A, then o(b, )e,m (F) Otherwise,

the series converges but may have simple poles at appropriate
points in Q.

Now let ¥ € /Aq(I‘). Define
F(z) = <¢(z,+),9>, z e L.
Then F is a continuous function on C; and

x(y)(z) = Flyz)y' (2)1" 9 - F(2), z e €, y e T,

defines a cocycle whose cohomology class is precisely B* ().

| If dim/A (F) = dim PHl(F Iy 2), then 8™ is surjective
and hence it estab11shes an 1somorph1sm between a space def1ned
analytically and another space defined purely algebraically.
It should be noted that surjectivity of g* is a‘consequence of
topological and algebraic data—and not the complex structure
of the surfaces Q/I'. It is known that the map B*.is an isomor-‘
phism for a geometrically finite function'group (all q = 2),
[20], [22], and for T an arbitrary torsion free geometrically
finite group for q=2, t24], [18]. For all "dinteresting groups"

(except degenerate groups), it appears that B* is an isomorphism.

(I)See [13, §0.2] regarding conventions for parameters such as aj orb
becoming o,

¥
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§4. Poincare series of rational functions.

Let Aq denote the union of the Timit set A of I with the
set of fixed points z, € Q whose stabilizers in I' have order vy
with g-1 # 0(mod v). Let S be a finite subset of A_. We de-

q

fine Rq(S) to be the space of rational functions f that satisfy

(1) f is ho]omorphic'on*& - S,

(2) all the poles of f are simple, and

(12]729), z > =, if = ¢ 5,
'(2q-1))

(3) f(z)

f(z) s Z > w, if @ ¢ S.

0(|z]

THEOREM ([13]). et ag,-: ,azq 1 be (2q-1) d1st1nct points

in Aq. Let Yo = I, Yyttt Yy be generators for I. If

(4'1) | S = {,Y.'('ak); k=‘-1,.."" Zq']-, j=0""9N}a

then

8 (Ry(S)) = Ag(r).

The»abqve theorem yields a finite set of functions whose
Poincaré' series:span the space of cusp forms for I'.. Our
resuft is a quanfftative version of earlier theofems of Bers
[5],\[6]. We wou1d 11ke to se]ect a finite set of funct1ons‘
whose Poincare ser1es form a basis for‘m (IT). We proceed to
describe how to accomp11sh th1s for an 1nterest1ng class of
groups.

Assume that the map g* (3 1) is sufjéctive. Let
L

d = d1m‘mq(r) = dim PH qu_z). Let X12" "2 Xde2q-1 be a

basis for the space of parabolic cocycles for the group I. The



computation of such a basis involves a lot of work; byt is
determined compiete]y’by the pre§entatioh of,the Kieinian grouh
T. See([13] for computatipns of bases:fph spaces of‘cocycies
for Schottky, quasi-Fuchsien,vand Zz—extensions of qUasi-Fuchsién
groups. o o

Now let S < Aq be a finite set consisting only of
(1) fixed points of 1oxodromic,eiements, and/or

(2) fixed p01nts of parabolic eiements that represent at

least one puncture on Q/F, and/or

(3) points a in m (= @ U A) with the property that the
maximal elliptic éubgroup of T Stabilizing a has order
v with q-1 # 0(mod v).

Points satisfying (1), (2) or (3) above will be called

g-uniqueness points. (Note that this is a slight departure

from the terminology of [13], where g-uniqueness points were
defined as those satisfying (1) or (3).) | H
Let n_ = lsl{ If n < 2q-1, then Rq(s) fs empty. So
assume_that h0:=‘2q51-+h with n > 0. Se]ect 2q 1 distinct
points‘al,...,azq_l € S. Labei the remaining pOintS‘
82q>" " 2%2q-14n"

The functions f(a ,*)s 1 < 3§ < n, defined by (3. 2),

2q 1+3°
form a ba51s for R (S), and the functions ¢(a2q 145 i,
1 <3 gkn, defined by (3 3), span@ (R (3))

