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Abstract

In this paper we propose a computation mechanism gcomputation by meta-uniflcation
with constructors“. This view of computation stems from the behavior of an interpreter of
an equational language called Talos. In Talos everything is done by controlled sequences of
meta-uifications, as is by controlled sequences of uniflcations in Prolog. This is a generaliza-
tion of the conventional term rewriting as well. We show a nondeterministic equational
meta-unification algorithm to answer whether a set of equations $E_{0}$ is metauniflable by
a conditional equational theory $Esatisf\dot{p}ng$ some conditions. Then we prove its ground
completenes,that is, it computes a more general substitution than any E-unifier, when the
E-unifier instanciates $E_{0}$ to a set of ground equations. The operational semantics of Talos is
$\dot{p}ven$ based on the algorithm. The model theoretic semantics is given by the initial algebra
of $E$ , or eqUivalently, the set of all ground equations valid in all models of $E$ . The &poimt
semantics is defined similarly to Prolog. Using the ground completeness, we show these
semantics are equivalent.
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1. Introduction

Prolog [4] is a relational language based on first-order predicate calculus. Operational
semantics of Prolog is usually explained by the SLD.resolution, a strategy of the resolution
complete for Horn clauses. Prominent features of Prolog are procedure invocation by
unification and nondeterministic search (automatic backtracking). Results of procedures $are$

passed through variables within each clause, while,in functional programs like Lisp, nested
composition of functions is the main construct.

Functional languages are more classical and share semantical clearness with Prolog
([3],[11],[20]). They can be considered special logic programming languages based on equa-
tional logic. When an equation is considered a term rewriting rule, equational logic turns
into computation, $which$ ; the basis of the operational semantics of functional programs.
Though functional programs are superior to Prolog in some points (readability etc), they lack
some powerfull features of Prolog such as nondeterministic search. When we accomodate
these features to functional programming, we need to carry it out not by an $\epsilon d$ hoc deviee
but by a unified approach. Several such attempts have been done from different point oft
riews $([2],[6]_{l}[8],[18],[19])$ .

In this paper we propose a computation mechanism “computation by $met*unificati\copyright\Xi L$

with constructors“. This view of computation stems from the behavior of an interpreter of $8E$

equational language called Talos. In Talos everylhng is done by controlled sequence of meta-
uifications, as is by controlled sequences of unifications in Prolog. This is a $ge$neralizatiotz
of the conventional term rewriting as well. Both invocations of functions by unification and
automatic backtrackings are integrated into Talos.

This paper is organized as follows. In section 2, we introduce conditional equationaR
theories in general, give an extension of the Fay-Hullot’s meta-unification algorithm and
prove its completeness. In section 3, we show the syntax of our programming language Talos.
In section 4, we introduce conditional equational theories with constructors, give a nondeter-
ministic equational algorithm to answer whether a set of equations $\mathcal{E}_{0}$ is metaunifiable by
a conditional equational theory $\mathcal{E}satisf\dot{p}ng$ some conditions. Then we prove its ground
completenes,that is, it computes a more general substitution than any $\mathcal{E}$-unifler, when the
$\mathcal{E}- unifier$ instanciates $\mathcal{E}_{0}$ to a set of ground equations. In section 5,$we$ discuss the semantics of
Talos. The operational semantics of Talos is given based on the equational meta-unification
algorithm. The model theoretic semantics is given by the initial algebra of $\mathcal{E}$ , or equv-
alently,the set of all ground equations valid in all models of $\mathcal{E}$ . The flxpoint semantics is
defined similarly to Prolog. Then using the ground completeness, we show these semantics
are equivalent. Lastly in section 6, we discuss the relations to other works.

In this paper we assume familiarity With (many-sorted) equational logic and term rewrit-
ing systems. As syntactical variables, we use $X,Y,$ $Z$ for variables, $f,$ $g,$ $h$ for function sym-
bols, $a,$ $b,c$ for constants, $r,s,$ $t,a,\beta,\gamma,$ $\delta$ for terms, $u,v$ for occurrences and $\theta,\sigma,$ $\tau,\mu,\nu,$ $\zeta,$ $\eta,$ $\rho$

for substitutions, possibly with primes and subscripts. $\equiv is$ used to denote the syntactical
identity. We denote the set of all terms on a signature : and variables V by $\mathcal{T}(Z\cup\gamma)$

(or simply 7), the set of all ground terms on a signature $\Sigma$ by $\beta(\Sigma)$ (or simply $\beta$ ), set
of all variables in a syntactical object $e$ by $\gamma(e)$ , subterm of $t$ at an occurrence $u$ by $t/u$,
replacements of a subterm of $t$ at an occurrence $u$ with a term $\iota$ by $t[u\Leftarrow s]$ , the set of all
occurrences of non-variable subterms of a term , by $\sigma(s)$ and restriction of a substitution
$\sigma$ to a set of variables $V$ by $\sigma|V$ . (see [12],[15]).

