DYNAMICAL SYSTEMS ON DRAGON DOMAINS

早稲田大学理工.応物 水谷正大 (Masahiro MIZUTANI)

津田塾大学.数 学 伊藤俊次 (Shunji ITO)

ABSTRACT

Dynamical systems on fractal domains are studied. These domains are called twindragon, tetradragon and cross dragon respectively.

1. INTRODUCTION

We can see the following fact in Knuth¹⁾: For any complex number there exists the zero-one sequence $a_k, a_{k-1}, \dots, a_0, a_{-1}, \dots$ such that

$$z = \sum_{-\infty \le i \le k} a_i^{(i-1)^j},$$

that is, evry complex number has a "binary" representation with base i-1. This fact suggests an existence of a number theoretic dynamical system $(\hat{X}_{i-1},\hat{T}_{i-1},\hat{\mu})$ which induces the binary expansion. Actually if there exists a domain \hat{X}_{i-1} and its partition $\{\hat{X}_{i-1},0,\hat{X}_{i-1},1\}$ such that

(i)
$$\hat{X}_{i-1} = \hat{X}_{i-1,0} \cup \hat{X}_{i-1,1}$$
 and $int(\hat{X}_{i-1,0}) \cap int(\hat{X}_{i-1,1}) = \phi$

(ii)
$$\hat{X}_{i-1} = (i-1)\hat{X}_{i-1,0} = (i-1)\hat{X}_{i-1,1} - 1$$
,
then the transformation \hat{T}_{i-1} on \hat{X}_{i-1} such that

$$\hat{T}_{i-1}z = (i-1)z - \hat{a}((i-1)z)$$

where $\hat{a}(z)=j$ if $z \in j+\hat{X}_{i-1,j}$, j=0,1, induces the binary expansion.

On the other hand we can see also the followings in Davis and Knuth²⁾: for any complex integer m+in, there exists a revolving sequence of finite length $\delta_1, \delta_2, \ldots \delta_k$ such that

$$m + in = \sum_{j=1}^{k} \delta_{j} (1+i)^{k-j}$$

where the revolving sequence $(\delta_1, \delta_2, \dots)$ is defined by the following conditions:

(i)
$$\delta_{i} \in \{0, 1, -i, -1, i\}$$

(ii) if
$$(\delta_1, \dots, \delta_j) \neq (0, \dots, 0)$$

then $\delta_{j+1} = 0$ or $(-i) \delta_{k_0}$ for all $j \in \mathbb{N}$
where $k_0 = \max\{k; \delta_k \neq 0, 1 \leq k \leq j\}$

(iii) if
$$(\delta_1, ..., \delta_j) = (0, ..., 0)$$

then $\delta_{j+1} \in \{0, \pm 1, \pm i\}$.

This fact also suggests an existence of a number theoretic dynamical system (X,T,ν) which induces the revolving expansion

$$z = \sum_{k=1}^{\infty} \delta_k (1+i)^{-k}$$

We consider the existence problem of above dynamical systems $(\hat{X}_{1-i},\hat{T}_{1-i},\hat{\mu})$ and (X,T,ν) and show that the boundaries of these domains \hat{X}_{i-1} and X, called the twindragon

and the tetradragon respectively, are indeed fractal sets $^{3)}$.

Moreover we propose a new construction of the dragon different from the paper folding process and consider a dynamical system (Y.S. λ) on a domain tiled by four dragon which is not the tetradragon, called a cross dragon . Suprisingly we can show that this cross dragon system ⁴⁾ is actually the dual system for a very simple group endomorphism T_L on \mathbb{T}^2 such that

$$T_{L}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} [x-y] \\ [x+y] \end{pmatrix}.$$

2. BINARY EXPANSION ON TWINDRAGON

$$z = \sum_{k=1}^{\infty} \varepsilon_k (1+i)^{-k},$$

where $\epsilon_k \in \{0,i\}$ for all $k \in \mathbb{N}$. If there exist a dynamical system (X_{1+i}, T_{1+i}, μ) which induces this representation, then the domain must be the limit points of Q_n such that

$$Q_n = \{\sum_{k=1}^n \varepsilon_k (1+i)^{-k}; \varepsilon_k \in \{0, i\} \}$$

and also $X_{1+i,\epsilon}$, $\epsilon=0$, i, must be the limit point of $Q_{n,\epsilon}=(\sum_{k=1}^{n}\epsilon_{k}(1+i)^{-k};\epsilon_{1}=\epsilon$) in the Hausdorff metric space (\mathcal{F},d) . For after discussions we put

$$P_{n+1} = (1+i)Q_n$$
 for $n \ge 1$.

