goooboooogn
0 5740 19850 193-215 193
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ABSTRACT

We will show a singular perturbation theorem for
constraint systems, which is a generalized version
of the equation; x = f(x,y), €y = g(x,y). At the
first, we study the general properties GO ~ G3 of
constraint systems. After this we show the
properties of solutions and singular perturbation
theorem for constraint system satisfying GO ~ G3.

1. INTRODUCTION

The system which we want to study here was suggested by the

equations of the form

]
I

= f(x,y)
(1.1)0

o
|

= g(x,y),

m ) L
xeR, yeimp. Many types of solutions of (1.1)0 have been studied

by considering (l.l)0 as limit of
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e
]

f(x,y-)
(l.l)e

€y

g(x,y)

for €-+>0. For the studies ofbthisﬂtype ;ith m=n=1, there are
works of B. van der Pol (141, J. LaSalle.[11];~A;A. Andronov and et al.
[1], and others. For tne case of m=2 kénd n=1, there are works of
E.C. Zeeman [15], E.ABenoit (2],[3]; and others. For general m and
n, there are the works of L.S. Pontryagin [12], F. Takens {13], and

N. Fenichel [5].

For the global version of the equation (1.1)8, we consider a
vectorrfield EE/E, where {Ee}’ E:e[O,eO), is a family of vector
field on a manifold‘M. The limit of ’28/6 for ) .exiets only on
the set I of points where Eé;=0, (in the>case of (1.1)6, Y is the
set of points where g(x,y) =0).> Ent, geneficaliyvin the sense of
perturbations of E, Y 1is a discrete set. To avoid this, we assume
that 50 is tangent to the leaves of a codimension m foliation F
on M. F can be considered as a generalization of thevproducf
structure .Bfnx K. The vector field tangent to F is a generaliza-
tion of the equation y=g(x,y) in (1.1)¢.

A constraint system is defined as the pair {{ie},F} as above

(Definition 5.1). After the definition of the solution for a con-

straint system (Definition 5.4) we will define an admissible solution,

which is a solution having useful properties (Definition 5.5). These
definitions are motivated by F. Takens' definitions of constrained
equations and the solutions [13]. Takens considered a fibre bundle

structure, whereas we take a foliation. He eonsidered a kind of
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function M-+R which pliyed similar role as our vector field 20
tangent to F.

Our main goal is Theorem'E, Theofem'F, and Theorem G. But these
theorems are proved for systems having some generic proﬁerties. In
section 4 we show generic properties GO, Gl, and G2. GO ‘assures
that the set of equilibrium points I of I, is a manifold. Gl is
a regularity condition of the derivative of '20 on J. G2 assures
that I has a stratification S, which is stratified by ‘the number of
zero-eigenvalues and the»humber of pure imaginary éigenvalues of the
- derivative of ZOILp'at pel. Here’"Lp is a plaque of F ‘cdhtaining
P. Theorem A in section 4 asserts that G0, G1, and G2 are geﬂefic
proper;ies. We set another property G3 in section 4, which aséures
that the manifold I 1is in general position in the foliation F with
respect to Thom-Boardman singularities. Theorem B in section 4 implies
.that the set of {EE} having property G3 1is demnse in thé"éﬁéce‘of
families of vector field on M 'which is aksub5pace of }EF(M$<[0,éO)).

Saddle-node bifurcation and Hopf bifurcation aré'wéli knows as
typical codimension one bifurcations of'equilibria. Theorem C in
section 4 shows where these bifurcationsrof 201Lp appear for ﬁeeZ.
Theorem C expresses the place in the language of the stratification
S and Thom-Boardman's stratification. Theorem D determines the
qualitative structure of 20 near the point p Qhere saddle-node
bifurcation occurs. Theorem A, .., Theorem D in;éection 4 are proved
in [8].