Each of the pOints in S 1s the fixed p01nt of an

/0
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appropriate non-trivial element of I'. We assume that dj is
f{xéd by Aj eI - {I}; 1’5 J S 2q-1+n. Next for each cocyc]e
Xi;rl <is d+2g-1, we construct a function F. on S as follows:

Falag) = x;(Ap) (ap)[A}(a )"0 21771,

if Aj is not parabolic; and if.Aj is parabolic,

‘ - X'i‘(Aj).(aj)
Fileg) T TRy

THEOREM ([13]). 1If B* is surjective, then the dimension of

@(Rq(S)) is the rank of the (2q-1+d) x (2q-1+n) matrix

, 1 <1 < 2q-1+d

1 < J < 2g-1+n

minus (2g-1).

Proof. Our theorem is a restatement, in slightly different .

language, of Theorem 4.5 of [13].

REMARK. Let al""’an-l be q-unjqueness points and let

Yo © I, yl,---,begenerate Ff The first theorem of this sec-
tion guarantées thaf @(Rq(S))g= mq(r) for S défined.by (4.;);'»
Surjectivity of 8* is not needed for this part. Thevsecohd
theorem of this section shows how to -select (using a finite
algorithm) avsubset So of S so that ® establishes an isomor-
phism between Rq(SO) and,ﬂq(f). ’The subéet S0 c S can be
chosen to contain 2q-1karbitrary points of S; fof example,

TR If A is a T-invariant union of componentsof @,

/1
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one would Tike to seléct‘S0 so. that @ maps'Rq(So) isomorphical-
ly onto‘mq(F,A). This is a more difficult problem and very -
little is known about it. See [13, §0.5 and §9].

2q-2)f

§5. The dual space of Hl(F,H

Let A e T be loxodromic with fixed points o (attractive)

and 8 (repulsive). We define a linear functional

% :,H;(P’EZq-Z) +
as follows. Let x be a cocycle representjng a cohomology class
in HI(F’Hquz) We expand X(A) € qu;z\as ’
(5.1) x(A)(z) =~§}é? aj(a-B)-j(Z—a)j(Z-S)?quf?: z e O,
and we define

It is easy to verify that 2n depends only on the cohomo]ogy

class of x.

THEOREM ([21]). The linear functionals

{zAQ AerT and A is loxodromic}

v 1 ‘
span the dual space of H (P,qu_z).

For e11ipt%c AerT, (5.1) and (5.2) define the zero
lTinear functional on Hl(F,HZq_Z).v For parabolic A e T with

fixed point a € €, the linear functional lAij defined by

(5.3) Lal) = x(A)(a), x e HU(TLT, ,)

r Z



We have shown in [12] that QA(x) = 0 for all parabolic A ¢ T
if and-only if X ¢ PH (F,qu_z). |
Let us consider the case g=2. Every non-trivial element

A €T has a simple eigenvector en corresponding to the eigen-

va]ue 1 for the act1on of A on H2 . If A fixes o and g with

a # B, then o ‘ |
‘:eA(z) 5'(z—a)(z—8);‘z é‘m;

while for pérabo]ic A with fixed point a,

ep(z) = (z-0)%.

Three elements of'F with distinct fixed points are said

to be indepehdent provided their eigenvectors are linearly in-
dependent. If Aj’ j=1,2,3, are three parabolic e]ementsvpf T
with distinct fixed points, then they are independent. If

Aj’ j=1,2,3, are three dependent é]ements with distinct fixed

points, then at least one of these must not be parabolic; say
A1 is not parabolic. It is easy to show that in this case

Al’ AZ’ A1°A3 are independent.

Let Al’ A2,---,AN be_generatprg for P'; Assume without
loss of generality that thése N elements have distinct fixed
points. If not all the A. are pa}abqlib; assume thaf'A1 is
loxodromic or e11ipt1c; If Al’ A2, Aj’ 3<j<N, are dependent,

replace A by A1 A "Thus we may assume that Al, A25‘Aj3

3<jsN, are 1ndependeht."Let

A, oA,

gsttes A

(5.4) S = {AE].’..."AN’ 1 1°A‘N, °A33' )Az A }

72
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THEOREM. If x e Hl(r,nz) and 25(x) = 0 for all B ¢ S, then

x = 0.