that is.

$$P_{n+1} = \{ \sum_{k=0}^{n-1} \varepsilon_k (1+i)^{-k} ; \varepsilon_k \in \{0,i\} \}.$$

We consider the shape and properties of X_{1+i} such that $d(X_{1+i},P_n)\to 0$ as $n\to\infty$. Let U be a closed square with vertices 0, 1, 1-i and -i, and for each point $x(\epsilon_0,\ldots,\epsilon_{n-1})\in P_{n+1}$ we prepare the neighborhood of a point $x(\epsilon_0,\ldots,\epsilon_{n-1})$ such that

$$F_{n+1} = \bigcup_{x \in P_{n+1}} U_x(\varepsilon_0, \ldots, \varepsilon_{n-1})$$

and

 $B_{n+1} = \partial F_{n+1}$

respectively. We call B_{n+1} a (n+1)-step Bernoulli boundary (Fig.1(a)). We give the names for each side of B_{n+1} as a following way: For each $n \ge 1$ we name each side of the square $(1+i)^{-(n-1)}U$ A,B,A^{-1} and B^{-1} respectively, then we obtain names of each side of the neighborhood of point $x(\varepsilon_0,\ldots,\varepsilon_{n-1})$ according to above namings. Therefore we can read a sequence of names for B_{n+1} as to be $A_{n+1,1},A_{n+1,2},\ldots,A_{n+1,m(n)}$ where $A_{n+1,1}$ is a first name of a side $[0,(1+i)^{-(n-1)}(-i)]$ and $A_{n+1,k} \in \{A,A^{-1},B,B^{-1}\}$ is a name of k-th side of B_{n+1} .

Lemma(2.1)

The names of each side of B_{n+1} are obtained from these of B_n by the substitution $\Theta: A \rightarrow AB$, $B \rightarrow A^{-1}B$, that is, the names of each side of $B_{n+1} = \Theta^n(ABA^{-1}B^{-1})$.

By the way, recall the notation by Dekking^{5),6)} for our purpose. Let G be a finite set of symbols, G^* the free

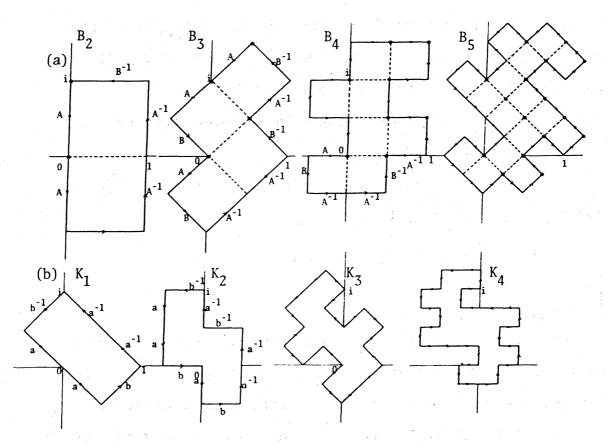


Fig.1: Bernoulli boundary B_n and Dragon boundary K_{n-1} .

semigroup generated by G and $\theta: G^* \to G^*$ a semigroup endomorphism. Let $f: G^* \to \mathbb{C}$ be a homeomorphism which satisfies f(VW) = f(V) + f(W). $f(V^{-1}) = -f(V)$

for all words $V.W \in G^*$. Define a map $K:S^* \to \mathbb{C}$, which satisfies $K[VW] = K[V] \cup (K[W] + f(V))$

for all reduced words V, W ∈ G*, by

 $K[s] = \{tf(s); 0 \le t \le 1\} \text{ for } s \in G.$

This makes $K[s_1...s_m]$ the polygonal line with vertices at $0.f(s_1).f(s_1)+f(s_2),....f(s_1)+...+f(s_m)$.

and the section of the property and the section of the section of

Especially we consider here a following case,

$$G = \{a,b\}, f(a) = 1, f(b) = i,$$

and

$$\theta$$
: θ (a)=ab, θ (b)= $a^{-1}b$.

Then the following relation holds

$$f\theta = (1+i)f$$
.

We put

$$K_n = (1+i)^{-n} K [\theta^n (aba^{-1}b^{-1})],$$

and call K_n a n-step dragon boundary (Fig.1(b)).