$f_{-}$
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2. Meta$\cdot$Unlficatlon for Conditional Equatlonal Theories

We generalize the concepts for unconditional equational theories to those for conditional
equational theories first.

2.1. Conditional Equatlonal Theories

A conditional equational theory $\mathcal{E}$ is a first order theory with one inflx binary predicate
$=$ , a set of axioms,called proper axioms of $\mathcal{E},of$ the form $(m\geq 0)$

$\gamma_{1}=\delta_{1}\wedge\gamma_{2}=\delta_{2}\wedge\cdots\wedge\gamma_{m}=\delta_{m}\supset\gamma=\delta$

and $fo$ur axioms called $equ$ality axioms

$x=x$,
$X=Y\supset Y=X_{1}$

$X=Y\wedge Y=Z\supset X=Z$ ,
$X=Y\supset f(Z_{1},\ldots,X,\ldots,Z_{n})=f(Z_{1},..,,Y,\ldots,Z_{n})$ for $aU$ function symbols $f$ .
When $s=t$ is provable in $\mathcal{E}$ , we denote it by $=e$ . The quotient algebra of 9 by the

congruence relation defined by all ground equations provable in $\mathcal{E}$ is called the initial algebra
of $\mathcal{E}$ , or more exactly, said to be isomorphic to the initial algebra.

Example 2.1.1. A theory $\mathcal{E}$ with proper axioms
insert$(X_{l}\emptyset)=tree(\emptyset,X.\emptyset)$ ,
$X=Y\supset insert(X,tree(L,Y,R))=tree(L,Y,R)$ ,
less-than(X,Y)$=true\supset insert(Xtree(L,Y,R))=tree(insert(X,L),Y.R)$ ,
less-than(Y,X)$=true\supset insert(X,tree(L,Y,R))=tree(L,Y.insert(X,R))$

is a conditional equational theory.

A condition$al$ term $re$writing system $R$ is a first order theory with three inrx binary
$predcatesarrow,arrow and\downarrow$, a set of axioms,called proper axioms of $R,of$ the form $(m\geq 0)$

$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}$ A $\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta$

and four axioms called reducibility axioms

$Xarrow X$,
$Xarrow Y\wedge Yarrow Z\supset Xarrow Z$,
$Xarrow Y\supset f(Z_{1},\ldots,X,\ldots,Z_{n})arrow f(Z_{1},\ldots,Y,\ldots,Z_{n})$ for all function symbols $f$,
$Xarrow Z\wedge Yarrow Z\supset X\downarrow Y$.

Example 2.1.2. A theory $R$ with proper axioms
insert$(X,\emptyset)arrow tree(\emptyset,X,\emptyset)$ ,
$X\downarrow Y\supset insert(X,tree(L,Y,R))arrow tree(L,Y.R)$ ,
less-than$(X,Y)\downarrow true\supset insert(Xtree(L,Y,R))arrow tree(insert(X,L),Y,R)$ ,
$iessarrow than(Y,X)\downarrow true\supset insert(X,tree(L,Y,R))arrow tree(L,Y,insert(X,R))$

is a conditional term rewriting system.

A binary $relationarrow on$ the set of all terms 7 is said to be stable iff $\sigma(s)arrow\sigma(t)$ for any
substitution $\sigma$ when $\iotaarrow t$ and said to be compatible iff $r[u\Leftarrow s]arrow r[u\Leftarrow t]$ for any occurenc$e$

$u$ of $r$ when $’arrow t$ ([12] p.809). Let $R=(arrow, T)$ be a compatible stable relation $andarrow$ be

