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On evaluation of certain limits in closed form

S. Kanemitsu (/{ﬁ_\;‘l—fv; ﬁ@ (Kyushu Univ.)

1. Since Apéry's proof of Zz(3)¢Q or rather van der Poorten's
observation thaf Apéry's series for ¢(3) has its genesis in the
trilogarithm LiB(z), the theory of irrational numbers as well as
the theory of polylogarithms Liv(z) are in revival, the latter of
which is also in vogue (v =2) 1in an algebraic geometrical aspect.

I will present here yet another application of polylogarithms, which,
setting aside opinioné of others, I hope will serve for facilitating
the mood of progress in both of these theories. That is, I will apply
the polylogarithm of complex exponential argument to evaluate’the

following three kinds of limits in ciosed form:

_ ® k ,
(1) L(k)(‘l,x) = (-1)k y Hﬂl-rlzﬂg——ri , the k-th derivative of
. n=1

Dirichlet's L-function L(s,X)» evaluaﬁed at s=1, where ¥ *Xo is

any . primitive - Dirichlet character modgq, 1<qeN, 0<LkelZ.
k k+1_ vy
. - . log™n log X
(i1) v, (r,q) =1lim f y - —= |, the k-th
k ’ X300 L nS_X n q(k+1) ’ .
nzr(mod q)

generalized Euler éonstant mod g9 with g, k aé above (or rather
jokingly, the k-th generelized generalized Euler constant, where

the first "generalized" refers to the generalization of the ordinary
k-th generalizéd Euler constant Yk=yk(0,1) to the arithmetic pro-
gression r modq), where 1<ge€N and we may restict ourselves to

0<r<qg-1, since for =0 (modq), we have
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9% (0,q) = v, -loggq,
and

(iii) L(k,X), the speéial values of Dirichlet's L-function at
positive integral arguments k, for non-principal ¥ .‘

Let me first stéte some historical overview on (i) - (iii).
(i), in particular, the evaluation of L(1,x) and L'(1,x) in clo-
sed form has a long history (of course, (i) and (iii) amounts to the
same if k=1). Expressing L(1,x) in terms of a finite sum makes
ﬁp the second stage of Dirichlet's work on his class number formula,
the first stage consisting in relating L(1,x) to the class number
of quadratic forms (or equivalently, to that of quadratic fields) of
given discriminant, and can be found in many textbooks on number
theory (e.g. in Davenport, Multiplicative number»theory; Narkiewicz,
Elementary and analytic theory of algebraic numbers, or Hasse,‘ﬁbér
die Klassenzahl abelscher Zahlk®rper). Observe that all existiﬁg

proofs (as far as I know) depend on Abel's continuity theorem (and
[ee)

R . z
a fortiori on the convergence of the power series y T on [z] =1,
n=1

z#-1). I will state one more (more or less known) proof of the finite
expression of L(1,Xx), later.

Regarding the finite expression for L'(1,x), it was first ob-
tained by Berger in 1883 and independently by Lerch in 1897 for odd
characters (see [Lan 1]). Both authors used Kummer's series for

log I'(x), i.e.

sin 2mnxlogn _.llog§i££5 = (v + log 2m)B, (x)

=1
(1.1) 1log I'(x)-—TT 1 ~ 5 -

n

e~ 8

valid for 0O0<x<1.
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However, for even ¥X, the evaluation of L'(1,x) led to the

evaluation of the Fourier cosine-series

8

Qi(x) _ 2 log11ifs 2rnx

n=1 ’
which, unlike the sine-series, was not known to be related to any
classical function of analysis. After the works of Lerch [Le 1] and
Landau [Lan 1], Gut first took up the problem of evaluating L'(1,%)
for all yx by cohstructing an infinite series. (involving squares of
logarithms) whose Fourier series coincides with ®,, to obtain the
Kronecker limit formula for the zeta-function of cyclotomic fields. -
Véry recently, Deninger [De], in the spirit of Artin, has developed
the theory of R-functions, which provides us with a better under-
standing of @i, where the function R(x) is characterized as in
the’Bbhr-Mollerup theorem (on logT). And it is this standpoint of
Deninger (-Artin), combined with Berndt's consideration (cf. [Be])
in our case, that I will adopt in this note.