Theorem E and Theorem F in section 5 shows the properties of

addmissible solutions. Theorem G is the singular perturbation theorem
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for admissible solutions. This is an extension, in some sghses, of
L.S. Pontryagin t12] and ﬂ. Feﬂichel [5];‘see Remark 5.9. Theorem E,
Theorem F, and Theorem G are proved in [10]. |
In the case that Z‘ has cpdimension one (i.e. m==1)? it is
trivial td see that fhe jumping path (trace of Définition 5.7) leaving
a fold point is uniqﬁe. When m >1, the uniqueness and otﬁer proper-
ties of the.jumping path are obtained by’Théorem D as the properties
of the sfable sets. | | |
There isban’example of constraint system in the theqry of LC-
- network perturbation (G.kaegami [7],[9]). In this theory, there is
a foliation F (not a tfi;ial product structure EJ%<IP)‘and a one

parameter family of vector spaces, Z€==€X-FY such that Y is

tangent to F.

2. PRELIMINARIES

Let M be a smooth (Cm) manifoldeifh dimension m+n, and
be a smooth foliation on M with codimension m. F .is a_disjoint
decomposition of M into n dimensiénal injectively immersed
connected smooth submanifolds (leavesj such that M is covered by

(s}
C charts

. m n .

foalxaz.U—*D x D : (2.1)

-1 n . . . -1

and (al><a2) ({x} xD7) is included in the leaf through (al_xaz)

(x,y), yean, where D" and D" are the open disks in R" and Hfﬂ

resp. We denote

(a %) (lx} X0 =L

- 4 -
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and call it the plaque containing the point (x,y).

Let T :TF » M be the subbundle of the tangent bundle. TM -+~ M
such that the fibre"T_l(p) 1s an n—-dimensional vector space which is
tangent to the leaf of- F through peM. Let Y :M > TF be a ct
section of the vector bundle T. Y is also a Crfsection of the
tangent bundle TM -+ M. We call such a section a ¢’ vector field on

M tangent to the foliation F. Denote by Vr(F) the space of all

¢’ vector field tangent to F with the Whitney o topology.

We write ZY for the subset of equilibrium points of a vector

field YéEVr(F). A point pezZY is called a regular point, if the

derivative dY at p has the maximal rank n. pelY ds called a

normally regular point, if d(Y1LP)(p) is nondegenefate, where Lp is

the plaque of F at p. We denote by Zr the set of normally regular

points of ZY. A point pe&Zi is called a normally hyperbolic point

(resp. normally stable point), if p is a hyperbolic equilibfium
point (resp. stable equilibfium point) of YILP. We write Zh (resp;

ES) the set of normally hyperbolic (resp. stable) points. We have

Zs c Zh c Zr c ZY.

Let BZh be the set of all frontiers of Zh; 82h==Zh-Zh.

A stratification S- of a topological space N 1is a partition of

N into subsets, which will be called the strata of 8§, such that the
following conditions are satisfied:
(a) Each stratum S  is locally closed, i.e. each point s€S§

has a neighborhood U such that UNS 1is closed in U.
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(b) S is locally finite, i.e. each‘point has a neighborhood

meeting only finitely many strata.

(c) If S1 and 82 are strata and S1

The relation Sz<Sl defined by Szt:Sl, SZ:%SI’ is an order on

ns, +¢, then S, 8.

S. 1t is transitive and cannot have both SZ-<Sl and Sl'<52.

Let N be a C1 manifold, -let Nt:ﬁ, and let S be a stratifica-

tion of N. We will say that S  is a Whitney stratification if each

stratum is a C1 submanifold, and if S S, are two strata with vSZ'<

1 "2
Sl’ then for all 1{682 the triple (Sl, SZ’ x) satisfies the
following Whitney's regularity condition.

Condition: For any sequences {xi} of points in S2 and {yi}

of points in Sl, such that X; X, ¥y X, xi=%yi, segment XYy
converges (in projective space), and the tangent space Tx S1 converges
: ‘ i

(in Grassmanian of (dim Sl)—plane in ﬂf‘, n =dim N) , we have £<:Tm,
where f£=1limx.y, and T _=1imT Sl.
i’i 0 xg
Let S* denote the substratification of a stratification S such

that st consists of all strata of dimension <i of S. We call S1

the i-skeleton.