3
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the reflexive $tr$ansitive closure $ofarrow$ . $R$ is said to be confluent $when,for$ any terms $f_{l}t_{1}{}_{\iota}C_{2}$

such that $tarrow t_{1}$ and $tarrow t_{2}$ , there erists a term V such that $t_{1}arrow l$ and $t_{2}arrow f$ . When
$R=(arrow, 7)$ is confluent, $R$ dseflnes a binary congruence relation $=\iota$ which is the reflexiove
symmetric transitive closure $ofarrow$ . $R$ is said to be terminating when,for any term $t_{0},there$

is no innnite derivation in $Rt_{0}arrow t_{1}arrow t_{2}arrow\cdots$ such that $t_{i^{arrow t}:+1}$ is in $R(0\leq l)$ . A tem . is
said to be in R-normal form when the$re$ is no $t$ such that $sarrow t$ is in $R$ . A term $t$ is called
R-normal form of a term $s$ and denoted by $s\downarrow$ when $sarrow t$ holds for $R$ and $t$ is in R-normal
form. A substitution $\eta$ is said to be R-normalised iff $\eta(X)$ is in R-normal fom for all $X$ .
(By abuse of notation,we use the sam$e$ symbol $R$ and $\mathcal{E}$ to denote both theories and concrete
relations.)

Example 2.1.3. Let I be a relation on 7 such that $sarrow t$ is in $\pi$ iff it is a logical consequence
of a conditional tem rewriting system $R$ with the following proper axioms.

$aarrow b$ .
$aarrow c$.
$f(b)arrow g(c)$ .
$f(Y)\downarrow g(\eta\supset barrow 0$.
$f(Y)\downarrow g(\eta\supset carrow 0$ .
$f(Y)\downarrow g(Y)\supset f(X)arrow suc(X)$.
$f(\eta\downarrow g(\eta\supset g(X)arrow suc(X)$ .

Then it is trivial that $\pi$ is confluent and terminating. $g/=\underline{R}$ is isomorphie to the set of all
natural numbers N.

2.2. $Met*Unlflcatlon$

2.2.1. $uet$�$\cdot UnlAcation$ Problem

Let $\mathcal{E}$ be a congruence relation on 7. $s$ and $t$ are said to be $\mathcal{E}$-unifia$ble$ iff there erists
a substitution $\theta$ such that $\theta(s)=e\theta(t)$ . Such a substitution $\theta$ is called an $\mathcal{E}- unifler$ of $s$ and
$t$ . The set of all $\mathcal{E}$ -uniflers of $\iota$ and $t$ is denoted by $u_{C}(s,t)$ . In general the most general

$\mathcal{E}$ -unifier does not always exists when $\mathcal{E}$ Is not the syntactical identity.

To show a generalization of the most general unifle$r$ , we introduce an ordering. For $\iota,t\in$

$7(\Sigma U\gamma),$ $s\preceq_{1}t$ iff there exists $\rho$ such that $\rho(s)=et$ . $\preceq_{\iota}$ is extended to substitutions by
$\sigma\preceq_{\iota}\tau\beta V$ I iff there exists a substitution $\rho$ such that $\rho\circ\sigma(X)=\mathcal{E}\tau(X)$ for all $X\in V$, where
$V$ is a set of variables. (When $\mathcal{E}$ is the syntactical identity,all these definitions correspond
to the usual definitions of $s\preceq t$ and $\sigma\preceq r\beta V$]. See [12] pp.806-808.)

The set of all variables $X$ such that $\sigma(X)\not\equiv X$ is called the domain of $\sigma$ and denoted
by $D(\sigma)$ . The set of all variables in $\sigma(X)$ for all $X\in D(\sigma)$ is called the variables introduced
by $\sigma$ and denoted by $I(\sigma)_{;}$ A substitution $\sigma$ is $s$aid to be away trom a set ot variables $W$

when $I(\sigma)\cap W=\emptyset$.

Let $W$ be a set of variables containing $V=\gamma(s)\cup V(t)$ . A $s$et of $\mathcal{E}$ -uniflers $u$ is called
a complete set of $\mathcal{E}$ -uniflers of $\iota$ and $t$ away from $W$ iff it satisfies the following conditions.
(Use of $W$ is technical for avoiding conflicts of variable names.)

(a) $\forall\theta\in u$ ( $D(\theta)\subseteq V$ a $\theta$ is away from $W$).
(b) $u\subseteq u_{\mathcal{E}}(s,t)$ .
(c) $\forall\sigma\in u_{\mathcal{E}}(s,t)\exists\theta\in uf\preceq’\sigma[V]$ .
Complete sets of $\mathcal{E}- uniflers$ always erist ([15]).