REMARK. The linear functional defined for parabo]ic A:by (5l3)
is, in a certain sense, the 1imit of the linear functionals de-
fined by (5.1) and (5.2) for Toxodromic or elliptic A with B
approaching o (for example)."This’observation_(in its precise
formulation) is useful in the study of degeneration of K]einian

groups and will be pursued elsewhere.

56. Cuspffbrms'aSQOCiéféd*td‘1oxodromic:eTéménfs:

Let A € P be 1oxodrom1c w1th attract1ve f1xed po1nt o
and repu1s1ve f1xed p01nt B The funct1on

i (a B)q | z ¢ E,
(z-0)%(z-8) ’

is automorphic with respect to Fo = <A>, the cyélic subgroup

g(z) =

generated-by A. We can thus form the relative Poincaré‘\series

associated with the element A:

op = T (gov)(v")T.
Ysl“o\l"

It is easy to show that ¢A‘e,Aq(P). - The basic results concern-
ing these relative Poincaré series are summarized below.

THEOREM ([14]). For all o a/Aq(r),,

. B*(w) = - —2'-1_’[]'<¢A".lp>.-i

THEOREM:([14]). ThéFCUsp forms

(L
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{¢A; A‘e I's A is loxodromic}

span 7Aq(F) .

We consider next the generators for I discussed in §5.

THEOREM.  (Assume g=2.) The cusp forms

{053 B € S ‘as defined by (5.4) and B is loxodromic}

s anmz(rL

The above result is a consequence of the first theorem
of this section and the last theorem of the previous section.

Assume now that g™ 1sasukjective. Let Al,--;,Am be an
arbitrary collection of lToxodromic elements of I'. Let
Xl""’xd+2q-1 be a basis for the space of parabolic cocycles

for I' as in §4.

THEOREM ([14]). lj B* is surjective, then the dimension of

the linear span of

{¢A1'sg"%' . 3¢Am}

jﬂ]ﬂq(r) is the same as the rank of the (d+2q-1) x m matrix

i 97 1< <2q-14d
1<igm

REMARKS. (1) The reader should observe the analogies as well
as the differences between our results on Poincaré series (§4)

’ . . ’ . R
and our results on relative Poincare series (§6).

7 5



(2) Special case of our results have been obtained prev1ous1y

by HeJha] [9], WOlpert [26] and Katok [10]

§7. Ho1omorphic forms associated to parabolic fixed points.

Lét A'e T be parabolic with fixed point a € €. -There

are two interesting subgroups of T associated to the point a:

{y € T; y is parabolic or the identity

Pa =
.and y(a) = a},
and
Fa = {y e T; y(a)

The group P is 1somorph1c to e1ther Z or Z 9 Z, wh11e r /P z Zn

with n =1 or.2 if Pa = Z, and n = 1, 2 3, 4 or 6 if P = Z & Z.

We say that a is g-admissible if q = 0 (mod n).
The function |

a(z) = —t—, <z,

. (Z-a) v
is automorphic w1th respect to the subgroup P of r. It is not
a cusp form if a represents a puncture on X, (E {a})/P (Its
projection to Xa has a pole of order q at the puncture.) The
function g is automorphic with respect to_I‘a if_and only if a

is g-admissible. If we form (for gq-admissible a)

vy = = (gev) (¥,
YET;\T

then b, converges forHQ~2 3 and also for q=2 provided that a

is cusped (see [12] for the definition). The automorphic form

/ 6
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wa is holomorphic on © and at all parabq1ic fi;ed points re-
presenting punctures on Q/T. If a does not representnavpunef
ture (for examp]e, if P = Z & Z), then by € Aq(r)d The autn-
morphic form w is non-triviaT’if a is accessible [12, p. 57].
Much remains to be studied about the function by See [2],

[23] and [12].

REMARK. The automorphic form/waﬁis the Tdmiting case of the
automorphic form o (of §6). This connection will be explored

elsewhere.