3. THOM-BOARDMAN SINGULARITIES MODULO FOLIATION
Suppose L, N are smooth manifold and £f, gt L->N are C

maps with f(p) =g(p) =q. f has first order contact with g at p

if (df)p =(d.g)p as mapping TpL~+TqN of tangent spaces. f has kth

order contact with g at p if (df): TL->TN has (k-1)st order

contact with (dg) at every point in TPL.

Let M be a smooth manifold of dimension m+n, and let F be

_6_.
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a smooth foliation on M with codimension m. Let L be a smooth

manifold without boundary.

k
Definition 3.1. Suppose f, g: L=>M are C maps with f£f(p) =

g(p) =q. f 1is said to have kth order contact modulo F with g at

p if, for some (and hence for ény) chart (U, ay X oaz) of F with

geU given by (2.1), o ° £ : L > D" has kth order contact with 0, °8

at p. This is written as f~ g mod F at p. Let Jk(L,M; F)p ¢
. b ]

k >1, denote the set of equivalence classes under "~k mod F at p" of
mappings f :L -+ M where f(p) =q. Let JO(L, M F)p q ={(p,q)}.
. s Ef

Let Jk(L, M; F) =U Jk(L, M; F)p q (disjoint union). We call
b

(p,q)elxM
Jk(L,M;‘F) a jet space modulo F. An element O in Jk(L, M; F) is

called a k-jet modulo F of mapping from L to M.

k )
For a C mapping £f :L - M, a jet extension

jkf : L — Jk(L, M; F)

is defined by stipulating that jkf(x) is the k-jet mod F of f
at xe€L.
Our jet spaces modulo foliations follow the J.M. Boardman's

theory [4]. Hence, we have the following.

Proposition 3.2. For each sequence 1I= (il, 12, ey ik) of
integers, the submanifold (not necessarily closed) EII of the jet

space modulo foliation Jk(L, M; F) is defined. ZI is empty unless

I satisfies
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v

£ - m,

e

Hh

=
]

£ - m, then il = 12 = eee = ik.

Proposition 3.3. If f :L - M is a map whose jef section modulo

' I~ o~ - koy-1,xI

F, jkf :L > J(L, M; F) 1is transverse to ZI, then ZI(f) s G 1(2 )
is a submanifold of L. If I,i denotes the extended sequence (il,

iy, ees iy, 1), we have iiey =515 13M6)).  Also, when I=9,

Ei(f) ={pel :dim Kerjlf(p) =1i}.

+
‘Proposition 3.4. Any map f :L - M of class Cr+1 may be o 1

+
approximated in the ct 1 sense by amap g:L - M ‘whose r-~jet exten-

i,,..,1
~ l’ ’
sion - jrg’:L - JI(L,bR F) 4is transverse to all submanifolds I S,

We call ZI the Thom-Boardman submanifold of Jr(L,Fh F) associ-

ated with Thom-Boardman symbol I.

These definitions and propositions in this section are described

in [8].

4, GENERIC PROPERTIES OF VECTOR FIELDS TANGENT TO F.

In this sectign we introduce some theorems obtained by Ikegami

-[8].

Definition 4.1. - Let dimM=m+n and codimF=m. The following
are the properties of the vector field Y(EVr(M, F).
GO: The set ZY of all equilibrium points of Y is, if nonempty,

. . r .
an m dimensional C manifold.

Gl: Every point of ZY is regular.
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G2: Y has the property GO and there is a Whitmey stratification

S on ZY having the following properties:

(i) If the differential d(Yle)(p) at p has % eigenvalues

of zero and. 2(k -%) non-zero pure imaginary eigenvalues

0, «vey 0, iby, -iby, -.uy dby o, ~ib, o,

then p is contained in the (m-k) skeleton Sm—k.

(ii) The union of all (m-1) dimensional strata U Smfl is a

dense subset of BZh .
m-1 . - ,
(ili) US is divided into two parts, (E)Zh)o and (azh)img’ of

unions of strata such that

pe (or —> 0 is an eigenvalue of d(YILp)(p),

h)O

pe (9% —- the eigenvalues of d(Y!Lp) (p) 1include a pair of

h)img ,
non-zero pure imaginary numbers.