$\not\in$
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Example 2.2.1. Let $\mathcal{E}$ be the equational theory of the associativity,i.e. $\mathcal{E}=\{(X\cdot Y)\bullet$ $Z=$
$X\bullet$ $(Y\bullet Z)$ } or the minimum congruence relation on 7 satisfying the theory. Let $\epsilon,$

$t$ be
terms $X$ $\bullet$ $a$ and $a\cdot X$ respectively. Then

$\theta_{i}=<X\Leftarrow a\bullet$ $(a\cdot(a\cdots\cdot(a\cdot a)))>$

are all $\mathcal{E}$-unifiers of $s$ and $t$. where the term substituted for $X$ and $Y$ consists of $ia’ s$ .
There is no $\preceq$ relations between these substitutions. Hence there is no finite complete set
of $\mathcal{E}$-unifiers of $s$ and $t$ . A complete set of associative unifiers is not flnite in gene$r$al.

2.2.2. Nanowing

Let $R$ be a conditional term rewriting system, $s$ be a term, $W$ be a set of variables
containing $V(s)$ and $\alphaarrow\beta$ be an instance of the head rule which is provable in $R$ and
numbered $k$ in some numbering. A substitution $\theta$ is called a logical narrowing substitution
of $s$ away from $W$, if a nonvariable subterm $’/u$ and the left hand side $\alpha$ is unifiable by a
most general unifier $\theta$ . We assume $V(a)$ is away from $W$ by renaming away the variables
in $aarrow\beta$ from W. $s$ is said to be logically $n$arrowed to $t\equiv\theta(s[u\Leftarrow\beta])$ and denoted by
$s\sim\cdot(u_{*}k.\theta)t$ . In particular,when $s*(u.k.’)t$ and $\theta|V(s)$ is the empty substitution $<>,$ $\epsilon$ is
said to be logicdly reduced to $t\equiv\theta(s[u\Leftarrow\beta])$ and denoted by $sarrow(u,k.’)^{t}$. Note that the
logical reduction is included in the logical narrowing, $i.e.,arrow\subseteq*$ . The set of all narrowing
substitutions for $\ell$ away from $W$ is denoted by $NS(s,W)$ .

The logical reductions in $R$ define a relation $\chi$ on $T$ . Let $\mathcal{R}_{0},T_{1},T_{2},$
$\ldots$ be a sequence

of relations as follows.
$\pi_{0}=\emptyset$.
$T_{d+1}=compatible$ closure of

{ $\rho(\gammaarrow\delta)|$ there exists a proper axiom
$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta$

such that $\rho(\gamma_{1}\downarrow\delta_{1}),$ $\rho(\gamma_{2}\downarrow\delta_{2}),$

$\ldots,$
$\rho(\gamma_{m}\downarrow\delta_{m})$ hold for $\mathcal{R}_{d}$}.

Note that $:\pi_{0}\subseteq\pi_{1}\subseteq\chi_{2}\subseteq\cdots.$ -k is denned by $\bigcup_{d=0}^{\infty}7_{d}$ . An atom in $T_{d}$ is said to be
with $lo\dot{p}cal$ degree less than or equal to $d$. It is easy to see that $s=_{T}$ iff $s=\epsilon t$ when $T$ is
confluent.

The previous definition is logical in the sense that it depends on the concept $*\alphaarrow\beta$ is
provable in $R$“. We need to denne it operationally, i.e. show how to compute $\theta(s[u\Leftarrow\beta])$

without $pr$oving the atom $aarrow\beta$ all the way. We define operational narrovring and operational
meta-unifiability mutually recursively as follows.
(a) Let $s$ be a term, $W$ be a set of variables containing $\gamma(s)$ and $\gammaarrow\delta$ be an unconditioal

rule numbered $k$ in $R$ . Then a substitution $\sigma$ is called a pre-narrowing substi$t$ ution of $s$

away from $W$, if a nonvariable subterm $\epsilon/u$ and the left hand side $\gamma$ of the head rule is
unifiable by a most general unifier $\sigma$ . We assume $V(\gamma)$ is away from $W$ by renaming away
the variables in $\gammaarrow\delta$ from W. $s$ is said to be operationally narrowed to $t\equiv\sigma(s[u\Leftarrow\delta])$

with operational degree 1 and denoted by $s\sim\cdot\iota u.k,<>\circ\sigma[t$ .
(b) Let $s$ be a term, $W$ be a set of variables containing $\gamma(s)$ and $\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow$