Finally, regarding (iii), I mention only three referenceé [va],
[Lew] and [Mi]. Yamamoto seems to be‘the first to have evaluated
L(k,x) in finite form, who, however, did not use the relation (2.17)

© 2minz '

between F(s,z) = ) — and the Hurwitz zeta-function, but used
n=1 n .

the finite expression for F(k,x) (keN, 0<x<1):

(1.2) F(k,x) = 12"—1)—[1& (x) - TiB, (x)],

where Ak(x) is essentially the repeated integral of the log-sine

(or the Clausen) integral
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27x))

2 mX 6
—J log|2sin§|d6 (=C12(
0

and is the same as the one called the Clausen function in [Lew], and

where By (x) is the k-th Bernoulli polynomial defined by

k

xt ‘
By ()57 -

t e

et-1 k

"
e~ 8

0

He deduced the Fourier series of Ak(x) and Bk(x) from the defini-
tion of F(k,x). There is, however, a more well-known procedure,
which has long been known (see [Lew]), leading to (1.2). It starts

with defining the Fourier series themselves as the Clausen functions:

012n(e) :.k21ii§%?g ; 012n+1(6) = kz1 %ﬁ%ﬁg}-, and then deducing

. 6
012n+1(e) = Li2n+1(1) - jomzn(e)de (Li2n+1(‘l) =z (2n+1))

6
c1, (8) = jo c1,_ . (8)de.

For this and for the associated Clausen functions, see [Lew, p.191%].

2. As we stated in §1, our principal aim is the evaluation of
three kinds of limits in finite form. The principle which underlies
such an evaluation is fairly simple and depends upon the following

classical relation (cf. [Whi-Wa, p.275] and [De, p.176])

2minz i 1—.(1_5)

1

(201') F(S’Z):: of s

- ./2 /2
R (2n)1's [eﬂSl d1-5,2) -d°1 d1-s,1-z)}

where the first series converges absolutely for seC, Imz=>0 as
well as for o>1, z2eR, whereas the right-hand side expression re-

presents an integral function of s whenever =z ¢Z. For zel,

"4'



(2.1') should be interpreted as meaning the well-known Riemann's

functional equation in its unsymmetric form

(2.2) F(s,z) =
n

Ao p(s) = 2LUI=s) 5 TS (1-5) .
8 1~s 2
n (2m)

Ie~18
-—

Although (2.1') has long been known, it ié nothing but the relation
between two independent basés of the vector space ;{S' consisting of
all continuous maps f: (0,1)>€ satisfying the Kubert identity
(*S) (for this and many further interesting results, see [Mif]).
Because we shall need the information on F(s,z) only for 0<z<1,
we suppose, in what follows, that z=x¢€ (0,1).

Now, the fundamental idea ( which is, according to [De], due to
Meyer) is to use the coefficient of sk, or of s -k, as the case
may be, in the expansibn of the right-hand side of (2.1') in order

to get an explicit expression of the series

® 2minj/q, _  k k . ©  2minx
]S logn . (k3 _p(q,d) or 7§ = F(k,x)
n k k
n=1 9s ! n=1 n

in terms of certain definite special functions, which then yields

elegant expressions for L(k)(1,x) (and Yk(r,q)) and for L(k,x),
X being any Dirichlet chatacter modq, q>1. For notational con-

venience we shall use (2.1') with s in place of 1-s as in [De]:

(2.1)  F(1-s,%) = (—in?;)g (™20 (5, %) + "™ 2, (5, 1.0)).
| . g

K 5%
The coefficient of s ( =(-1f(—ﬁEF(1,x)) is
- 98
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(2.3)

al b! cld!