G3: ¥ '.has the property GO, and for k=1, 2, the k-jet

extension jkl : ZY > Jk(Z M; F) of the inclusion map 1 :ZY - M is

Y >
transverse to EI for all Thom-Boardman submanifold EI of length k

- Symbol I.

Let VE denote the set of Ye V¥ (M, F) satisfying the property

Gk, k=0,1,2,3.

Theorem A. For k=0,1, 2, the‘ set VE

is open dense in Y'(M; F),
if ktl < r <,

Theorem B. V§ is dense in Y (M; F) for 3 <r <o
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Let 1 :ZY + M be the inclusion map. Let ilczjk(ZY,bh F) be
the Thom-Boardman manifold for Thom-Boardman symbol I. Denote EI(Y)
- ..k -1 I '

s (G @),

Let T :TF - M be the vector bundle of vectors tangent to F.

Let (o alx Oy

the 1l-jet space of germs of partial sections of T. Define i; to be

U) be a vector bundle chart of T. Let Jl(T) be

the set of l-jet oeeJl(T) such that, if Y represents 0 at peM,

then 'Y(p) =0 and the rank of d(Yle)(p) =n -1i. Denote gi(Y)ié
L1,,-1 i

GDTED.

The following can be easily proved [8].

Progosition 4.2. Let YesVr(M; Fy, r > 2.‘ Then we have the
following. |
(1) Ei(Y) =§i(Y), if Y satisfies GO‘ anq G1.
(ii) If Y satisfies G3, then each point pezzl’O(Y) is a fold
point; i.e. there exist coordinates of class Cr—l; Xys --+» X centered

at p in ZY and Yys cv+s Yo 2 z centered at p in M, such

IERLEE
that (a) Zys +e+, 2 are the coordinates of the plaque Lp of F, (b)

the inclusion map ZY + M is given by

2
Y1 = %12 orv0 Ipe1 T Fp-1? Ym T %l

This proposition is useful in the proofs of Theorem C and Theorem

D below in this section.

Next, we study the bifurcations of Y at I Suppose“thatf

h'

_10—.
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dimM=m+4n, codim F=m, and Y is of ciass Cr, r>3. Let P Be a
point ‘in BEh. Assume that there is a neighborhood | N’ of p 1n BZh
such that N is an (m - l') dimensional manifoid. “ ’(Let Ol.i ‘>.< Qs U > Dm X
D" be a chart of | F sucrhﬂ thatk (al ><’0L2) (p) = (0,0); (see(2.1)). Lef
I' be a seginent in D" parametrized by isvuch‘ thét H ¥0 in&icates
the origin of Dm.‘ | 7

Assumption: L= (al Xaz)—l(l XDn) is transverse to both EY and

N din M.

Definition 4.3. Under the above assumption we say that Y has

saddle-node bifurcation at pe BZh, if there is an segment I as above
satisfying the following: The smooth curve L ﬂZY is tangent to LO

. . . . 8
at p, ZY ﬁLu =¢ 4if u<0, and ZYﬂLu consists of two p01nts,’ pu
and pﬁ if p>0. Furthermore, Y is hyperbolic at pz and pﬁ. The

dimensions of the stablé manifolds at pz and pzrare k and: k-1,

respectively, 1<k <m. See Figure 1.

T
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Definition 4.4. Under the above assumption we say that Y has

Hopf bifurcation at pe BZh, if the following hold for every segment

I1cD® as above: There is a unique 3-dimensional center manifold C
(see Guckenheimer-Holmes [6, p.127]) containing L ﬂZY = (U}JLU) ﬂZY and
a system of coordinates (x, y,u) on C, with (x, y,u) eLu, for which

the Taylor expansion of degree 3 of Y on C is given by

Me
]

(du + a(x2+y2))x - (w+ cy + b(x2 +y2))y

s
I

2
(W + cp + b(x +y2)x + (du + a(x2+y2))y,
which is expressed in polar coordinates as

(du+ar?)r

H
Il

(w+cp +br2) .