$\delta_{m}\supset\gammaarrow\delta$ be a conditional rule numbered $k$ in $R$ . Then a substitution $\sigma$ is called a
$pr\epsilon\cdot narro\dot{m}ngsu$bstitution of $s$ away from W. if a nonvariable subterm $s/u$ and the left
hand side $\gamma$ of the head rule is unifiable by a most general unifler $\sigma$ . We assume V (7) is
away from $W$ by renaming away the variables in $\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta$

from W. $s$ is said to be operationdly $n$arrowed to $t\equiv\tau\circ\sigma(s[u\Leftarrow\delta])$ with operational
degree $d+1$ and denoted by $s\sim[u.t.r\circ\sigma]t$ when the instanc$e$ of two terms composed
of the condition part $\sigma(h_{m}(\gamma_{1}, \gamma_{2}\ldots.,\gamma_{m}))$ and $\sigma(h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m}))are$ operationally

$\zeta$
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metaunifiable $wi$th operational degree $d$ by $\tau$ away from $W+I(\sigma)$ . where $h_{m}$ is a fresh
m-ary function symbol.

(c) Let $s_{0}$ and $t_{0}$ be two terms, $W_{0}$ be a set of variables containing V $(s_{0})\cup V(t_{0})$ and $h_{2}$ be
a fresh binary function symbol. Then $s_{0}$ and $t_{0}$ is said to be operationally meta-unifiable
wrth operational degree $d$ by $f\circ(\tau_{n-1}\circ\sigma_{n-1})\circ\cdots o(\tau\iota\circ\sigma_{1})\circ(\tau 0\circ\sigma_{0})$ away from $W_{0}$

when there exists a sequence
$h_{2(s0,t_{0})\forall h_{2}(s_{1},t_{1})*\cdot\cdot\sim}[u.kr\circ\sigma 1^{u}\cdot-\iota-\iota-\iota\cdotarrow\iota 1^{h_{2}(s_{n}.t_{n})}$

such that each $41u,h.ro\sigma$ [ is a narrowing with operational degree less than $d$ away
from $W_{:}$ and $s_{n}$ and $t_{n}$ are $\tau$)$.nifiabie$ by a most gene$r$al unifler ’, where $W_{:+1}=W_{\dot{8}}+$

$I(r_{i}\circ\sigma_{i})$ .
In particular, when $s\backslash \cdot 1c\iota,k.\nu 0\mu 1^{f}$ and $\nu\circ\mu|\gamma(s)$ is the empty $s$ubstitution $<>,$ $s$ is $s$aid
to be operationdly reduced to $t\equiv\nu\circ\mu(\epsilon[u\Leftarrow\delta])$ and denoted by $sarrow[u,k,\nu 0\mu]t$ . Again
the operational reduction is included in the operational narrowing, $i.e.,arrow\subseteq\sim$ . The set
of all pre-narrowing substitutions for ’ away from $W$ is denoted by $NS_{pre}(s, W)$ . This is
computable from $s$ and the conditional rules of $R$ directly.

The operational reductions in $R$ denne a relation $\underline{R}$ on $T$ . Let $\underline{Rfi},\underline{R}_{1},\underline{R}_{2},$
$\ldots$ be a

sequence of relations as follows.
$R_{\hslash}=\emptyset$,
$\underline{R}_{4}=stable$ closure of

{ $sarrow t|\iotaarrow t$ is an operational reduction $wi$th degree less than $or$ equal to $d$}.
Note that $\underline{R}\subseteq\underline{R}_{1}\subseteq\underline{R}_{\lrcorner}\subseteq\cdots$ . $\underline{R}$ is deflned by $\bigcup_{d=0}^{\infty}\underline{R}_{l}$ . $arrow R$ is not necessarily confluent
even if $\underline{R}$ is confluent. But $\underline{R}_{\ell}$ is always terminati$ng$ when $\underline{R}$ is terminating and a term $f$ is
in $\underline{R}_{d}$-normal form when it is in R-normal form.

Note that $\underline{R}_{1}=T_{1}$ . because the rul$e$ in the definition of $\underline{R}_{\iota}$ is unconditional and
the narrowing can go without the meta-unification of the condition part in this case,i.e.
$NS(s,W)=NS_{pr}(s.W)$ .
Exampie 2.2.2. Let $s$ be insert(A, insert(B, tree$(\emptyset,$ $1,$ $S)$)) and $u$ be the occurrence of insert(B,
tree $(\emptyset, 1.S))$ . Because insert(B, tree$(\emptyset,$ $1,S)$) is unifiable with the left hand side of the third
rewrite rule in the definition of insert by an mgu $\sigma=<B\Leftarrow X_{1},$ $S\Leftarrow S_{1},X\Leftarrow X_{1},L\Leftarrow\emptyset,Y\Leftarrow 1$ ,
$R\Leftarrow S_{1}>$ and the condition part is satisfled by $f=<X_{1}\Leftarrow 0>,$ $s$ is narrowed to $\iota_{1}\equiv$