Theorem (Dekking^{5),6)})

(1) There exists a closed curve K_{θ} such that $(1+i)^{-n} K[\theta^{n}(aba^{-1}b^{-1})] \rightarrow K_{\theta} \text{ as } n \rightarrow \infty$

in the Hausdorff metric,

(2) $\dim_{H} K_{\theta} = 2\log \beta_0 / \log 2$, where β_0 is a unique real root of $\beta^3 - \beta^2 - 2 = 0$.

 ${\rm K}_{\theta}$ is called a dragon boundary or a twindragon skin because of lemma(3.2).

We obtain a following relation between B_n and K_n .

Lemma(2.2)

$$B_{n+1} = 2(1+i)^{-1}(K_{n-1}).$$

Corollary(2.3)

Let X_{1+i} and X_{1+i} , ϵ , ϵ =0,i, be convergent sets of Q_n and $Q_{n,\epsilon}$ (ϵ =0,i) in the Hausdorff metric (Fig.2), then

- (1) ∂X_{1+i} is similar to the dragon boundary.
- (2) $X_{1+i} = X_{1+i,0} \cup X_{1+i,i}$
- (3) $X_{1+i} = (1+i)X_{1+i,0} = (1+i)X_{1+i,i} i$
- (4) $\dim_{H}(X_{1+i,0} \cap X_{1+i,i}) = 2\log\beta_0/\log2$.

Thus we can define a transformation T_{1+1} on X_{1+1} by

$$T_{1+i}z = (1+i)z - [(1+i)z]_{1+i}$$

where a digit [z] $_{1+i}$ be

$$[w]_{1+i} = \begin{cases} 0 & \text{if } w \in X_{1+i \cdot 0} \\ i & \text{if } w \in i+X_{1+i \cdot i} \end{cases}.$$

Then we obtain

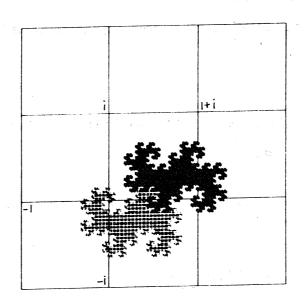


Fig.2: Domain X_{1+i} .

Theorem(2.1)

(1) The transformation (X_{1+i}, T_{1+i}) induces the complex binary expansion for a.e. $z \in X_{1+i}$ such that

$$z = \sum_{k=1}^{\infty} a_k(z) (1+i)^{-k}$$
where $a_k(z) = [(1+i)T_{1+i}^{k-1}z]_{1+i}$.

(2) The Lebesgue measure μ is invariant with respect to (X_{1+i},T_{1+i}) and the dynamical system (X_{1+i},T_{1+i},μ) is isomorphic to the two states Bernoulli system.

Remark:

(i) Put

$$X_{1-i} = \overline{X_{1+i}}$$
, $[w]_{1-i} = \overline{[w]_{1+i}}$,

where means to take a complex complex conjugate, and

$$T_{1-i}z = (1-i)z - [(1-i)z]_{1-i}$$
 for $z \in X_{1-i}$.

Then dynamical system (X_{1-i}, T_{1-i}, μ) induces the complex binary expansion with base (1-i).

(ii) Putting

$$X_{i-1} = \frac{1-2i}{5} + X_{1-i}.$$

$$X_{i-1}, \varepsilon = \frac{1-2i}{5} + X_{1-i}. \varepsilon, \varepsilon = 0.-i.$$

and

$$T_{i-1}z = (i-1)z - [(i-1)z]_{i-1}$$

where $[w]_{i-1} = \varepsilon$ if $w \in \varepsilon + X_{i-1}$, then (X_{i-1}, T_{i-1}, μ) is well defined and induces the complex binary expansion with base (i-1).

(iii) Taking a complex conjugate of (X_{i-1},T_{i-1},μ) , then the dynamical system (X_{-1-i},T_{-1-i},μ) is obtained and induces the

complex binary expansion with base (-1-i).

We remark that the sets X_{i-1} and X_{-1-i} include the origin as an internal point respectively.

(iv) The set of the twin dragons $\{X_{1+i}+m+in;m+in\in Z(i)\}$ tiles the whole plane, that is.

$$\bigcup_{m+i} X_{1+i} + m + in = \mathbb{C}$$

and

$$\mu \left(\ \cup_{\mathsf{m+in}} \partial \left(\mathsf{X}_{\mathsf{1+i}} + \mathsf{m+in} \right) \right) \ = \ 0 \, .$$