§8. ,_Uniformjzations of punctured spheres.

“Let I be a torsion free Fuchsian group operating on the

upper half-plane U such that
(8-1) X=U/T=«:"{>\13"',>\n+3}a n}OQ

that is, T is finitety"generated,of the first kind of signature

(0, n+3; w,-y-,“wL; Let m : U +~ X be a ho]omorph1c un1versa]

coveningbmap, We wou]d 11ke a formu1a for comput1ng i and the

punctures AJ 1 <3 é n+3 "‘ W | ‘ |
Assume fbk the moment that n= O In this case the group

can be constructed One can take r, for examp1e, to be the group

generated by A = (O ?) and B = (1 ?).

(Thus <, 0 and 2 are
a maximal set of inequivalent parabo]ié'f1Xed points.) The com-
putation of m is also easy. We can work with g=2. We claim that

'n' —

V. \
—, for example. (Note that y_(z) = I Y'(Z)Zs z e U.)
1% ' YeT N\T ‘ :

17
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Since neither y_ norz% vanish on U, = 1s,holomorphic‘and non-
zero on U.  Since y_(«) # 0 and wo(w) = 0, W(Q)VF o, Simi]ar]y
m(0) = 0. It is not known whether w(2) can be computed by a
finite algorithm. It is clear, however, thaf ﬂ(Z):e t* = ¢ - {0}.
Assume ne*t,thatfn=1. Let E;» E,, Egs E, be parabolic

elements of T that generate the group and satisfy

EI°E2°E3°E4 =1.

Lét dj'be the fixed pOint of Ej for j = 1,2,3 and 4. Let

b, = El(az); b2'= Ez(al); ‘We work, as before, Wfth q=2. Norma]ize
at’al, 3,, a3 and use the rational functions defined by (3.2)."
The two cusp forms ¢(b1,-) and ¢(b2,-) (when'restf1Cted’to u)

are Tinearly independent over R, -but linearly dependent over |

€. A formula for the covering map is now m =-i£%§§;l .

follows that F(al),= 0. It would be interesting to compute

It

w(aj) for j = 2,3,4.
SimilarTy, it is not known how to compute the map m (ex-

plicitly, as above) for n > 1.

§9, Accessory parameters for punctured spheres.

We proceed to discuss the ihVEkse&Of'thévbroblem treated-

in 58. Normalize X of (8.1) so that A ., = 0, A = 1 and

n n+2

A = o, Let f be a Tocal inverse of m and let ¢ be the

n+3 7
Schwarzian derijvative of f. It is easy to see that ¢ is holo-
morphic (single-valued) on X and, in fact,'¢‘extends to be a

rational function on € with residuesx% at each of the punctures

1 ¥



(when ¢(z)dzzvis regarded as a quadratic differential on ).

Hence’(we will call ¢ the uniformizing connection for' X)

. (o — I35 —
z(z-1) (z Aj) 2 z Xj

zz—zfl

= 1
#lz) = z 22(2—1{2

n : ~
+ I +c.l, z ¢ C,
3=1 ’

where c,,***,c  are constants known as the accessory parameters

of the uniformization. The determination of these constants is
very difficult. Knowing the constants implies knowing thé cover-
ing group (as a,monodromy group of the Schwarzian differential
'equation), Hence it is useful to investigate the behavior of

- the accessory parameters.

Let us define

n - - .. n. : ’ .
M {2 (Al, ,’An) e C; kj # 0,1 and Aj # M for j # k}.
Set ¢k to be the uniformizingxcénnection for
X, =€ - {O,I,Al,---,An} and c(A) = (cl,-~-,cn) the vector of

accessory parameters for X,.

THEOREM ([15]). The mapping

M3 Ab c(r) e "

is real (but not complex) analytic.

THEOREM ([15]). Let X(m) e M", m = 1,2,3,--.,and assume_that

(m)

the sequence {X } converges to a boundary point A(m) of M.

uniformly on compact subsets.

Then 1im ) (m) = ¢

m-=e . A\ A(m)

REMARKS. (1) The above two theorems are also valid for most

uniformizationsinvolving torsion.