$\tau\circ\sigma$( insert(A, tree(insert(B, $\emptyset$), $1,$ $S$))), i.e. insert(A, tree(insert(0, $\emptyset),$ $1,$ $S_{1})$). $NS_{pr\epsilon}(s,W)$

includes another two pre-narrowing substitutions corresponding to the second and the fourth
rewrite $r$ules. For $s_{1}$ , we have four pre-narrowing substitutions corresponding to the occur-
rences of $s_{1}$ itself and insert(O, $\emptyset$).

2.2.3. An Extension of the $ray\cdot HuUot\cdot s$ Algorithm

The following is an adaptation of the nondeterministic $\mathcal{E}$ -unification algorithm by Fay
[5] (revised by Hullot [16]) for unconditional equational theories. $W$ is initialized to $W_{0}$

$(\supseteq\gamma(s, t))$ before meta-unify$(s,t)$ and global during the computation. Note that at then
branches unnecessary search detected in the lf te$st$ is pruned away.

Example 2.2.3. Let ’ be insert(A, insert(B, tree $(\emptyset,$ $1,$ $S)$)) and $t$ be tree$(tree(\emptyset, C,\emptyset), 1, T)$ .
Because $s$ and $t$ are not uniflable, the Fay-Hullot’s algorithm selects the second when since
$NS_{pre}(t,W)=\emptyset$ . Then $s$ can be narrowed to

$s_{1}\equiv insert$($A$, tree(insert(0, $\emptyset),$ $1,S_{1})$)
by $\sigma|V=<B\Leftarrow 0,$ $S\Leftarrow S_{1}>$ . After appropriate two succeeding narrowings, we have

6
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$\iota_{3}\equiv tree(tree(\emptyset,0,\emptyset), 1,insert(suc(su\epsilon(A_{3})),S_{3}))$ .
Then in the next repetition, S3 is unifiable with $t\equiv tree(tree(\emptyset, C,\emptyset), 1,T)$ by $\sigma=<$

$A_{3}\Leftarrow A_{4},$ $S_{S}\Leftarrow S_{4},$ $C\Leftarrow 0,T\Leftarrow ins\iota rt(suc(suc(A_{4})),S_{4})>$ . Hence
$<A\Leftarrow su\iota(suc(A_{4}),B\Leftarrow 0,$ $C\Leftarrow C,S\Leftarrow S_{4}.T\Leftarrow insert(suc(suc(A_{4})).S_{4})>$

is a meta-unifier of $\iota$ and $t$ . There are another four meta-uniflers
$<A\Leftarrow 0,B\Leftarrow suc(suc(B_{4})),$ $C\Leftarrow 0,S\Leftarrow S_{4},$ $T\Leftarrow insert(suc(suc(B_{4})), S_{4})>$,
$<A\Leftarrow 0,B\Leftarrow 0_{l}C\Leftarrow 0,S\Leftarrow S_{4}.T\Leftarrow S_{4}>$ ,
$<A\Leftarrow 1,B\Leftarrow 0.C\Leftarrow 0.S\Leftarrow S_{4}.T\Leftarrow S_{4}>$ ,
$<A\Leftarrow 0,B\Leftarrow 1,C\Leftarrow 0,$ $S\Leftarrow S_{4},$ $T\Leftarrow S_{4}>$ .

meta-unify$(s,t:term)$ : substitution;
$\theta:=<>$ ,
repeat

when $s$ and $t$ are unifiabie by $f$ away from $W$

stop with answer $t\circ\theta$

when $NS_{pr}(\iota, W)\neq\emptyset$

select $\sigma\in NS_{p’ e}(s,W)$ and let the corresponding conditional rule be
$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta\cdot(\sigma(\gamma)\equiv\sigma(\iota/u))$;

$W:=W+I(\sigma)$ ; let $f$ be meta.unify$(\sigma(h_{m}(\gamma_{1}, \gamma_{2}, \ldots,\gamma_{m})),\sigma(h_{m}(\delta_{1}, \delta_{2\cdots\iota}\delta_{ n})))$ :
tt the$re$ exists a variable $X\in W$ for which $r\circ\sigma(X)$ is not in $\underline{R}$-normal form
then stop With failure
else $s:=r\circ\sigma(s[u\Leftarrow\delta|);t:=\tau\circ\sigma(t);\theta:=(r\circ\sigma)\circ\theta$

when $NS_{pr*}(t,W)\neq\emptyset$

select $\sigma ENS_{pre}(t,W)$ and let the corresponding conditional rule be
$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta’(\sigma(\gamma)\equiv\sigma(t/v))$;

