goooboooogn 137
5790 19850 137-156 !

On the Vlasov-Poisson limit of the Vlasov-Maxwell equation

(Dedicated to Professor Yamaguti on his 60th birthday)
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1. Main results

The change of the density distribution of charged gas
particles is described by two types of equations: The Vlasow-
Maxwell equation and the Vlasov-Poisson equation. The latter de-
scribes the motion of plasma when the magnetic field generated by
the plasma is small. The purpose of this paper is to study the
relation between the two equations. Roughly séeakingh'the solution
of the Vlasov-Maxwell equation converges to the solution of the
VlasoQ—Poissbn equation when the light velocity tends to infinity.

Let fi==fi(t,x,v) be the density distributiqn of charged |
gas particles of the type i (i=1,2,..,N) at time t >0 and position
erR3 with velocity V€1R3. Let E=E(t,x) and B =B(t,x) denbte the
electric and magnetic fields generated by the charged gas particles.

The Vlasov-Maxwell equation 1is,

3 . v . =
€ f.l + v foi + ai(E+ch) vai 0,
23

- = =4
atE CVXXB AnJf,

(1.1)

3 .
EEB + CVxxE 0,
(E,B) It=0 = (EolBo)l

Supplemented by
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(1.2) V_T"E = 4rnKf, v *B=0.

Here * and x are the scalar and vector products in IRB, VX is the

gradient in x and VV in v, while ¢ is the light velocity and @, =

qi/mi, q; and m, being the electric charge and mass of a single

¥
.
particle of i-species. Further, Jf and XKf are the current and charqé

densities generated by f:=(fl,f2,..,fN);

N
Jf= | q; /3vfi(t,x,v)dv,
(1.3) i=l "R
)
Kf = g. [, f.(t,x,v)dv.
i=1 11R3 1

Noticeé that (l1.2) can be deduced from (1.1) for t >0 if it is sat-
_1sf1ed at £t =0, i.e., if the initials f0:=(fl,0,f210,..,fN’0) and

(Ey/By) satisfy

(1.4) VX‘EO==4ﬂKfO, VX‘BO==O.
This is a physically reasonable compatibility condition and will be

assumed throughout the paper.

On the other hand, the Vlasov-Poisson equation is,

2 f 4veV f.+a.E'Y £, =0,
3t 1 X1 1 vT1i
(1.5) V *E=4nK£, VvV xE =0,
M X X
£.] = f

This ecuation is formally obtained from (1.1) and (1.2) by setting ;
B=0 or c==.
With the notations and function spaces defined by (1:19)-(1.23)

below, our main results are stated in the following three theorems.
Theorem 1.1. Let £2>3,02> 0, o#2>0, &R, and suppose

‘ %
(1.6) £, eH (1Si<N), (By By eH .

i,0 "o,0,8
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guppose further that (1.4) is fulfilled. Then, there exist positive
constants C, T, vy and the following holds.

(1) (Uniform existence) For each ce{l,=), (1.1) has a unique clas-
sical solution f==(fl,f2,..,f) énd‘u¥¥(E,B) on the time interval

(0,T] such that

_ .0 1ot 1 S
(1.7) f:CY([O,T],HU’Q,S)HCY([O,T;,Halpls_l),
(1.8) wec®lo,rl;ahNct (Lo, Tla"h,

satisfying the estimates

(1L.9) I:lL,G,plle,Tileol1,0,9,3,

(1.10) lu] +C|f

<
o,r 3 lugly ole,0,0,8"

"(ii) (Continuity in c) As functions of c, £ and u satisfy

[ . .
v 2 _ J wy .0 R
[A.lJYlS fchOM ({1, ),CY([O,T],Ha'p,B_j)),
1.!‘ ' ..' r 1—.
(a.2] ue M:'(Ll,“‘);CO(LO,T];H Iy,
j=0

Thus, the solutions exist on the interval [0,T] independent of
ce€[l,=) and are continuous in c. Further, they have limits

at ¢ == which we will call the Vlasov-Poisson limits:

Theorem 1.2 (Existence of limit). Let f,u be as zbove.
(1) They can be extended to [1,«] as funcﬁions of ¢ so that