(=1og 2m)® () (q) (ni/Z)C{C(d)(O,X)J,(q )Cz;(d)(O,']-X)}’,

atbtc+d=k+1

where a,b,c,d run through all integers >0 whose sum is k +1.
In actual calculation, one can omit those terms which correspond to
d=0, 2|c; since ¢(0,x) +¢(0,1-x) =0,

Thus, for k=0, we obtain

(2.4) F(1,x) = TTi(JZ'-x) - log(2 sinx),

which is formula (2.7.1) of [De] and coincides with the case k=1
of Proposition 3.2, (i) of [Ya].
For k>1 we already need a new function defined as follows.
By [De,,p.173:[ there is a solution Ra(x) of the difference equation

(whose right-hand side member is a continuous function for x>Db>0)
(2.5) £(x+1) - £(x) = log”x, O0<aeZ,

‘given by (the Gaussian representation)

- , n-1 ’
(2.6) R (x) = lim (A +x log®n - log®x = | (Log%(x+v) - log%v))
n-+o v=1

such that Ra(x) is convex on some interval (&,»), A >0, and

RQ(T) = A. Moreover by Theorem (2.2) of [De], (-T)QH(;@-Z—;(O,'X)- g(a)(o))
: s

is the uniquely determined solution of (2.5) having value 0 at x=1.
(Hence, in particular, for qo=1, logr(x) is the uhiquely determined
solution with logT (1) =0, convex for large argument, since ésg(O,x)

= logI'(x) +¢'(0), and so Theorem (2.2) of [De] is a generalization

— -
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of the well-known Bohr-Mollerup theorem).

Hence

(2.7) () = (0% 20,0
) S

on choosing A= (-1)“+1c(“)(0).

(2.6) can be transformed, by using the definition of Ygoq

n=-1 logoz-‘l 1ogan
) — =

Y = 1im [ 5

-1 nrew  y=1
(ecf. 81, (ii)), into

(2.8) R (x) = (-0 o) Ly |

X - logax - (logu(x+v)
o ‘ v=1

a 1og% 1y
- log v - ax-—i%T—-),

the Weierstrass representation. The derivatives of Ry, are then

given by
R '(x) = 0‘logm'“x - a ? loga'1(x+v) _ 1021y
a ‘X F=Yqq " X L x+v v ’
v=1
and for k2>2
(x) koo ko aer.  © “k,  a-r
Ry (x) = 21 ca_r(k)(x log "X = 21 (x+v) Tlog " (x+v)),
r= BERVES

which are continuous for x>b>0. Hence, as x+«, Ra(x)->0, and
this characterizes R (x) as the Hauptldsung F(x|1) of (2.5) by
p.56 of [Nér]. In particular, R,(x) = R(x) (cf.[De]). Observe that

although [Be 2] gives a Hauptldsung to ¢(x) - ¢(x-1) =log?x, it is

_ T —
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not a Hauptldsung of (2.5).

, : k
"Now we are in a position to evaluate first a few (-1)ka—aIF(1,x).
' s

The substitution z(0,x) =1§— %, ¢'(0,x) =1log I'(x) - %log 2m, ' (0,x) =
= -R(x) into (2.3) gives |
(2.9) -%F(’l,x) = - (Y+log 2m)(-log 2 sin mx + Ti (%-x))

-3 (R(x) +R(1-x)) + T (Log T(x) - 1og T'(1-x))
or = - (v+log2M)F(1,%) =% (R(x) + R(1-x)) + Z(log I(x) - Logl (1-%)),

which is formula (2.7.2) of [De]. Note that the imaginary parts of
both sides give Kummer's series (1.1) for logT(x).

Similarly, we obtain

(2.10)" §§5F(1,x)==%(aa(x)-+R3(1-x)y+%(1og2n-+v)(R(x)-+R(1-x))

I (R(x) - R(1-x)+ (22827 4 LI 4y 0g 21 - T) (~1og 201n 7x)

- lTZi (log 2m + v) (log T'(x) - log T'(1-x))

2 2 2
+ i (109;2 21y Q(Z%J'Y + ylogm - —gz-)(% - x),

and so on.