79



(2) The second of the above theorems is not as innocent as it
appears. There are examples of covering maps ™ of X (m)»(i"‘
A
volding groups with torsion), such. that T + 0 uniformly on
compact subsets of U, yet ¢ (h) > ¢ () as in the second theorem.
A At ' ‘ '

Note that XA(Q) is € - {0,1} punctured at the distinct

points in {Agm),---,xﬁw)}.. (This latter set may, of course, be

empty.)

We end with a

CONJECTURE (Thompson [25]). Let § be the field of algebraic

(
numbers. If Aj e, j=1,--+,n, then so do the accessory

parameters ¢y 1 <3 <n.

Flimsy evidence towards the conjecture is provided by the

remarkable

THEOREM (Belyi [3]). “Let klg---,xn e @, then there exist points

Mps T taupe Q such that the accessory parameters for

X* = ¢ - {Al,-~-,An,u1,?--,pm} are algebraic.

Belyi's theorem yields much more. The covering group for
X* iska subgroup of PSL(2,Z). We will not specuTate where this

could lead; but, there are many interesting dreams.

§10. Hyperelliptic Schottky groups (an illustrative example).

We shall study automorphic forms (for q=2).for a Schottky
group I' that admits a hyperelliptic involution; specifically,
we consider a Schottky group I' on p > 2 free generators Al,-“,Ap
having the following additional property:

20
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() There exists an element E ¢ PSL(25¢) such that

E2 = 1 and EoAj = A31°E for j = 1,---,p.

Our first task is to construct an example of such a group.
We will let G be the group generated by T and E; then [G:T] = 2
and it will tdrnfOuf that G represents a sphere with 2p+2 rami-

fication points of order We start with the construction for

2

Ni=

p=1. We may take E(z) = =, and Al(z) = 2%z with |[x] large.

>,

We let E1 = E°Al. We let T, = <A.>, G, = <E,E1> = <E,A

1

1 1 1

lzl=1a]

Fundamental domain w, for I'y. - Fundamental domain &1 for G;.
For A ¢ PSL(2,C) having two fixedvpoipts distinct from

0 and =, the condition E°A = A_ldE is equivaient}to E interchang-

ing fhe fixed pointsof A. If such an A has fixed points o # =1

(and %) and multiplier K # aiz, it is of the form

K
L .S K-1
N 1/2 1 84 o SN
A = K (O(-' _) g ’
| o'\ 1-k Koo -

and the elliptic element E°A of order 2 is of .the form

2



1

The fixed point of E°A are

o

1-Kz Kllz(av- 1)

o - —
o}

these are close to o for large |K| and close to é for small [K].
uumsea==aé € 81 (thus o, and éL e wy). For |[K[sufficiently
large the fixed pointsof E°A will lie in 31 and hence we can
choose a circle through the fixedrpoints of EoA to lie entirely
in 31. It follows by use of the K1ein—Mask1t combination
theorem"[19]‘that the group générated by G1 and EoA is Kleinian,
has;a connected regﬁon‘of disconfinuity and represents a éphere
with 6 ramification points of order 2. Similarly for sufficient-
ly 1arg¢_lKl, A maps the interior of a small circle about o onto
the exterior of a small circle about %. It follows tﬁét the

group generated by Tl and A will be a Schottk} group of genus 2.

We have defined A2 and E2=EoA2, and hence F2 and GZ‘ It is

o)

Fundamental domain w o for F2. Fundamental domai

clear ﬁhat [Gz;rz] = 2.

