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Abstract
Spatially extended dynamical systems are investigated = in
connection with the information processing problems. Coupled map

lattices and cellular automata 'are used as simple models.:
Information theory for multi-attractor systems 1is constructed,
where stability of attractors against noise, information storage
by attractors, and connectivity among attractors are studied.
Three quantities are introduced to characterize the complexity of
basin structures and information processing among attractors.
Numerical results for  one-dimensional cellular automata are
presented.

1. Introduction
Dynamical systens can be thought of an information
processing machine. Studies in spatially extended systems which

1)-10) Typical examples

show. turbulence have just been started
are (i) partial differntial equations, (ii) coupled map lattices,
and (iii) -cellular automgta. Here the latter two models will be
discussed, since they aﬁ; more tractable in numerical simulations
and are powerful for/extractlng essential features in nonlinear
systems. - Recent;y ’chaos in a low d1men51onal dynamical system
has been investigated extensively.

When we try to make an intelligent system based on a

dynamical system, following problems are important:
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(a) Creation of information: As was beautifully shown by Rob

11), a dyanamical system;with chaos can be thought of an

Shaw
information source.

(b) Storage of information: Memory is important both for the
brain and the computer. If a dynamicél system has a large number
of attractors, information can be stored in each attractor.

12) has considered a kind of cellular automata which has

Hopfield
a large number of fixed patterns. The model is related with a
spin glass ’model. In thé term of a dynamical system, the
important point is the existence of a large number of attractors.
In the following sections;« an information theory for a multi-
attractor system is constructed; which characterizes the ability
of the information storage in the system.

Stability of the storage is also important which is related
with ‘the problem of self-repair  or retrievallg). We wiil
consider the stability of each éttractor against a noise and
define the mutual information between . attractors. Some examples
of the calculation on the basin information will be shown in $§3.
(c¢) Propagation of information: Information proceséing in real
space 1is necessary for intelligent machines. Examples in
dynamical systems can be seén in cellular automata or coupled map
lattices. Studies in the CA with soliton-like excitations will
be  important for this reasonlo). The propagation of

disturbances in CML . is related with the Lyapunov spectra and-

vectors, which will be important for the future study1)3).

(d) Evolution and adaptation: Adaptation is a marvellous

aspect in cognitive systems in livings, such as  the immune

network and the brain. For these problems, a dynamical  system
14)

with a closed set of variables is not adequate One candidate

for a model for these systems is a dynamical system with  a
coupling (or parameter) variable in adaptation with an external

15)

noise or environment ( order from a noise Detailed study of

evoloving dynamical systems, however, is left for the future.



(e) Hierarchical structure:  In computer systems and also ‘in

the brain, hierarchical structures must be of vrelevancele); A

typical example for a tree-like structure can be seen in UNIX

system developed by Bell Laboratory. One candidate for this
structure is a spin glass model, where the ultrametric structure
appears through a replica symmetry breaking16)17). Cellular

automata or coupled map - lattices may have this kind of
ultrametric gtructure, which has to be elucidated in the future.

From the viewpoint of the creation and storage of
information, a dynamical system can be <classified into the
following four types: (Here " a large number"” means a quantity
exponential to the system size, (O(eN)), while " a small number”
means a quantity less than some power of the system size (o(Na))
(1) No creation and small strorage :A dynamical system with a
small number of simple attractors.

(2) No creation but large storage: A dynamical system with a
large number of simple attractors.

(3) Positive creation with small storage: A dynamical system
with a small number of complex attractors.

(4) Positive creation with large storage: A dynamical éystem
with a large number of complex attractors. ‘ ’

Here, simple attractor means a periodic one, while "complex"
attractor means chaotic for usual dynamical systems wifh a
continuous. variable. For cellular automata, however, we have to
change thé definition, since the attractors are always periodic
if the system size is finite. For CA with a finite size, the
term ‘"simple attractor”" is used for the attractor with a short
period (0(l1)), while "complex" is used for the attractor with a
long period (longer than O(N)).