2-€

(A.3] 0.0, 8¢

- =

n .
a feso(u,wl;c;(to,m;ﬁ M. Ve,

©

(a.4] uen? ([1,=1x[0,TIN{(»,0) };8* 2 (Rr3)) ,

holds good, and in particular, they converge as c += in the topology

indicated here. We write the limits as.
® ® @ @
£ = (£, 65, E)), o = (E,B7).
s . - @« v 3 ;m © » . v-
(ii) B =0 while (£ ,E ) is a unigue solution to the Vlasov-

-3-
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Poisson eguation (1.5) on [0,T] satisfying
~2+1
x )

(£ ,Edec(lo,TliH, | o<

(1.11)

€710 6,0, 8,05CF 500 o,y o

+ v E"| -1, 7 >ClEle o, 0,8
£ unifprﬁly

(1.12)
Y
”E ho'T
Observe from‘[A 3-4] that as c» =, f codverges to
in t on [0,T] while u converges to u_ uniformly on [§,T] for any & >0
Physically, this implies the development

but not uniformly on (0,T].
of initial layer.

Also, comparing {1.7) and (1.11), we see that the limit £7 which

is a solution to (1.5) belongs to a better function class than‘f, the

solution to (1.1), and similarly for E~ and E.
Finally, we shall discuss an asymptotic expansion which is some-
To simplify

what complicaeted due to the vresence of initial layer.
N

the notation, we introduce the operators L,A,A defined Lky
v

-N | 1 = - £ + .E' . . B : ’
L(f’E'f IE ) (atfi+v vxFi &lE vvfl+alE v fl)l=l

(1.13) Af=(-47wJ£,0),

Au= (V_xB,-V_xE)},
( < BrVy ) s
The first of these is an N-dimensional vector and the remaining two

are 6-dimensional vectors.
Ve sesk the expansion of the form
=33

Jgd)

The coéfficients £ = (£3,£3,..,£})

where £ ,u are as in Theorem 1.2.
u3==(Bj,Bj) still depend on c. We wish to determine them as solutions
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of the following equations whose derivation will be described in §5.
Note that the 0-th term of the expansion (1.14) is (fwaO’uw+uD). The
equation for (fo,uo) is the nonlinea: equation,

L(‘fO,EO;fq’,Em+EO) =0,

(1.15)° atuo—cAuO = plAf°+Af°,

0 =
£ Lt=0-0, u

where PlAis the projection defined in $3(see the remark below (3.3)),

and u, is the same initial as in (1.1). The equation for (fj,uj),

1<j<k-1, is the linear inhomogeneous equation,

L), 57, £7+£9, £%+50) = 3,

(1.15)7 Btuj—cAuj = AfF,

.3 -
(£7,u°) | _q =0,
where ,
j Bjet r j-r r j-r-1 0 j=1,N
Fl=-(a, )} (E'-V £3 5 4yxpt-v £J ) + a.vxB- +V £37 )Y,
lr=l v i v i 1 vl i=1

and the equation for (fk,uk) is the nonlinear one just obtained by

substituting (1.14) into (1.1) and taking account of (1.5) and (1.
lS)J,Oij<k—l: |

k-1
leBk; £+ z

3=0

CneR, BT k

4

¢ 3ed mic tuxp) = F

(1.15)% Btuk-cAuk = p£5

r

k k
(£7,u) [ g =0

where F is a given function of (fj,uj),0<j<k-l and their derivatives,
and v,c. The expansion (1.14) is verified by the

Theorem 1.3 (Asymptotic expansion). Under the situation of

Theorems 1.1 and 1.2, let Oikil—Z,

(1)

The equations (1.15) can be all solved successively, unigque-
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ly on the same time interval [0,T] as in Theorem 1.1 and uniformi&.

for each c<[0,=), with the solutions,

fje[A.l]g_g_j,i 0<j<k-1,
5k
y,8-k !

ule(a.2]*79, 0<j<k,

(1.16) e e(a.1]

] . .
where [A.l]Y g etc., are the function ¢lasses in Theorem 1.1. With
7

these (fj,uj), (L.14) holds. ©Note from (1.16) that we can take T=Q
for 0<j<k-1 and that (£9,ul) are all uniformly bounded in c.