22
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It is now clear how to proceed by induction to construct

th r =r_and G = G_.
e groups b n Gp

To construct cusp forms for G we work with. g=2. we con-
sider the pt+l1 generators E = Eo’ El,---,Ep of G. If E, E£, Ej’
2 <j < p, are dependent, we,rep]aceij_by EbEj = Aj’ Let B
be loxodromic. The relative Poincaré series associated with B
as an element of T will be denoted (as usual) by‘¢B; while the
corresponding series with respect to the‘group‘G will be denoted .

by $B' Note. that
n ; f 2
¢B(Z) = ¢B(Z)'*¢B(EZ)E (2)°, z € 9

(both T and G'ﬁave the same region of dﬁscontinuity Q). We have

shown that the following 2p-1 re]atiﬁe Poincaréd series span AZ(G);
¢ : |

%)A., J = 1a2,f",p,
J-

(10.1) ¢ $51°E" if j =2,3,---,p and E, E;, E; are independent,

J
= 2,3,-++,p and E, E

,\’ ) f\) - T N

b = ¢ , if , E. are
dependent.

The mapping E induces the hyperelliptic invofution on Q/T

and /AZ(G) is the 1-eigenspace of the action of E on'/AZ(l“)'., The
2p+2'fixed points zl,---,z2p+2 of the elements E, El,-vo,Ep
»projéct to the Weierstrass points on 2/T. Hence the elements
of]ﬂz(G)gvanish to even order at each of the points Zl""’22p+2‘
Let us denote by $1,-~°,$2p_1 the basis for,ﬂz(G) given by (10.1).
We claim that for any collection ZysttsZps 1 <ncx< 2p-1, of

lifts of distinct Weierstrass points on Q/T, the matrix
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(10.2) (6502

1 <3< 2p-1

1<k <n

has rank n. To séévfhis, Tet us répresent the surface Q/T

(which we have shown fo be hypere]]iptic) bj the”algebfaiC'equa-

o 2p+2

tion w° = 1 (z-ej),where.el,-

j=1

numbers. Here z is a two sheeted cover, z

p-,e2p+2 are distinct complex

: Q/T +§, and the

ej's are the values of the function z at theXWeierstrass points.

A basis for the quadratic differentials on Q/T that are in-

variant under the hyperelliptic involution is given by

zjgdz)z' j
2 bl

w

= 0,°+°,2p-2.

It follows that (aftgr relabeling) the rank of the matrix (10.2)

is the same as the rank of the matrix

(ej)

0< j< 2p-2
1’ k< n

This latter matrix is known to have rank n (see, for example,

[7, p. 304]). Llet 1 s i, <i

tion of integers. Consider the cusp form

2

$,(2)

1.2p—2

$,(2)

2

(z

Top-2

)...¢

Y

2p-1(Z

<---<1'2p_2 < 2p+2 be any collec-

"$2p-1(z)

N .
'¢2p_1(211)

12p-2

The rank condition on (10.2) shows that the above cusp form is

xA
3
-
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not identically zero. It vanishes at each z, to order at least
: J |
two. Hence it vanished precisely at these 2p-2 Weierstrass

points to order 2 (and points equ1va1ent to these points under

P) and at no other po1nts Thus the funct1on

$12f"(2p-2)
¢23- -(2p-1)

f(z) =

is a two sheeted cover of € (it van1shes at zlyand has avpo1e

at Zpp- 1) ‘and the branch va1ues .
ey = Flzg)s 3 = 1,007,2p42
are expressible in terms of relative Poincaré series.

REMARK. B. Maskit has suggested the following simpler construc-
tions of more restrictive classes Schottky groupé T with sym?

metries. . For j = 1,...,p choose real numbers a > 0 and kj >0

such that
ry < alland aj + rj < aJ.+1 - rj+1 for j = 1,...3p-1.
Let cj be the circle with radius rj‘and center aj; Let Aj,s PSL(2,C)
satisfy-
.{(a.xr.)=-~a. * r., A.{(a.+1 ; = =g, - ir..
Ajlagergd=-az £ rys Aglagrirg) = -ay - dry.

A simple ca)cu]ation shows that Aj(aj) = o, It fo]]ows'that‘Aj
takes the interior of the circle cj‘onto the exterior of the circle
_cjv(with center - and radius rj) and that Aj preserves the real
axis. We conclude that the group T generated by Al,...;Ap is a
Schqttky'group on p free generators. A fundamenta] doméin‘w for T

consists of the intersection of the exteriorsof Cl”"’cb"cl""'CV

LN
\,rT




and the limit set A of T is a subset of R.