D
1

See Figure 2. -Consequently, if a+0, there is a surface of periodic

S

\

"/

B

._12_
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solutions in C which has quadratic tangency with the eigenspace of"
A(0), A(0) agreeing to second order with the paraboloid U =—-(a/d)(x2
+-y2). If a<0, these solutions afe stable limit cycles, while if
a>0, there are repelling; (Sée [6, Theorem 3.4.2].)

Saddle-node bifurcation and Hopf bifurcation are well known as
typical codimension one bifurcations of equilibria (e.g.[6]). We want
to see how these bifurcations arise in our global situation with
respect to the stratifications which we defined. The stragification
S in G2 1is defined by only the first derivatives of Y. But,
saddle~node bifrucation does not occur under the cohdition ohly of the
first derivatives. As another condition we take thé second dérivatives
modulo F of the inclusion ﬁép of the set of equilibrium points ZY;
while J. Guckenheimer and P. Holmes [6, Theorem 3.4.1] take the
assumption for tﬁe second derivative of Y. For this purpose, we use
the stratification of Thom-Boardman. In the study of constraint
systems, it is natural to éoﬁsider Thom-Boardman singularities (see
[13] and [15]).

Let Sk be the k-skeleton of S. Let §k bekthe k-skeleton of the
stratification determined by gi(Y) é(jll)-l(fi), i=0,1,..., m; We
have §% =I" ) U () u... UT™(¥). Under c1, S558K ana L
= 9L, hold by Proposition 4.2(i) and the definition of S. nMoreover,

h

we have that a (m-1) dimensional stratum of S is included in a

~

(m-1) dimensional stratum of S. For the sets defined in G2, we

observe

~m-1 am=1 _l"
(BZh)O cS | and (azh)img nsSs = ¢.

...13...
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Denote by (BZh)f the set of fold points in BZh;

o), = Gy ni%m

e
Theorem C. Let Yeer(F), r > 3. Suppose that Y satisfies
Gl,.G2, and G3. Then, there is an opeﬁ dense subset '(BZh)flJ(BEh)img
of the boundary BZh of the normally hyperbolic domain Zh(;ZY'such
that Y has saddle-node bifurcation at each point of (BZﬁ)f’and has

Hopf bifurcation at each point of (azh)img'

Next, we study the qualitative structure of Y at fold points in

the boundary of normally stable domain ZS.

Let X be a Cr vector field on an open set U in an let ¢t

be the flow of X, and let pe€U be an equilibrium point of X.

ne1 of .dX(p) satisfy that

A0==O and that the real parts Rkl, cees Rkn—l <0. Let E° and E°

Suppose that the eigenvalues AO’ cees A

be the generalized eigen spaces of AO and Al’ cens An—l’ respectively.
By center manifold theorem (Guckenheimer-Holmes [6, Theorem 3.2.1]),
there are an invariant C' manifold Ws(p) (called the stable

manifold) tangent to E° at p and a ¢’ manifold Wc(p) (called the

{(local centér manifold) tangent to Ec at p. Wc is locally invariant
in the sense that, if quC and ¢t(q) €U, then d)t(q) eWé. w® is.
unique,‘but W need ﬁot be.

Let ‘wt be the flow associated £o é vector field on avmanifold.

Theqsubsets

Ve (p)

{q : wt(q) +p as t > ®}, and

v (p)

{q : wt(q) >p as t > -}

- 14 -
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are called the stable set and the unstable set of p, respectively.

The boundary BZS==E;<—ZS of normally stable domain is included in
the boundary BZh of normally hyperbolic domain. Suppose Y satisfies
Gl, G2, and G3. Then, by Theorem C, there is an open dense subset
(BZh)flJ(QZh)img of BZh such that Y has saddle-node bifurcation at
(BZh)f and has Hopf bifurcation at (azh)img' Define the sets as

follow,
(SZS)f z (3Zh)f n (BZS) and (azs)img E (azh)img n (BIS).

. r ‘
Theorem D. Suppose Ye VY (M;F), r>3. Let (BZS)f U (azs)img be
the open dense.subset of BZS defined as above. Let pe;(azs)f.
Then, these are an open neighborhood U of p in M and a Cr

1

embedding from the plaque, hp :Lp > IR X IRn—; such that the following

are satisfied.