(ii) As ¢ > =, we have,
(1.17) (£3,ud) ~ 0,  o0<j<k.

More precisely, 1if (£,ul) are extended to [1,=] as functions of ¢
with 0 at ¢==, then,

-k

gle(a.3)}] 5 0<j<k-1, fke[A.B]i N

, 8-
wle(a.a]?,

g -

ujeBO([l,=]X[0,T];B j_Z(IRB)), 1<j<k.

(iii) Suppose, in addition to the assumption of Theorem 1.1, that

¢>2 and u_s B Then, we can strengthen the convergence (1.17) as

0 2
|3 9.-j-2,c7-,p_,8—j—2,'1‘f-dé—llog(l-!-CT) . 0<j<k-1,
(t.18)  1elll,, ¢ sd(i+en) Hee Mog (1+em)
0ol jop, p e Tog (LT, 1gj<k-1,

where d::C(ﬁfolz:U'p’B+|lu0“£, C being a positive constant dependfé

ing only on 2,0,p,8 . A similar estimate is also available for j=b

Remark. After completion of this work, we learned that
Degond [5] had proved a similar result under slightly different

conditions. However, his asymptotic expansion is derived rather
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formally.

The rest of the paper is devoted to the proof of Theorems 1.1-3.
since most of materials and tools for the proof are provided in [1,
2,7), we will give an outline only).supplementing some technical
results missing there and neéded here. 1In the next two sections we
discuss linear problems associated with (1.1) while in §4 we solve

(1.5), and finélly in §5 we will prove Theorems 1.1-1.3.

Now.we shall state the definition of the function spaces used

in Theorems 1.1-3. H2==H2(IR3)is the Sobolev space of order £, with
the norm |-{2. Introduce the weight- function
. L1 g v _ FEr
(1.19) by, e = rlxl vy et @eey 7l
and define the space 5 by"
o,p.8
20y HY = (£=£(x,v) | o 3% re L2 (R®), |al+]a’ <2} ,
(1.20) G'p’8 ’ g,0,8°x°%v -
a.a'’
f —_ 2 LR f
I 12:01916, la[_*_!a,((}z'mc,p,soxdv IL2<R6)-

Let Q@ be a (possibly closed) domain in R™ and Y be a Banach space

with the norm . Cl(Q;Y)(reSP.Ml(Q;Y)) will denote the space of

1y
Y-valued functions h{y) on  which arenétrongly continuous {(resp.

' . . . - . . Q.
strongly measurable) on Q, together with derivatives Byn, [a{ii-

, m .  JPC B

Wz sat BQ(Q;Y)::CI(Q;Y)Q Mg(g;y)_ When Y=C , we drop Y; e.g., B CR )=
' : 1 2

B£CR3;¢m),etc. Note that if Q is compact, then B (2;Y) =C (Q;Y)-

Q(Q;Y) and Ml(n;Y) are Banach spaceés with obvious norms. We write

w

_ 2
he norm of B CRB) as |||l

(

o+ and when 20 and @ =[0,T], we set,

nil = sup |h(t)l,-
¥, T 0<t<T ¥
. L % [} 3 )
Further, when Y 1s H ,Ho 0.8 or B (IR"), we set,
' r Py
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lal = |fuall ,
L,T HZ,T
(1.21) lfall = |lull /
2,T BZ(IRB)'T
lflgl,c,p,B,T——_“f” l ’T‘
H
o,p,8

These norms will be also used when Q={1,®]x[0,T] in which y=(c,t)

moves.

The space CE([O,TT;Hz 0 B) which’plays a cruCial role in this

paper is defined by the set of functions f=f(t,x,v) such that,

RENEIAE- 0 ;12 (R® j +la']<e,
¢alp_YtIB tux v rec ([O’T]'L (R ))' Oirij' lc| IQ I_
(1.22)
| £1 = sup |f(t)] (3=0).

LIGIQISIY'T OitiT l,G,D-Yt,SI

‘We have seen in [1] that to treat the factor vxB of (1.1), we must
take y>0. Finally, we also need the spaces,
ﬁl

{ueBOCR3)[quEH2-l},

(1.23)

Hl
g

tul (+1xD % Sux) e L2 (R) |, Jel<e},

with due norms.