3. REVOLVING EXPANSION ON TETRADRAGON

Let $M = (M_{j,k})$, $j,k \in \{0,1,2,3\}$, be a 0-1 matrix such that

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix},$$

and (X_M, σ_M) a Markov subshift (topological Markov chain) for the structure matrix M. Define a coding function Ψ_0 and a isomorphism Ψ on X_M by

sm
$$\Psi$$
 on X_M by
$$\Psi_0(\epsilon_1, \epsilon_2) = \delta_1 = \begin{cases} 0 & \text{for } \epsilon_1 - \epsilon_2 = 0 \\ 1 & \text{for } \epsilon_1 = 0 \\ -1 & \text{for } \epsilon_1 = 1 \\ -1 & \text{for } \epsilon_1 = 2 \\ 1 & \text{for } \epsilon_1 = 3 \end{cases} \text{ and } \epsilon_1 - \epsilon_2 \neq 0$$

$$\text{ach } \omega \in X_M$$

and for each $\omega \in X_M$

$$\Psi(\omega) = \{\Psi_0(\sigma_M^{n-1}\omega)\}_{n=1}^{\infty}.$$

Then we obtain,

Proposition(3.1)

Let W be a set of the revolving sequences. Then the map Ψ is one-one onto from $X_M \setminus \{\epsilon_1, \epsilon_2, \ldots\}$: ϵ_j =a for all j and $a \in \{0, 1, 2, 3\}$ } to $W \setminus \{(0, 0, \ldots)\}$. and satisfies a commutative relation

$$\sigma \cdot \Psi = \Psi \cdot \sigma_{\mathsf{M}}.$$

Now denote a set of all finite revolving sequences with length n by $\mathbf{W}^{(n)}$ and the decomposition of $\mathbf{W}^{(n)}$ by

and

$$W_{(\varepsilon,\delta)}^{(n)} = \{ (\delta_1,\ldots,\delta_n) \in W_{\varepsilon}^{(n)} ; \delta_1 = \delta \}.$$

Then we obtain.

Proposition(3.2)

(1)
$$\mathbf{w}^{(n)} = \bigcup_{\varepsilon \in \{0,1,2,3\}} \mathbf{w}_{\varepsilon}^{(n)}.$$

(2)
$$w_{\varepsilon}^{(n)} = w_{(\varepsilon,0)}^{(n)} \cup w_{(\varepsilon,(-i)\varepsilon)}^{(n)}$$

(3)
$$\sigma W_{(\varepsilon,0)}^{(n)} = W_{\varepsilon}^{(n-1)}$$
 and
$$\sigma W_{(\varepsilon,(-1)\varepsilon)}^{(n)} = W_{\varepsilon+1 \pmod{4}}^{(n-1)}$$

(4)
$$(-i) \mathcal{W}_{\varepsilon}^{(n)} = \mathcal{W}_{\varepsilon+1 \pmod{4}}^{(n)},$$

$$(-i) \mathcal{W}_{(\varepsilon,0)}^{(n)} = \mathcal{W}_{(\varepsilon+1 \pmod{4},0)}^{(n)},$$

and
$$(-i) W_{(\epsilon,(-i)^{\epsilon})}^{(n)} = W_{(\epsilon+1 \pmod{4},(-i)^{\epsilon+1})}^{(n)}.$$

Let ℓ be a map from $\mathbf{W}^{(n)}$ to a line segment such that $\ell \left(\delta_1, \ldots, \delta_n\right) = \text{segment which connects } \mathbf{P}(\delta_1, \ldots, \delta_n, \delta_{n+1} \neq 0), \text{ where }$ and $\mathbf{P}(\delta_1, \ldots, \delta_n, \delta_{n+1} \neq 0), \text{ where }$ $\mathbf{P}(\delta_1, \ldots, \delta_n) = \sum_{k=1}^n \delta_k (1+i)^{-k}.$

By the way, define a n-step twindragon curve D_n and a n-step dragon (paper folding) curve H_n (Fig.3(a)(b)) by

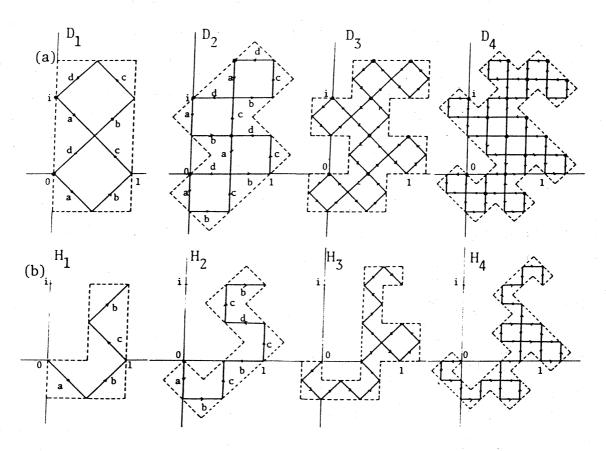


Fig.3: Twindragon \mathbf{D}_{n} and Dragon \mathbf{H}_{n} and their boundaries.