$W:=W+I(\sigma)$ ; let $\tau$ be $meta- u\dot{m}fy(\sigma(h_{m}(\gamma_{1}.\gamma_{2}, \ldots,\gamma_{m})), =\sigma(h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m})))$

lr there exists a variable $X\in W$ for which $\tau\circ\sigma(X)$ is not in R-normal form
the$n$ stop with failure
else $\iota:=\tau\circ\sigma(s[u\Leftarrow\delta]),\cdot\theta 0=(r\circ\sigma)\circ\theta$

endrepeat

$F$lguare 2.2. Extended Fay-IIuUot’s uetrUnlAcation Algorithm

2.3. Consistency and Completeness

We have defined different narrowings and reductions, i.e. the logical ones and the opera-
tional ones. Corresponding to each reduction, we have two binary relations on $7(\Sigma\cup V)$ .
One is $\underline{R}$ corresponding to the operational reduction. Another is $\pi$ corresponding to the
logical reduction. $\underline{R}\subseteq\chi$ holds in general (see Lemma 3), but they $are$ not necessarly
identical and the proof of consistency and completeness of the algorithm does not $go$ in the
completely same way as by Hullot [16]. (The distinction of these two is necessary because we
are considering conditional cases. When $\mathcal{E}$ and $R$ are unconditional, these two are identical.)

Now on,we assume $\underline{R}$ is confluent and terminating. This means R-normal form is unique
and $\underline{R}$ defines a congruence relation $=R$ , that is, the reflxive symmetric transitive closure
of the operational $reductionarrow$ . We $def\overline{\ln}e\preceq_{L}$ similarly to one in 2.2.1.

We introduce a concept, which is abstracted from the theorem by Hullot [16] pp.323.

’/
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324 and generalized for conditional cases. It says any $operational\sim$.-derivation issuing
from $\eta(s)$ without instanciation of variables in $I(\eta)$ may be “projected“ on an operational
$\sim$.-derivation issuing from $s$ and any operational $\forall$-derivation issuing from $s$ may be
considered as the projection’ of a certain class of operational $*\cdot$-derivation ([16] p.322).
The nondeterministic meta-unification algorithm meta-unify is said to be projectable for

$\underline{R}_{d}$ when it satisfies the following condition.
(a) Let $s$ be a term, $V$ be a finite set of variables containing $V(s)$ and $\eta$ be aR-normalized

substitution with $D(\eta)\subseteq V(s)$ . Consider any operational $\sim$-derivation with opera-
tional degree less than or equal to $d$ issuing from $\eta(s)$ :

$\eta(s)\equiv t_{0}\sim\cdot[to.t_{0}.\nu_{O}\circ\mu 0]^{t}\iota 4_{[u_{1}.k_{1}.\nu_{1}\circ\mu_{1}]}\cdot\cdot\star_{I1\iota.arrow\iota.t.arrow\iota.\nu.-\iota\circ\mu.arrow\iota 1^{t_{n}}}$. (1)
such that no variable in $I(\eta)$ is instanciated in the narrowings,i.e. $D(\nu_{i}\circ\mu i)\cap I(\eta)=$

$\emptyset$ for all $0\leq i<n$ . Then there exists $an$ associated operational $\sim$-derivation with
operational degree less than or equal to $d$ issuing from $s$ :

$s\equiv\iota_{0}\sim s\cdot I^{u}\cdotarrow 1\cdot-\iota’$ . (2)
and for each $i,0\leq i\leq n$ , a substitution $\eta i$ and a $Mte$ set of variables $V_{:}$ such that :

(i) $D(\eta_{i})\subseteq V:$,
(ii) $\eta i$ is -R-normalized,
(iii) $(\eta|V)=((\eta i\circ\theta_{i})|V)$ ,
(iv) $\eta i(s_{i})\equiv t_{i}$

where $\theta_{0}=<>$ and $\theta_{:+\iota}=(\tau_{i}\circ\sigma_{i})\circ\theta_{i}$.
(b) Conversely, to each operational $\sim$-derivation (2) and every $\eta$ such that $\theta_{n}\preceq\eta I^{V}I\partial$

we can associate an $operationalarrow$-derivation (1).