2. The linear Vlasov equation

In this section we solve,

atf-kv-v f-%a(E+c—leB)-v £f=0,
(2.1) b ¢ . ' v

flt=s =f0 !

where u= (E,B), fo are given functions. Suppose,first, that u is in

the class [A.2]2,233, and £ 5C2+1(1R6)(compact support). Then, (2.1)

0

can be solved easily by the aid of the characteristic equation asso-

ciated with it. We write the solution as

(2.2) f==U(t,s;u,c)f0,
where U(t,s;u,c) is the evolution operator to (2.1) (see (1.

Since~fo is now assumed to be of compact support, f is also of

compact support in x,v (cf. Lemma 2.6 of [1]). Noting this, we see

readily that

2 1-j-1

(2.3) femj([l,e);co([OITJ 8-j-1
’ olpl —J—

RS 1 2
’HUIO,B)nC ([OIT] IH ))I
for 0<j<e

Proceeding as in the proof of Lemma 2.5 of [1], we further get,

(2.4) £(t,s) blt-s|
' !klolp_Y[t—Sllsie ’fo_lk‘lc-rprs ! Oikf_ll
where o,0>0 and ’
b=b {(p+|8]+1)[E| _+c* :
(2.5) 20 P l IT )] lleC iBll—l,T+l}'
fﬂico'Bll,T'+U' p-YT>0/2,
bO’CO being positive const;nts depending only on &¢. Since d;*l(mﬁ)
is dense in H§ 0,8 we have thus proved the
Lemma 2.1. Let £>3, ¢>0, p>0 and B<RR. Suppose [A.Z]l for u
. 3 k ) ° .
and fOcH0 0.8 0<k<%. Let Y,T be as in (2.5). Then £ of (2.2)
M ;

. F 2
is a unique solution to (2.1) in [A.l]? g (modified by [0,T]",

in place of [0,T],¢ , see (1.19,22)). Also, (2.4)

]
U,D—Ylt—sl,ﬁ OIO-YtIB

holds which is a uniform estimate in c.

-9-
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Recall that u=u(c) =uf(c,t) is a function also of ¢, and

write (2.2) as

f(c,t)==U(t,s;u(c),c)fO, (with s fixed).

Let l<c<c'. It follows from (2.1) that

t
|£(c,t)-f(c', &)= [U(t,r;ulc),c)glc,c',r)dr,
with S '

g(c,c‘,r)==—a{E(c,r)—E(Cf,r)+VXKB(c,r)/c—B(C',r)/C'ﬁ'va(C',ﬂg
Applying (2.4), we get,

If(c,t)—f(c'rt)‘Olg,p—y]t—sf,s“l

< C

0 ~—t

(‘1E(C,r)-3(c’,r)‘lo+[|B(c,r)[lo/c+ﬁlB(C',r)l‘o/c’)dr;‘

. 2
Consegquently, 1

.
fon—

u

o

[A.4]17, f(c,t) is continuous in c and converges

. . . .0 :
as c»« uniformly on [0,T}, both strongly in Ha,p—y(t~sl,8—l°
virtue of (2.4) and the interpolation theorem, this is also the case
k-¢ ’
g,o-vy|t-s|,8-¢’

By

in H for any €>0. Thus f(c,t) is strongly conti-

nuous on {i,w]X{O,T] in this space and the limit f(«,t) exists.
This proves the first part of the following lemma.

Lemmz 2.2. Under the situation of Lemma 2.1, suppose , in

addition, that uc[A.4]1%. We have,

(i) With the modification indicated in Lemma 2.1, it holds that

. ,
qu'3]Y,B .
(ii) £(=,t) is a unigue solution to

atf+vwxf+zw)W'f=m
(2.6)
£ £

t=s ~*o-

k

: 2 <, .

(iii) Moreover, f(m,t)eco([o,T] PH 0 B) satisfying
. 7 7

<eb’|t—~s!‘f

(2-7) ‘f(mlt)lkrclp's— Olk,d,pzs !