3. We are now in a position to give main formulas in this note,
The following relation plays a basic role in the evaluation of

L) (1,5) as well as of L(k,y) :

-1 k .
(3.1) L) (6,00 =« T X(G) 2 F(s, 1)
: j=0 9 s 9



valid for k=0,1,2,... and 0>1, where .1(¥) = Z X(J)E 1)

J._
(ej (1) =e2m"}/q) is the normalized Gauss sum. (3.1) holds for any
se€C by analytic continuation, and can be proved on the basis of

the well-known relation

-1
cm) =t T X)) e (n),
j=0 .

where EJ (n) _eZﬂijn/q is an addltlve character mod g. For more

details on (3.1), see [Mif and L—Ya]
" Although we can transfer the results on L(k)(’l,x) onto Yk(r,’q)

using the relation (cf.[Kno])

L (1,50 = (-)E z SENAERE
. R .]‘

we shall adopt the Fourier an'é'iysis to Yk(r,fq) directly as follows.

Consider the finite Fourier series (as in [Lef])
q-1 ,
Ok,j: = )\ZO‘Yk()\’Q) EA(T)

for j$0 (modq). By the definition of Yy (r,q) and the orthogo-

nality relation of €y s we get

= (- 1)“—F<1 -l)

(3.2) Ok, i
! as

As noted by [Yal, ey greev € . form an orthogonal basis of C(q),

q -1
the vector space over € of all sequences of period q, with

_Ci\
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respect to the inner product (cyec,) = Y cy(a)c,la), it follows

‘ ;amodq .
from (3.2) that - ;

. ] k |
(3:3) . QYk(I‘,Q) = Yk 2(; 'a""— F(1: )eXp('-ZZ’Irijr/q), :
=1 8s -

q-1
Since ok’o = ‘ZO Yk(J»Q) = Yk .

It remains to substitute (2 4), (2 8), (2.9), (2. 10), ... into

(3.1) and (3 3), respectlvely.

(1)

Regarding L »X), the results are:

'ELKLB 1,%° x odd
(3.4) L(1,x) = e

‘"-L&l X x(J)log 81n1rl X even
j=0

where B1 = X X(j)g.](‘i);
\’X ijdq

320
—ﬂ((\ﬁlog?ﬂr) 2 %(j)1logl1 - 2Fij/q|
J—

—eﬁ 7 x(J)R(-'L) .

(3.5) L'(1,X)= <

| X even

Deninger's formulas (3.4) and (3.6) respectively;

(3.6) - L"(1,x§ |
—y=1 i a1 — . i . ' 931 — o\A 3
=t(x)7 | =% 1 X(PR(=) - 7mi(log2m+y) I X(j)log T(-L)

‘_lC)__
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-1, ' -1 .
=1 ()] [% qZ X(3)R, () + (log2m+y) qZ X (§)R(~L)

j=0 1 | j=0 :
—(LogZ2m +'¢:(2)ng

g=1_ .
,.zox(j)log ZSin‘n—é—) , X even,
J= :

. 2
+ vy log 2m — —8-)

and so on.,

Similarly,

' | q=1 . q=1 . o
(3.7) qYelr,q)=vy~- %—- Y (25 - q)sinzn—rl - cosz—m‘:llog sin Il
_ qj=1 q j=1 q Qg
qz1 o
- (log 2) .21 exp (-2mirj/q)
J:

Y+ log2+%coty—'——2 Y. vc‘osgn—;-j-log sin I | r §0(q)
, ‘ 1<j<q/2 d

Yy -loggq, r =20(q),

by Lemma A, (¢) of [Leh]. (3.7) is the same as formula (11) of [Leh]
:I-ncidenﬁally, as was shown by [Br 2] and ’[Leh]

(3.8) : " qY,(r,q) = —‘fﬂi(%-) ; log'q,

where Y =

r
T

is Gauss' digamma function. Comparing (3.7) and (3.8)

gives Gauss' formula (as in [Leh])

(3.9) V(&) =-y - log2q - oot E +2 § cos 2L 165 sin Ll |
E ! 1£j<q/2 q

For k=1,



.