$$D_{n} = (1+i)^{-n} K[\theta_{T}^{n}(abcd)]$$

and

$$H_n = (1+i)^{-n} K[\theta_T^n(ab)],$$

where G={abcd} and a homeomorphism f is such that

$$f(a)=1=-f(c)$$
 and $f(b)=i=-f(d)$.

and an endomorphism θ_{T} is defined by

$$\theta_T$$
: a \rightarrow ab, b \rightarrow cb, c \rightarrow cd, d \rightarrow ad.

We notice the twindragon curve is tiled by two dragon curves. that is,

$$D_n = H_n \cup (-H_n + 1 + i).$$

Lemma(3.1)

Let
$$\ell_{\varepsilon}^{(n)}$$
 and $\ell_{(\varepsilon,\delta)}^{(n)}$ be defined by
$$\ell_{\varepsilon}^{(n)} = \bigcup_{(\delta_{1},\ldots,\delta_{n}) \in W_{\varepsilon}^{(n)}} \ell_{\varepsilon}^{(n)} \ell_{\varepsilon}^{(n)}$$

and

$$\ell_{(\varepsilon,\delta)}^{(n)} = \bigcup_{(\delta_1,\ldots,\delta_n)\in W_{(\varepsilon,\delta)}}^{(n)} \ell_{(\delta_1,\ldots,\delta_n)}^{(n)},$$

then $\ell_{(\epsilon,\delta)}^{(n)}$ and $\ell_{\epsilon}^{(n)}$ are similar to the (n-2)-step and (n-1)-step dragon curve respectively (Fig.4(a)(b)).

Let U be a closed square in section 2 , U' a closed square such that U'=U+i/2 and B' $_{n+1}$ defined by

$$B'_{n+1} = \partial (\bigcup_{x \in P_{n+1}} x(\varepsilon_0, \dots, \varepsilon_{n-1}) + (1+i)^{-(n-1)} U'_{n-1}),$$
then

Lemma(3.2)

(1) The n-step twindragon curve D_n is covered by a closed curve B_{n+1} as an envelope (Fig.3(a)), that is.

$$d_0(D_n, B'_{n+1}) = \sup_{x \in B'_{n+1}} \inf_{y \in D_n} |x-y| = (\frac{1}{\sqrt{2}})^{n+1}.$$

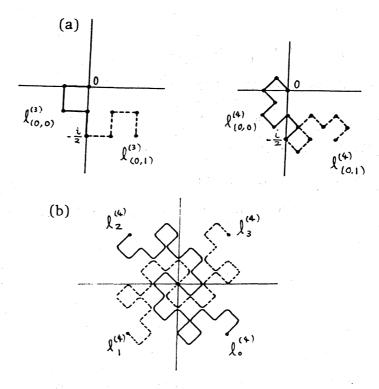


Fig.4: (a) Line segments $\binom{n}{(0,0)}$ and $\binom{n}{(0,1)}$ for n=3,4. (b) Line segments $\binom{n}{\epsilon}$ for n=4.

(2) The limit set D_T of $\{D_n\}_{n=1}$ has a dragon boundary as its boundary.

Moreover using above lemma we can prove that

Lemma(3.3)

Let H_T be the limit set of the paper folding curve H_n . Then the boundary of H_T consists of three parts of the dragon boundary. Therefore $\dim_H \partial H_T = \dim_H \partial D_T = 2\log \beta_0/\log 2$.

Put
$$\chi_{(\epsilon,\delta)}^{(n)} = \{ \Sigma_{k=1}^{n} \delta_k^{(1+i)^{-k}}; (\delta_1, \dots \delta_n) \in \mathbb{W}_{(\epsilon,\delta)}^{(n)} \}$$

$$\chi_{\epsilon}^{(n)} = \{ \Sigma_{k=1}^{n} \delta_k^{(1+i)^{-k}}; (\delta_1, \dots \delta_n) \in \mathbb{W}_{\epsilon}^{(n)} \},$$
 and let $X_{(\epsilon,\delta)}$ and X_{ϵ} be limit sets of $X_{(\epsilon,\delta)}^{(n)}$ and $X_{\epsilon}^{(n)}$ respectively (Fig.5). Thus we can prove that

Lemma(3.4)

(1)
$$(1+i)X_{(\epsilon,0)} = X_{\epsilon}$$

(2)
$$(1+i)X_{(\varepsilon,(-i)^{\varepsilon})} = X_{\varepsilon+1 \pmod{4}} + (-i)^{\varepsilon},$$

(3)
$$\operatorname{int}(X_{(\varepsilon,\delta)}) \cap \operatorname{int}(X_{(\varepsilon',\delta')}) = \phi \text{ for } (\varepsilon,\delta) \neq (\varepsilon',\delta'),$$

and $\partial X_{(\epsilon,\delta)} \cap \partial X_{(\epsilon',\delta')}$ consists of parts of the dragon boundary.