_lo_
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with b=b( (p+|8]+1) |E () [l’T+l}+a ]

For the proof of (ii) and (iii), we notice that (2.6) is a
special case of (2.1) with'u==(E(w),Q).v Then we can prove an
analogue to Lemma-2.l for (2.6), in thch we can take y=0 because
the term vxB is abseﬁf.v On the éther hand, it is clear that f(=,t)
solves (2.6) as seen by passing to the limit in (2.1).

This indicates that U(t,s;u,c) of (2.2) has a iimit which gives

the evolution operator to (2.6). We write this operator as v (t,s;
E(®)). Thus,
(2.8) £(=,t) = V(t,s;E(=) )£,

k

Then, (2.7) gives an estimate of its operator norm in H

g,p,8

-11-
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3. The Maxwell eguation

Assuming that £ is a given function, we seek a solution u=

(E,B) to the inhomogeneous Maxwell equation,

Btu—cAu = Af,

(3.1)
u!t:o =u0' 4
where A,A are as in (1.13). First, it is well known that A gen-
erates a unitary group etA on Hl, and that
(3.2) ?;etAu0==eltA(€)ﬁo(g), u0==t(EO,BO) (column wvector),

where‘ﬁo =3;u0 is the Fourier transform of uy ¢ being the dual var-

iable to x, and A(§) is a 6X6 matrix given by

_f{o -8
A(s)—(a(g) &,

0 -, £
§(€) ={ 3 2\.
&y 0

-
\'52 81 0
A(E) is the symbol of the differential operator -iA.
The matrix A(g) has eigenvalues 0,|£|,-]g|, each of multiplicity

2. Denote the corresponding eigen projections by PO(S),P;(E),P_(E),

and set Pl(€)==P+(£}¥P_(§). We have,

StE . A =
g TolENUgT U RIE (B 1), g =¢/]g]-

P, (E) = I-P, (£).

All these projections are also symbols of the singular integral

operators of Caldéron-Zygmunt type (see [6]). We denote these
L]

)

singular integral operators by P P,, P_,P They are orthogonal

Ol
projections in H2 and it holds that

1°

(3.4) etA:-PO—:-etAPJ_-&-e:tAP_=P.0+rs=.tA‘\_-":L

-12-~
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Moreover, we have the expressions,

e Piu0= (2_") 3

P, (E)3,(8)ac .
= +

(3.5) ta —3/2[ ei(’_"ﬁt“”

Applying Lenima 5.1 of [2] to this, we have,

Lemma 3.1. (1) If u GH; with ¢>2, then,

0
‘ ~tA -1 -
- (3.6) lle Pluolli_zf_c(lﬂt!) ‘uolz,z' t R,
where || .||9',|-|1 s denote the norms of BZ(IRB),H:; respectively. A
(ii) Let ujeH® with £22. Then,
tA 0 . % [ -
e u EBT ((—=) =);H )ﬂBO([-m,Q];B 2(IR3)),

(3.7)

“t:
lle APluOlll-z -0 (t.~+0).

Let us return to (3.1). Its unique solution is given by

-~ : t -—
(3.8) u(e,t) e P+ 1eS 5732 (¢ 5 )as,
' 0
where g:g(c,t) = Af(C,At). Let 123, °_>__Oy o,Y 1T>01 SC‘IR with Q-YTzo/z‘
Assuming [A.l]i 8 and [A.3]i 6 for £, we can easily see that
[ A ! . :
- _ o
(a.51®  ge M0, =):c%(fo, 718279y 0B (1, =)x[0,T)im] %), Ve>0.
j=0 : | |

Furthermore, we have,

g1, ,<alf]

’

L,0,0,8,v,T
and

s(=,t)eu’([o,11:808% (o, T]:85 %), ¥e>o.

tA . n PR
and Pj’ j=0,1 are bounded operators

on HY with the norm 1, we ap?ly Lemma 3.1 to (3.8) to conclude th

Using this and noting that e

{1

2

Lemma 3.2. Let &,0 etc., be as above and assume fe[A"l’B]y,B .