‘ R .
(3.10) aYy(r,q) =¥, - (¥ + Log 2m)(qY,(r,q) - Y + 7 ] _lo,g‘l’(f‘cll-)sin 2’Trré-

J=1
Cogq=1 e
-} R(-)cos2mr - .
2 a q
J
For k=2,
: -1 . . q=1 .
_ oy 1% L S A yein 2mi L
(3.11) ay,(r.q) =%, -3 jz133( )eos 2mi - - 3 j-—E-1 R(-)sin 2mj o=
— (log 2m +v )(qv,(r,q) -v,)
.’ » | 2 2 . 3 s
+ (%(1og 2 +y Y +£$§_2__ %)(qyo(r,q) -v) +12T—Zcot ﬂ-é-: ,
etc. ’

We conclude this section by considering briefly L(k,x), clinging

still to our method. In this case we need to calculate
(3.12) 2 (1-k,x) - (-1)52' (1-k,1-x)
because the coefficient of s-k is

. k-1
(3.13) LB (o (e, - ((D¥e (1-6,10) - mB(0)]

which coincides with (2.4) in the case k=1, in view of ?;’(0,x)

=log I'(x) -lz-log 2r. By [Be -Jo], (3.12) is equal to
¢k—1 (X" 1) - <bk—1 ("X)’ k even
and vto | |
¢k_1(x-1) + ¢k_1(-x) + 2¢'(1-%), k odd



in their notation. Applying Entry 30, we conclude that

(k-1)! k-1 _ v cos 27nx
cos==—7m ) ==&  k odd
k (2m)k-1 2 n*
' (1-k,x) - (-1) ' (1-k,1-x) = , T
(k- 1k) - sin 51 r ] Sin 2k7rnx . Xk even
(2m) n=1 n

Hence substituting this in (3.12), after rewriting the right-hand

side members in Lewin's notation introduced at the end of §1, we get

F(k,x) = @L_[( 1)(k-1)/2z_2_%!T{:T01k(2nx) - Ti Bk(x)] ,
which is the same as (1.2).

4. Remarks and problems. 7’ Defining the function g(x) as in

[Br 2] by

(4.1) Cu(x) = ;-Yé‘;'(- +g(x),
- ‘ XxeC-R" ,
(4.2) g(x) = n; Ty
we deduce from (3.8‘) |
(4.3) © av,(r,q) = ¥ + 2= - loggq- g(-z—),v 0<r<gq.

Substituting (3.9) in (4.1), we get

(4.4)  g(E) = & - log&-

NI:J

ot X+2 7 cosg—[r;ilogsinm;
1 1gy<a/2 b 4

To the right-hand side of (4.4) Uchiyama applies Baker's theorem
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that any non-zero linear combination of (finitely many) logarithms
of algebraic numbers with algebraic coefficients is transcendental,
to conclude that g(x) is transcendental for 0<x<1, since for

such x, g(x)<1<1/x, and a fortiori that
Y - qY,(r,q) - loggq

is tranécendental. However, the présenée'of logc1 in this assertion
is a formidable deficiéncy,,and Briggé used the (rather'trivial)

relation
ano(ar',aq) + loga =qv(r,q)

valid for a€N, to cancel thié logq . (cf. Theorems 2 & 3 in [Br 2]).

It is rash to hazard a conjecture on the transcendency (or even
irrationality) of vy, (r,q) in the present circumstance that nothing
is known even about the irrationality of Yieo but it does not seem
unreasonable to expect the truth of the following:

Problem 1. 1Is there a non-trivial trénscendental (or rationai)
correlation between Yk(r,q) .and Yy ? | | ‘v

That a generating function is known only fér Yo(r;q) is not
satisfactory at all,‘and we staté‘ o |

Problem 2. Find a*generating funection for Yk(f;q) and in
general transfer Matsuoka's results [Ma1-3] on Yi to Yk(r,q).

As a final problem, we state

Problem 3. Investigate further analogues of the Chowla-Selberg
type relation. In other words,hexamiﬁg the arithmetic nature of .

solutions of the difference equation (2.5).

~ 14~
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