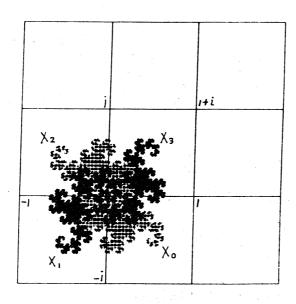


Fig. 5: Tetradragon X.

Then putting

 \hat{U}_0 =X and \hat{U}_δ = δ + X_{\varepsilon+1\((\text{mod 4}\)\)) for δ =(-i)^{\varepsilon}, and let a map T on X be}

$$Tz = (1+i)z - [z]_D$$

where $[z]_{D} = \delta$ if $w \in \hat{U}_{\delta}$ for $\delta \in \{0,1,-i,-1,i\}$,

then a transformation (X,T) is well defined and induces the revolving expansion.

Theorem(3.1)

- (1) The Lebesgue measure ν is invariant with respect to (X.T).
- (2) the dynamical system (X.T, ν) is isomorphic to (X_M, σ_M, μ_M) , where μ_M is a stationary Markov measure such that

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \end{pmatrix}, \qquad \Pi = (1/4, 1/4, 1/4, 1/4),$$

Remark 1:

The dual algorithm of (X,T,ν) is constructed by taking a complex conjugate. $X^*=\overline{X}$, and putting

$$\hat{\mathbb{U}}^*_0 = X^*, \ \hat{\mathbb{U}}^*_\delta = \delta + X^*_{\epsilon-1 \pmod{4}} \text{ for } \delta \in \{0,1,-i,-i,i\},$$
 and

$$T^*z = (1-i)z - [(1-i)z]_{D^*},$$

where [w] $_D^{*=\delta}$ if $w \in \hat{U}^*_{\delta}$. Then a dynamical system (X^*, T^*, ν) is the dual system for the system (X, T, ν) and

induces the "converse" revolving expansion,

$$z = \sum_{k=1}^{\infty} \delta_{k}^{*} (1-i)^{-k}.$$

Remark 2:

If we choose formally the dual domain $X^{\#}$ as

$$X^{\#} = \bigcup_{\varepsilon} X^{\#}_{\varepsilon}$$
,

where

$$X^{\sharp}_{\varepsilon} = \{ \sum_{k=1}^{\infty} \delta_{k}^{\star} (1+i)^{-k}; (\delta_{1}^{\star}, \delta_{2}^{\star}, \ldots) \in W^{\star}_{\varepsilon} \}.$$

Then we obtain an interesting picture (Fig.6). This selfsimilar fractal curve is already studied by P. Lévy in 1938⁸⁾.

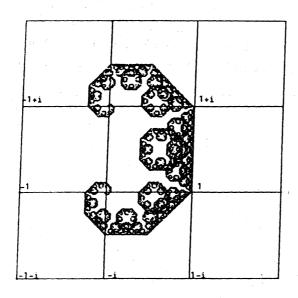


Fig.6: $X_0^{\#}$.

4. DUAL SYSTEM ON CROSS DRAGON

Let $E=(E_{j,k})$, $1 \le j,k \le 4$, be a matrix such that

$$E = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

We consider E as the structure matrix for states Γ = $\{0.i.-1+i.-1\}$ by a correspondence $\tau:\{1,2,3,4\}\rightarrow\Gamma$ such that $\tau[1]=0$, $\tau[2]=i$, $\tau[3]=-1+i$ and $\tau[4]=-1$, that is, let V be a set of infinite sequences generated by the structure matrix E,

 $V = \{(\gamma_1, 2, \dots); E_{\gamma_j}, \gamma_{j+1} = 1, \gamma_j \in \Gamma \text{ for all } j \in N \}$ and σ a shift on V. Then the system (V, σ) is a Markov subshift. Let $V^{(n)}$ be a set of E-admissible sequences with length n and $V_{\gamma}^{(n)}$ be

$$V_{\gamma}^{(n)} = \{(\gamma_1, \dots, \gamma_n) \in V^{(n)} ; \gamma_1 = \gamma \}.$$

Notice that nonzero entries of the structure matrix can be written as $E_{\tau[k],\tau[(k+1) \mod 4]}^{=E_{\tau[k],\tau[(k+2) \mod 4]}}$ and denote these two admissible states after $\tau=\tau[k]$ by $\tau[1]=\tau[(k+1) \mod 4]$ and $\tau[2]=\tau[(k+2) \mod 4]$ respectively.