(1) w(p) nL, =h;1({0} x RA71

) and Wc(p) ﬂLp chgl(IRl>< {0,
where ws(p) and Wc(p) are the stable and center manifold of YILP,

respectively.

(#) Vi) ML chT([0,=) xR and v'(p) NL, bt ((-=,0] x
{O})<:Wc(p), where Vs(p) and Vu(p) are the stable and unstable sets
of p, respectively. (Figure 3).

(iii) The ct embedding hp depends Cr—l continuously on

pE€ (BZS)f. -So that, both of the sets
-y = {q € Vu(p) tpe (BES)f N u}

and Vu(p) are injectively Cr“l immersed submanifolds of M.

_15_
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Figure 3

5. CONSTRAINT SYSTEMS AND SINGULAR PERTURBATIONS

" Let M be a smooth manifold. Let {28},. 0<e<e be a family

0’

. e . r . . g .
of vector fields on M. {ZE} is called a C family if Ze(p) is a

ct vector field on M><[O,€0). In this section, we assume r 2 3.

Definition 5.1. A constraint system of class cr on M 1s a

pair { {Ee}’ F} of c' family of vector fields on M, {ZE} 0<ex<
Eorand a smooth foliation F on M such that 20 (e =0) is tangent

to (the leaves of) F. We may call the limit of 26/5 for €~»0 a

constrained equation in different meaning from Takens [13]. This
limit exists only at most on the subset of equilibrium points of 20.

Expanding EE by €, we have

7.(p) = Y(p) + €°X(p) + o(€)

Y(p) = Zo(e) ¥ O (5.1)
_ 95
X(p) = 572 (p)1€=0-

_16—
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We set a following axiom for . { {Ze}, F}.

Axiom 5.2. Y=io satisfies Gl, G2, and G3.

Remark 5.3. By Theorem A and Theorem B, the set of families
satisfying Axiom is dense in the space 7" of ¢ family of vector
fields {Es} such that ZO is tangent to F. Here, Z" is defined

usually as a subspace of the spaée XF(M><[O,€O)) of C° vector fields

on M><[O’€O)'

Let Zr be the normally regular domain of the manifold ZY of

equilibrium points of Y =12 Hereafter, we use the simple notation

0"

L for ZY. Let

be the bundle map obtained by the projection

TM=TZ% & TL —> T3
p pr PP PI

for each pezZr, where Lp is the plaque of F containing p. For a
crosssection X of the bundle TZ M~ Zr, we define a vector field
XZ on Er by

Z X o (5.2)

Definition 5.4. A curve Y : (a,b) - Zr is a solution of the

constrained equation 118 EE/E associated with { {Ze}’ F} if
>0

_17..
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(i) 1lim vy(tv) =Y(t0) and there is 1lim y(t) g‘{—(to) in I
t\\to t/‘to
(not necessarily in Zr);
(ii) whenever Y—(to) +Y(t0), there is an orbit C (inciuded in
a leaf of F) of ZO such that the o 1limit set a(C) and the w

limit set w(c) of C satisfy
a(C) =y (tg) and w(C) = y(ty);

(idi) if Y_(to) =Y(t0), then XZY(tO) is the d.erivative of Y-
at  tg; if “y_(to) =|=Y(t0), then XZY(tO) is. the right derivative of
Y at tg. | | |

A curve v : [a,b) '+ Zr is a solution if, (i) for any a<a'<b,
'y](a',b) is a solution; (i) Xzy(a) is the right derivative of vy
at a. |

A curve v : (a,b] - Z'.r ié a éolution if, (i) for an& a<b' <b,
Yl(a,b") is a solution; (ii) there is 1im y(t) =y (b) din I; (i)

- t b .
there is an orbit C of Zy such that a(C) =y (b) and w(C) =y(b).
Y : [a,b] > Z'.r is a solution if <Y|[a,c) and Yl (c,b] are

solution for any a<c<b.

For a point ple, there is a solution v (a,b) - ‘2r such that
p=7Y(c), a<c<b. But there may be many such solutions. See Figure
4 and 5.

Next, we consider solutions having many available properties.

Let Ee =Y+eX+o(e). Let Z be the set of equilibrium points

of Y.