Let u(c,t) be given by (3.8). We:have,

(i) 1If uge Hl, then u(c,t)E[A-Z]lﬂ[A-‘!]z, and

-13-
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(3.9) lulz,Tiluo’z+aTifl,1,0,p,B,Y,T°

(1i) Decompose uf{c,t) as

u(c,t) =u (t) +u0(c,t) +ul(c,t);

where
- t
u (t)==P0u0+-£P0g(m,s)ds,
uo(c,t)==eCtAP u 4—[ec(t_S)AP g(=,s)ds,
A 1% g 1
. .
ul(C.t) =fec(t S)A(g(c,S)—g(w.S))dS-
0

Then-it holds that

wec(ro,t1;8Y),  Wwlea.21*0(a.4)?,

1 L
€ . )

and that
u”(t) = (E7(t),0) =u(=,t),
vX-E =vx-EO+{)vx~f—4an(m,s))ds, vaE =0.

while u0 satisfies (3.1) with Af,u0

so does ul with Af;=§(c,t)—g(°,s), U0=0-

(iii) Suppose now u,€ Hz, ¢>2. Then,

0

0 ; -1
Hu (e, t) I, _5 <dyf(l+ct) Iuol,,”2

-+ac—llog(l+ct)|f(°)|

Hul(c,t)Hz_z_fd.ac_llog(l+ct)|f(c)—f(w)]

0

-14-

replaced by Plg(w,t),Plu

Ol

}

‘q'lzlpIUIBIT

zlzlbIBIYIT

-

and

’



4. The Vlasov-Poisson equation

The:equation (1.5) contains the Poisson equation{

(4~l) VX'E=4Tl'gI VXXE::O’

where g =KfT . This has a solution of the form,
(4.2) E=Gg = [3G(x—y)g(y)dy,

. R .

e =x/1x17,

We note that VgG(X)éCfRIR3\£O}), is of homogeneous degree -3 and has
the mean value zero on 52. Thus VXG is a singular integral operator

of Céldéron—Zygmund type. By easy calculation, we get,
<'.
lGgllg2Cyhlgl,,
vale:icllgikl' k>0.
Knowing this, we readily have the

Lemma 4.1. Suppose ge&CO([O,T];HQEl) with 2>3 and le

{
o]
og
(0

. R . .
given by (4.2), Then EGCO([O,T]7H ) satisfying
. H ’ .
Recall the operator L of (1.13) and consider the equation,

L(£,0;0,E) =0,
(4.3)

£] £

t=0 0"
This is the same equation as (2.6) with s=0, so with V of (2.8), we
find its solution as

£=V(t,0:E)f.

_ ") ‘ % . -3
Suppose EeCO([O,T];H ) and £ eH o with £23, s>0, 0>0, 8;]3 . Then

14 4

Lemma 2.2 says that

5
gec?(lo,TliH, | 4

-15-
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satisfying (2.7) with k=2 and s=0. Further, we readily see that
Kfeco({O,T};Hz),

lelllTiC‘flllorprs IT.

Now we discuss the Vlasov-Poisson equation (1.5). It is a
coupled equation of (4.1) and (4.3). Therefore, if g is a fixed

point of the equation,

(4.2) g=KV(t,0;Gg)£,,

then (1.5) is solved by

.(4.5) £ = V(‘;:‘,O‘;C-g)‘fo', E=Gg;cxf.

and by the successive approximations,
Using the results obtained so fé}ﬂ we can show that for any f . &€°H

P8

0 0,

with 0>0 or with p=0 and 8>3/2, there-exiéts a positive constant T
and (4.4) has a unique solution geCO([O,T];HZ). Now we can have the
Theorem 4.1. Let f_ e HY £>3,0>0,p>0, 8€RR. Then, there is

0 p,0,8'

a constant T>0 and (1.5) has a unique solution of the form (4.5),

satisfying..
-0+
fsco([o,T];H’“., ), EECO([O,T];HZ 'l).
- .¢,p,8 . .
B bt .
lf(t)‘llrg.;prs'—e 110’11101918,

where b is that of (2.7). Moreover, T depends only on IfO!3 0.5.8°
. ’ 14 14

Finally we shall solve the modified Vlasev=Maxwell equation
@ppearing in (1.15):

) =8 (or L(f,E+c—;va;

LY

,E+c “vxB) =H),

t
Hhe

[

(£,

tx
~

(4.6) atu—cAu==mf,
.(f,u)lt=0==0.