The above classification, if applied to CA, seems to
-correspond to the classification by Stephen Wolframs)g), though
the chayacteriéation may be slightly different. For CML, some

examples. for . the above. classification are (l)---homogeneous



periodic solution, (2)---periodic solution with kinks, (3)—~-
developed chaotic patterns, and (4)--- chaotic patterns with some
kinks. We do not know whether the developed turbulence
corresponds to either (3) or (4), since the number of attractors

for Navier—-Stokes equation remains unknown.

2. Information theory for Multi-attractor systems
(a) Complexity of basins:
We consider a system which has M attractors denoted by {ai}
(i=1,2,---,M).  First, we examine the volume of the basin "~ of
-attraction for ;each attractor The ratio of the volume in a
given bounded phase space for the attractor a; is denoted by bi(z:
Al

i=1). Let us define the complexity for basins by

which characterizes the information for the initial state
necessary to predict the final state. If we are interested in
the complex basin structure itself such as the fractal basin

18) 19) " it will be of

boundary or the fractal basin structure
importance to define CB in a smail ball with redius & and
oalculate how CB(s) scalesvas & goes to zero.
(b) Jumping among attractors by noise 20)
If a dynamical4system has more than one attractors, a unique
invariant ’measufe cannot be attained. In a real phy81ca1
situetion, existence of a small noise is expected A unique (or a
small number of) measure is selected out by the inclusion of a
noise to a system. ' Here we consider the case with a very weak
noise. Is that csse; the system may be characterlzed as a
process where the state stays at the or1g1na1 attractors (for
most of the time) and a process where the state jumps out‘to_some
other attractors by the effect of a ooise. That is, the dynamics
is decomposed into v

(residence at the or1g1na1 attractors without noise)
+

&



(transition among attractors by a noise)
Here, the time for the latter process is neglected compared with
the time for the formér. ‘
Transition matrix between attractors is defined as follows:
If a small noise is added for the attractor a;, a jump from the
attractor a; to a; occurs with some probability. The jumping
process depends on the state of the dynamical system when the
noise is applied and on the site atkwhich a noise 1is applied and
on the strength of the noise. The transition probability Pji is
defined as the ratio of the_transition from a; to a‘j (the ratio
is a measure calculated for allythe states when a noise is
applied and sites at which the noise is applied).

The probability that a system is in the attractor a; for :a

weak noise case is given by

q;= the i-th component for the eigenvéctor for Pji

corresponding to the eigenvalue 1.

If the eigenvalue 1 is degenerate with the multiplicity mp, there
are m, invariant measures within the above weak-noise
limit approximation.

In somé cases, some attractor ay is so weak that Pik is zero
for all k, as can be seen in the néxt section. If a; is zero,
.the residence probability at the attractor a; is zero.

(c) Complexity in the jumping process among attractors by noise

Once the probability meaure q; is attained by a noise, we
can define the complexity for the probability distribution for
attracfors by

CM“%‘H“‘H’
for @ give invariant meaure. The meaning of the quantity CM is

as follows: After the transients have decayed out for a weak
noise system, we make a measurement to determine at which
attractor the system stéys at that time. The information gain by

the above measurement is CM. The important differnce between CB

&
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and QM is that the former information is concerning on the
knowledge ‘about the initial state, while the latter is relatéd
with the observation for thenéged system with a noise.

Another important quantity is a dynemical information. =~ gain
by noise. Let us assume that we knew that a system had initially
been at the attractor a; ana havevobserved that the system is
now at the attractor a; after a noise was applied.‘ How much
information has been obtained through this observation? We can
get the information about the noisé, i.e., the time step when,
and the site wheré, the noise is applied. The amount is given by

ln(Pji—l) bit. Thus the dynamical information gain per noise is

given by

ch='— Z.qipj ilnPj i .

4
since the ratio for the event a, --> a,., is q.P...
i J it ji

As is easily seen,

Cr=Cy=Cp
is non-negative. The quantity CT corresponds to the mutual

information 21>between attractors by noise.

If CD is large, the information creation by noise is large.
That 1is, the uncertainty about the attractor into  which the
system settles down after a noise is added is large. It can be
also stated that if the mutual information is large (CD<<CM), the
information flow between attractors is large, i.e., the stru;ture
of the ﬁetwork of fhe tranSifion .among attractors is well

organized.