- 18 -
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gl I

ey S &

a) g \Y(“) : f
./ \‘I( ) /):(bf /{ N )
\ /- N\

Figure 4 Fi qure 5

Definition 5.5. Let J be an interval. A solution Y :J +‘2r
of 1lim Z /e 1is called to be admissible if

e+0 :
(i) the image <Y(J) is included in the normally stable domain
Es of Y,

- (i) whenever <y is not continuous at teJ then p=y (t) is

contained in the fold point set (BES)f in 8283 and furthermore
X(p) ¢ TZ +T L . (5.3)
1% PP :
is satisfied.

Remark 5.6. (5.3) is a generic condition. In fact, since
~1
€ (9Z cZ7(Y), the subspace T Z+T L has codimension one in T M.
‘Hence, by a perturbation of X (hencé, of i), we have Z such that
(5.3) holds for the points p in an open dense subset of (BZS)f.
Hereafter, we show some properties of admissible solutions. For

a non-zero vector VEETPM, denote by L(v) the l-dimensional subspace

- 19 -
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of TpM generated by v. The unstable set Vu(p) of pe (E)ZS)f is an
injectively immersed submanifold of [0,©) in M, and it exists unique-

ly for p, by Theorem D.

Theorem E. Let ZE =Y +eX+o(e). -Suppose that X satisfies
(5.3) at a point pe (BZS)f. Then the following hold.

(i) For some (and hence for any) Finsler | *I on TM and
qe Zs, we have | XZ(q) I+~ (q-~ p).

(ii) For qus, we have L(Xz(q)) > Tqu(p), q > p.

Theorem F. Let cbt(q) be the trajectory of TTZX on Zs such
that d)o(q) =gq. Suppose that
lim q)t(q) =pe€ Zf, a>0.
tra :
Then, the following hold.
(i)  For any point q' in a neighborhood U of q in Zs’ there
are p'e (Z)ZS)f and a' >0 such that
lim ¢t(q') =p'.
tra'
(ii) The mapping U - (BES)f, defined by q' » p', is continuous.
Definition 5.7. Let Yy :J - ZS be a solution of 1lim ZE/E.' For
- €20
a discontinuous point ti’ i=1,2,3, ..., let Ci be the orbit of Z0

with a(Ci) =Y (ti)-- and w(Ci) =y(ti)-. The arc

() sy(@Uc uc,ucyu -

is called the trace of Y.

_.20_
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Let d be a Riemannian metric on M. -

Theorem G. (Singular perﬁurhation theorem). Let vy :[0,b] ~» ZS

be an admissible solution of a constrained equation 1iﬁ Z /e such
>

that Y has at most finitely many discontinuous pointi.0 Let we : RxM
- M be the flow associated with the vector field ZE gie/s, £ +0.

Then, for any ¢ >0 and u >0, there exist £>0 and a neigh-
borhood U of p=+v(0) in M such that, for any . € with 0<e<e
and any qe€U- the following hold.

(1) wE(J,q) is included in the S-neighborhood of the trace

I'(y); i.e. for any teld

A, (t,q), T(Y) < 6.

(i) If teJ and It-—ti] >n for every discontinuous points

1’ t2, t3, ...€J of vy, then we have
d( (t,q), v(t)) < 6.
Corollary 5.8. Admissible sclution vy :[0,b] » ZS with +v(0) =p
is unique, i.e. if vy' :[0,b] » Zs is another admissible solution

with Y'(0) =p, then vY(t) =Y'(t) for any 0<t <b.

Remark 5.9. (i) N. Fenichel [5, Theorem 9.1} proves the singular
perturbation theory for a neighbérhood of a,compact subsef of normally
hyperbolic domian Zh' We use this theory for the proof of Theorem G.

(ii)‘ L.S. Pontryagin [12] shows the singular perturbation theorem

in the neighborhood of a discontinuous point of Yy under the condition

of the derivatives of Y. This condition is slightly different to our

...21...
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theorem which takes the condition of I G M. 1In the proof [10] of
Theorem G, we do not use Pontryagin's results; we give another proof

using center manifold theorem.
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