Here f,u,h are given functions. Rewrite this in the form of the
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Volterra type integral equation; -

ot
fE(t) =fv(t, s ;E)(—aE(S)'va(s)+h(s)}ds,
O N
or ,
f(t) =fU(t,s;u,c)(-a(E(s)+c “vxB(s) -vvf(s)+h(s)}ds,
0 .
eombined with
t
u(t) = f S8R £ oyas.
0.

Applying Lemmas 2.2 and 3.2 to this, we can readily prove the
Lemma 4.1. Let £>2,0>0,8€R and p,Yy,T>0 with o-vT>p/2, and let

f,]né[A.l]SIB(\[A.3]§;B , dera.21*na. 0t

Then there exists a unique solution to (4.6) such that

-1 -1 -1 . -1
fe[A.l]O!B_ln(A.3]OIB_l (or'kfé[A.l]Y;S_lﬂ[A.3]Y’8fl),
-1 . -1
uef{a.2] (and "uefa.4] if 2>3).
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5. Proof of Theorems 1.1-1.3

Theorem 1.1(i) has been proved in [1l] using the successive
approximation (the c&ntractioﬁ mapping principle). The proof was
‘given for o=0 but is valid also for ¢>0. This and Lemma 2.1 then
prove Theorem 1.1(ii).

In order to prove Theorem 1.2, we shall recall the successive

approximation mentioned above; (fQ,uO)==O and for n2>1,
fn:=U(t,0;un—l,c)f0,
(5.1) t .
un==eCLAu0‘+f ec(t_S)AAfn—l(s)ds.
0

Thanks to (2.4),(3.9) applied to (5.1), we can find Y,T,C>0 such that

(5.2) [£7 ] +u"), . <cC

2'IUI'OISI\’IFIl le

holds for all n. Then by Lemmas 2.1,2.2,3.2, it follows that

n 1 '3 n_ [} . a1 .
(5.3) £ e[A.llY'Bn[AJ]Y’B ; uwe[A.2]7N[A.4]7, n>0.

Using these, we repeat the argument of [1l] to see that

n . 0 0 -1
£7+ £ in B ([1,=):C ([0, T]5H] 1)),
@+ u in BO¢[1,=):c0(r0, 7] YY)y,
strongly as n-e, with some limit (f,u). By (5.2) and the interpolatMQ

theorem, this convergence is also true If g¢-1,8-1 are replaced by
t-c,8-¢, for any e>0. This and (5.3) then imply-that =for any 6> 0s

u" s u strongly in BO([l,e]x[a,T];Bl

-2,.3 o ‘
(R™)). \
Now the first half of Theorem 1.2 follows since the limit (£f,u) obvi-
ously coiﬁcides with the solution of Theorem 1.1, and the latter

half comes directly from Lemmas 2.2,3.2 and Theorem 4.1.

The asymptotic expansion in Theorem 1.3 is obtained as follows.

First, .let £ be that of Theorem 1.2 and assume the expansion,
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@

(5.4) £=£"+ “Jgd

o~ R

c
J=0

Substitute this into (3.8) which holds for our (f,u) by going to

the_limit in (5.1). ‘Then we have,
I
(5.5) u=4"+ Jc Jud,
j=1
where
0 ctA . % c(t-s)A = 0
u =e ° u0-+[ e A(f (s)+f (s))ds,
0
. t c(t-s)A . .
wl=/e r£d(s)ds,  l<ic<k.
0 )
Using (3.4), we decompose i further as
~0 = 0
=y + u ;
u (t)==P0uO-+£POAI (s)ds,
0 ctA t ci{t-s)A @ 0
u (t) =e Pluo-+[ e = (PEAf (s) + Af (s))ds.
0

By Lemma 3.2 and since our £ is that of Theorem 1.2, u  defined
above 1is juét that of Theorem 1.2. Also, recalling that (3.8) is a
unique solution to (3.1), we see that uj solves (formally) the Max-
well eguation in (1.15)3, 0<j<k. substitute (5.4) and (5.5) into
(1.1) to deduce the eguation for fj in (i.lS)j.v Now the proof of
Theorem 1.3 can be Comple£8dby the help of Lemmas 2.2,3.2 and 4.1,

and by proceeding as in the proof of Theorems 1.1,1.2 and 4.1. The

detail is omitted.
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