Property(4.1)

(1)
$$V^{(n)} = \bigcup_{\gamma \in \{0, 1, -1+1, -1\}} V_{\gamma}^{(n)},$$

$$(2) \qquad \sigma V_{\gamma}^{(n)} = V_{\gamma[1]}^{(n-1)} \cup V_{\gamma[2]}^{(n-1)},$$

(3)
$$iV_{\gamma}^{(n)} + i = V_{\gamma[1]}^{(n)}$$

and $-V_{\gamma}^{(n)} + (-1+i) = V_{\gamma[2]}^{(n)}$

We realize a sequence $(\gamma_1, \dots, \gamma_n)$ to a point $p(\gamma_1, \dots, \gamma_n)$ by $p(\gamma_1, \dots, \gamma_n) = \sum_{k=1}^n \gamma_k (1+i)^{-k}.$

According to the set of sequence $V^{(n)}$ and $V_{\gamma}^{(n)}$ let $Y^{(n)}$ and $Y_{\gamma}^{(n)}$ be sets of points $\{p(\gamma_1, \dots, \gamma_n)\}$.

It is verified that

$$\mathsf{d}(\boldsymbol{\gamma}^{(n)},\boldsymbol{\gamma}^{(n+1)}) \leq (\frac{1}{\sqrt{2}})^n \ ,$$

in the Hausdorff metric. So $Y^{(n)}$ and $Y_{\gamma}^{(n)}$ converge to Y and Y_{γ} respectively as $n\to\infty$ (Fig.7).

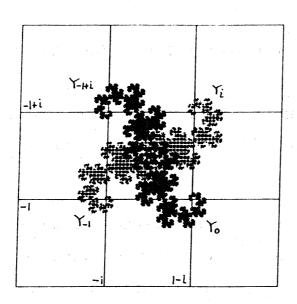


Fig.7: Cross dragon Y.

Lemma(4.1)

Let $Y = \{\sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}; (\gamma_1, \gamma_2, ...) \in V\}$ and $Y_{\gamma} = \{\sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}; (\gamma_1, \gamma_2, ...) \in V_{\gamma}\}$. Then the sets Y and $Y_{\gamma}, \gamma \in \Gamma$, satisfy following properties.

(1)
$$Y = \bigcup_{\gamma \in \{0, 1, -1+1, -1\}} Y_{\gamma}$$
.

(2)
$$(1+i)Y_{\gamma} - \gamma = Y_{\gamma[1]} \cup Y_{\gamma[2]},$$

(3)
$$iY_{\gamma} + 1 = Y_{\gamma[1]}$$

and

$$-Y_{\gamma} + 1 + i = Y_{\gamma[2]}$$

(4)
$$Y_r = F_{0,r}(Y_r) \cup F_{1,r}(Y_r),$$

where $F_{0,\gamma}$ and $F_{1,\gamma}$ are contraction maps such that

$$F_{0,\gamma}(z) = (1+i)^{-1}(iz+\gamma+1)$$

and

$$\Gamma_{1,\gamma}(z) = (1+i)^{-1}(-z+\gamma+1+i)$$
 for each $\gamma \in \Gamma$.

Recall another approach for selfsimilar fractal sets proposed by $\operatorname{Hutchinson}^{7}$ using a set of contraction maps.

Theorem (Hutchinson⁷)

Let \mathcal{L} be a finite set of contraction maps $\{S_1,\ldots,S_M\}$ on a metric space. Then there exists a unique closed bounded set K such that $K = \bigcup_{j=1}^M S_j(K)$. Moreover, let $\mathcal{L}(A) = \bigcup_{j=1}^M S_j(A)$ and $\mathcal{L}^P(A) = \mathcal{L}(\mathcal{L}^{P-1}(A))$ for arbitrary set A, then $\mathcal{L}^P(A) \to K$ in the Hausdorff metric as $P \to \infty$ for closed bounded set A.