3. Compléxity in CA with multi-attractors

As a simple example for the complexity theory for multi-
attractor systems in §2,  one-dimensional cellular automata are
investigated. The models are (a) 2-state legal ceilular automata
with range 17) (b):24state totalistic cellular automata with
range 28) (c¢) 2-state cellular automata with range 2 which have

10)

"soliton"-1like excitations Here we use the rule number for
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model a) ~or the rule code for model b) 1intorduced ’by Stephen
qufram7)8), to characterize the rule fér CA. 'éome exgmpies of
the.evqlutions of CA are shown in Fig.l.

The method of calculations is as follows: (i)‘Take'a 'oné;
dimensional cellular -automaton with a size N (8<N<23) and
simulate it for all initial configurations (i.e., 2V
possibilities). Hére periodic bqundary conditions are chosen.
(ii) Enumerate all possible attractors (find {ai} and M (i=1,2,.
M) and list up all the patterns. (iii) Calculate how many initial
vconfigurations‘»are attracted into the attractor a - The number
of such initial configurations divided by ZN gives bi’ from which
the basin complexity CB is éalculated. (iv) Take an attractor a;
whose period is denoted as ti‘ We change a value of one lattiée
site for a,. There are Nxt; possibilities for this flip-flop.
We simulate the CA siarting from the configurations obtained by
all these possible flip-flops and check which attractor the state
is attracted into. The number of such configurations which are
attracted into aJ divided by'Nxti gives pji‘ The eigenvector for
pji cogresponding to the eigenvalue 1 gives q; - From pji-and q;
measure complexity CM and dynamical complexity CD are calculated.
Here instead of obtaining all possible eigenvectors, we choose an
initial wvector (bl,bz,bg,'--'--,bM)T and multiply the matrix»{pji}
many times and how the vector is settled down and obtain {ay,4q,,

'uung}l. This corresponds to the selection of one measure

closest to the 'distribution proportional to the volumes of.

basins, if . the measure is not unique (i.e., nonergodic). . For a
finite one~dimensional CA, such a nonergodic case seems to be
rare.

For the classification of attractors, the configurétions
which coincide by the spatial translation are regarded as fhe
same attractor. For example, the patterns 11000001, 11100000 and
00111000 ére regarded as the same, ’ |

The results for wvarious CA are summarized as follows
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corresponding to the classes in §1.
(1) class 1:

Number of attractors M remains small (about l~4) even if N
is increased up to 19. As N goes to 1arge,CB, CM’ and CD rapidly

go to zero.

(2) class 2: -

As 1is . expected, the number of attractors inéreaSe as
exp(const.xN). | The basin complexity and measure complexity
increase as axN+const., where a is some constant which seems to

take the same values both for CB and CM’ though the additive

const. is different between the two. The dynamical complexity CD

increases as bxN+const., where b is émaller than a. (see Fig.2)

The class 2 behavior is understood by the superposition
of 1local oscillators. If a local oscillator has a period t and
spatial range r, the number of attractors is roughlyv given by
(t+1)N/r, sihce there are (t+1l) possibilities in each r region
(put the oscillator or not and put it with which phase of the
oscillation). This argument is easily extended to the case where
there are more than one types of local oscillators. The 1linear
increase of complexity is explained in the same way.

If a local oscillator exists as a kink in a zigzag
structure (see Fig. 1b), there appears a difference by whether N
is odd or not(Sée‘Fig. 3) .

(3) class 3:

R The class 3 behavior of CA is characterized by triangies
with wvarious sizes. Number of attrcators and complexities as a
function of system size are shown in Fig.4, with some patt;rhsﬂof
typical attractors. Though the behavior is very complicated,
following points are common in class 3 CA.

(i) Number of attractors change irregularly as the systeﬁ size»N;
The increase by the siée‘is‘at most bounded by some power of
system size N.

(ii) The attractors which have a large region of basins are the



789101 128 N

a)
4...
Q”(:B;
a-C,,
3, x-Cp
2]
1 ' -
) 78910111218 N
b)

0]
78 91011213 141516171819 N

Fig.3

Three complexities as a function of
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ones which have a triangle structure and the one in which all the

sites take zero (000-...000). As N is increased the basin for the
latter regions decrease irregularly. Among the attractors with
triangle structures, the attractor with a 1larger size of

trianglés has a larger size of basin of attractions.