N/

{\ff\ﬂc_ﬁ

N

Fundamental domain w for T

Fundamental domain o for G w N

Then E. = EoA. =

Let E(z) = -z. 3 j

side

E. fixes a., £ ir.. It foT]owsp

J J J

EO,...,Ep

order 2.

24

of the equa]ity'agree at a;

The involution J(z) = z,

‘exterior of 6 circles.

(upper half-plane).

1

A3 oF because the maps on both

+ r. and a. + ir.. Furthermore,
J J ood

that G, the group generated by

, represents a sphere with 2p + 2 ramification points of

z ¢ 0, commutes with each
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element of T and induces an involution on @/I that permutes
the Weierstrass points. The algebraic curve represented by T
is symmetric in the sense that the branch values ej, j=1,...,2p+2,
consist of 0, and p pairs of conjugate complex numbers.
Another interesting example:is obtained by choosing

Aj e PSL(2,R) to satisfy

A.(a.tr.) = -a.+r., A.(a.+ir.) = -a.+ir..
jlagery) = -agtrg, Aglaz+irg) agrr;

Now I is (also) a Fuchsian group of the second kind. The Weierstrass
points are fixed by the anti-conformai involution and the branch

values are all real.

§11. Geometric interpretations.

A11 of the examples of cusp forms in this paper were for
g=2. This case is easier than the general case because it is

geometrically significant. Let
® : A > Hom(T, PSL(2,C))

be a holomorphic family of homomorphisms of I into PSL(2,C)
defined on the open unit disk A. Assume that ¢(0) is the
identity isomorphism. We can associate to ¢ a cohomology

class x ¢ Hl(r, Hz) as follows: For y e.T,

x(y)(z) = Tim (Y_1°®(t)év)(2)) -z

t->0

The cohomology class x is trivial whenever there exists a holo-

morphic function A from an e-neighborhood of 0 to PSL(2,C) such that



1

x(t)(v) = A(t)eyeA(t) ", |t| < e.

Further, x ¢ PHI(T,HZ) whenevérbi(t) sendskparabbiic elemehté

to parabolic elements or fhe:iaehéity'for a]i sufficiehtly‘éma11

|t]. (For detéf]s,‘Seé [8].) o “ | | |
A given element A & T deffnes;ih éenéfa], two Hd]ombkphic

‘functions in a neighborhood of zero: the multiplier function

K (defined only if A is not parabolic) and the trace function

T (always defined). The two functions are related by the formula

T = K1/2'+ K'l/z. We set

K(t) = multiplier of o(t)(A),

trace of o(t)(A).

T(t)

To specify choices, if A is lToxodromic éhoosek]K(O)l <1, and
if A1is parabolic choose T(0) = 2; | |
It follows that |
QA(X) = K;g for loxodromic A,

and

QA(X) T'(0) for parabolic A.

(The formulae have trivial generalizations to the elliptic case.)

If T is Fuchsian operating on U, the upper.ha]f plane, and
if o(t) is also Fuchsian for all sufficiently small |t|, and if
A e T is hyperbolic, then -1og(K(t)) represents the length of
the geodesic on U/T(t) obtained by projecting the axis of A(t).
~Thus -QA(X) represents the variation of the Tength of thisv

geodesic. (Above, T(t) = o(t)(r).)

23
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The case q = 2 is also significanf because AZ(F) can be
naturg]]y identified with the cotangent space to the Teichmiuller
or deformafion space T(T') at the origin (sée [16] and [17])‘and
fixedﬁpoiﬁts of elements of I' yield global coordinates for T(r).
Furthef, the traces of elements of T yield local coordinates on

T(r).

§12. Concluding remarks.

~The determination of the algebraic curves represented
by a Kleinian group requires a transcendental intermediate
step. Poincaré and relative Poincaré series provide this
step. Much is known abbUt this tool. However, to solve
the general problem mentioned in the introduction énd in
51 seems at this time to be a distant dream. It is s11§ht1y
surprising that in the hypere]]iptic'case, our tools are

sufficient to recover the curve from the group.
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