Thus we can say that the limit sets $\{Y_{\gamma}\}$ are invariant sets for the contraction maps $\{F_{0,\gamma},F_{1,\gamma}\}$. Notice that the set $\{X^*_{\varepsilon}\}$ in section 3 are the invariant set for the contraction maps $\{G^*_{0,\varepsilon},G^*_{1,\varepsilon}\}$ for each $\varepsilon\in\{0,1,2,3\}$, where

$$G_{0,\varepsilon}^*(z)=(1-i)^{-1}z$$
 and $G_{1,\varepsilon}^*(z)=(1-i)^{-1}(iz+i^{\varepsilon})$, that is,

$$X^*_{\varepsilon} = G^*_{0,\varepsilon}(X^*_{\varepsilon}) \cup G^*_{1,\varepsilon}(X^*_{\varepsilon})$$
and for $\mathcal{L} = (G^*_{0,\varepsilon}, G^*_{1,\varepsilon})$

$$G^*_{0,\varepsilon}(\mathcal{L}^n(0)) = X^*_{(\varepsilon,0)}(n+1)$$

and

$$\mathsf{G}^{\star}_{1,\,\varepsilon}(\,\,\mathcal{L}^{\mathsf{n}}(0)\,\,)\,=\,\mathsf{X}^{\star(\mathsf{n}+\mathsf{i})}_{(\,\varepsilon\,,\,\mathsf{i}}\varepsilon_{\,\,)}.$$

Then we obtain

Theorem(4.1)

Let $\{Y_{\gamma}\}$ satisfy $Y_{\gamma} = F_{0,\gamma}(Y_{\gamma}) \cup F_{1,\gamma}(Y_{\gamma})$ for each $\gamma \in \Gamma$, and $Y = \bigcup_{\gamma \in \{0,1,-1+1,-1\}} Y_{\gamma}$. Then

- (1) Each set Y_{γ} is a dragon with end points 0 for Y_{-1} , 1 for Y_0 , 1+i for Y_i , i for Y_{-1+i} and (1+i)/2 in common.
- (2) The set Y is tiled by four dragons $\{Y_{\gamma}\}$, that is.

and
$$Y=\bigcup_{\gamma\in\{0,1,-1+1,-1\}}Y_{\gamma}$$
$$\lambda(Y_{\gamma}\cap Y_{\gamma},)=0 \qquad \text{for } \gamma\neq\gamma'.$$

We call the set Y a cross dragon.

Let a map S on Y be

$$Sz = (1+i)z - [(1+i)z]_C$$

where $[w]_C = \gamma$ if $w \in \gamma + (Y_{\gamma[1]} \cup Y_{\gamma[2]})$. Then (Y.S) is well defined and induces an expansion

$$z = \sum_{k=1}^{\infty} \gamma_k (1+i)^{-k}$$
 for a.e. $z \in Y$.

Now let $Y^* = \{x+iy: 0 \le x, y \le 1\}$ and a map S^* be $S^*z = (1+i)z - [(1+i)z]$,

where [w]=[Re(w)]+i[Im(w)] for $z \in \mathbb{C}$. This system is equivalent to a group endomorphism T_L on the torus T^2 such that

$$T_{L}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} [x-y] \\ [x+y] \end{pmatrix}.$$

Theorem(4.2)

- (1) The Lebesgue measure λ is invariant with respect to (Y,S).
- (2) The cross dragon system (Y,S,λ) is actually the dual system for (Y^*,S^*,λ) .

Remark:

The cross dragon system (Y,S,λ) is isomorphic to a following map on the torus.

$$T^{\dagger} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \begin{pmatrix} [x+y-1] \\ [-x+y+1] \end{pmatrix}.$$

REFERENCES

- 1) D. Knuth, The arts of computer programming II, section 4.1, Addsion Wesley, 1969.
- 2) C. Davis and D. Knuth, Number representation and Dragon curves I. J. of Recreational Math. 3(1970)66-81.
- 3) M. Mizutani and Sh. Ito, Dynamical systems on Dragon domains. to appear.
- 4) M. Mizutani and Sh. Ito. A New Characterization of Dragon and Dynamical system, to appear.
- 5) F.M. Dekking, Recurrent Sets, Advance Math. 44(1982)78-104.
- 6) F.M. Dekking. Replicating Super figures and Endomorphisms of Free groups, J. Combi. Theor. A32(1982)315-320.
- 7) J.E. Hutchinson, Fractals and Selfsimilarity, Indiana Univ. Math. J.30(1981)713-747.
- 8) P. Lévy, Les courbes planes ou gauches et les surfaces composées de parties semblables au tout, J.de l'Ecole Polytechnique Serie III7-8(1938)227-291.