(iii) The complexities also change irregularly as the system
size. They seem to increase slowly as the system size.
Generally speaking, CD is not sd small compared with CM' That

is, the mutual information CM-CD is small compared with the cases
which belong to other classes. Thus, the connectivity among
attractors by a small noise is random compared with CA for the
-other classes.

(vi) The irregular behavior as a size change seems to depend_on
some number theoretic properties of the size and rules. For

k_i (i=0,0r

example, there occurs singular behavior around at N=2
l,or -1 which depends on the rule). For the rule 146 with range
1 (model a)), the rapid decrease of the number of attractors

occurs at N=14 ‘and the basin of "all zero" attractor has 99% ratio at

N=15 (=24—1). The complexities CM and CD take small values ( or
vanish) around at N=2k.
(4) class 4:

The class 4 behavior for CA characterized by Stephen Wolfram
is long-time transients and the existence of local oscillators
and the sensitive dependence of patterns on the initial
configurations. The characteristic features  for the basin
structure for the class 4 systems may be summarized as follows:
(i) The number of attractors increase essentially exp(const.xN)
though the increase is rather irregular (see Fig. 5). The
pattern of attractor which has a large region of basins change as
size, though "all 0" or "all 1" has a large basin of attractions
in many rules. AS N is increased, attractors of essentially new
type appear successively, which is a typical difference from

other classes.

r/
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(ii) The basin complexity CB takes a comparatively large value,
which éhanges irregularly as size.' The measure complexity CM is’
much smaller than CB’ since the probability measure (by a noise)
for "all 0" or "all 1" is much larger than the ratio for the
basin of attractions fo such states. The dynamical complexity is
much smaller, which means that the mutual information is rather
large. In other words, .the transition between attractors by
noise is regularly structurized.
(5) CA with soliton-like excitations

Quite recently, Aizawa et 31.10) have investigated a class
of cellular automata which .allows 00101100 to move right or left
(i.e., -01011000 or -00010110) after one step. . There are 213
possible rules of this type for the legal CA with 2-states and
range=2 which permit this type of soliton—like" solutibns.
Simulations for all these rules have been performed. New

interesting behavior which do not belong to the above types of

classification is soliton-like behavior. For some rules, the
dynamics of system 1is governed: only by the soliton-like
excitations (1011) and their collisions. If the "solitons" pass
through each other by collisions, the system shows a kind of

integrable behaViQn For this class, the basins for the state of
superpositions of "solitons" go larger as the system size is
increased. The important difference between this type of
behavior and the wusual integrable systems studied in soliton

theory is -that our system is integrable only after the transients

have decayed out. Thus, our system may be termed as "integrablé
system oh an attractor". In a variety of dissipative systems
which show soliton-like béhaviors, the above notion will be of
importance.

4. Discussion and Future Problems

In the present paper we have discussed the storage of

information and information processing in 'stochastic cellular



automata. We have studied the complexity of networks among
attractors connected by a noise. Detailed account for fhe
complexity in CA will be reported elsewherezz).

If some adaptive process is included to change the rule or
the strength of noise (shsceptibility against noise) adaptively
to choose a large network, the formation process of networks may
be discussed from the above model.

--Another imporfant prdcess is tﬁe information propégation in
real space in CA or CMLs. If one lattice is perturbed from the
outside, three possible patterns are ©possible: (i) The
disturbance 1is -localized 1in some limited space even if the
dynamics shows a turbulent behavior. (ii) The disturbance
propagates with some velocity. For some CMLs, the propagation is
rather smooth, while it has a large fluctuation in some CMLs.
(iii) The propagation of disturbance is rather irregular. The
disturbance is localized for a long time and is transmitted quite
rapidly after a long waiting time. The phenomena can be termed
as "tunneling". The above three patterns can be understood from
the viewpoint of the structures of Lyapunov vectors (extended or
localized). The relation of the information propagation  for
these models with thé Lyapunov vectors has to be clarified in the

futures).
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