Note that the operational $\star$.-derivation (1) is an $operationalarrow$-derivation treated in
the Hullot’s original Theorem 1, when $D(\eta)=V(s)$ and $V(\delta)\subseteq V(\gamma)$ for all conditional
rules used in the derivation. The first lemma is a gene$r$alization of the Theorem 1.

Lemma 1. When $\underline{R}$ is confluent and terminating, the meta-unify is projectable for $\underline{R}_{\ell}$

$(0\leq d)$ .

Proof. The proof is also a generalization of the Theorem 1 in Hullot [16] pp.323-324. We
prove it by induction on operational $\deg r$ee.
Base Case : When $d=0,the$ proof is vacantly $tr$ue.
Induction Step: We have to prove that the meta-unify is projectable for $\underline{R}_{d+1}$ assuming
the meta-unify is projectable for $\underline{R}_{\ell}$ .

$The\Rightarrow$-part (a) is by induction on $i$ .
Base Case: For $i=0$ it is obvious taking $\eta_{0}=\eta$ and $V_{0}=V\cup D(\eta)$ .
Induction Step: Let us assume (i) to (iv) hold for $i$. Since $t_{1}\star\iota u.k_{i}.\nu\circ\mu\ell 1^{t}:+1$, we have

$\mu_{i}(\gamma)\equiv\mu_{i}(t_{i}/u:)$ ,
where $\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta$

“ is the $k_{i}$-th rule and renamed away from $v_{:}$ .
From assumptions (ii),(iii),(iv) for $i$ and the fact that variables in $I(\eta)$ are not instanciated,
we get $u_{i}\in\sigma(t_{i})$ and therefore

$\eta_{i}(s_{i}/u_{i})\equiv\mu t(\gamma)$ .
Let us consider $\rho=\eta i\cup\mu i\cdot We$ have

$\rho(s_{i}/u_{i})\equiv\rho(\gamma)$.
Let $\sigma_{i}$ be a most general unifler of $s_{i}/u_{i}$ and $\gamma$ . Then there exists a substitution $f$ such
that $\rho=\oint\circ\sigma_{i}$ . Therefore

$\eta_{i}=((/\circ\sigma_{i})|V_{i})$ .
and $\nu;\circ\zeta^{l}$ is a $\underline{R}_{d^{-}}unifler$ of $\sigma_{i}(h_{m}(\gamma_{1},\gamma_{2}, \ldots,\gamma_{m}))$ and $\sigma_{i}(h_{m}(\delta_{1}, \delta_{2}, \ldots,\delta_{\prime}))$ . $Now,1et$

2
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$s\equiv\sigma_{i}(h_{2}(h_{m}(\gamma_{1\prime}\gamma_{2}, \ldots,\gamma_{m}), h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m})))$ ,
$U=(V_{i}\cup V(\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta)\cup I(\sigma_{i}))-D(\sigma_{i})$.
$\zeta=r|U$ ,

Then $U$ is a finite set of variables containing $V(\iota^{l})$ . Now,let us consider $X$ in U.There are
two cases:
(a) $X\in I(\sigma_{i})$ ; then $\exists Y\in D(\sigma_{i})$ such that $X\in\gamma(\sigma_{i}(Y))$ ,and $\eta i(Y)\equiv f(\sigma_{i}(Y))$ normalized

implies $\zeta(X)$ normalized.
(b) otherwise $\sigma_{i}(X)\equiv X$ since $X\not\in D(\sigma_{i})$ and therefore $\zeta(X)\equiv\eta_{i}(X)$ is normalized.
which proves $\zeta$ is $\underline{R}$-normalized.
Consider the operational $\sim\cdot\cdot derivation$ giving the meta-unifler $\nu_{i}$ with degree less than or
equal to $d$ issuing from $\mu_{i}(h_{2}(h_{m}(\gamma_{1},\gamma_{2}, \ldots,\gamma_{m}), h_{m}(\delta_{1}, \delta_{2}, \ldots,\delta_{m})))$

$\mu i(h_{2}(h_{m}(\gamma_{1}.\gamma_{2}, \ldots,\gamma_{m}), h_{m}(\delta_{1\prime}\delta_{2_{9}}\ldots,\delta_{m})))\equiv f_{0}\backslash *f_{1}*\cdot\cdot\sim f_{m}$

Then $f_{0}\equiv\zeta(S$‘ $)$ and $no$ variable in $I(\zeta)$ is instanciated in the
$operationa1*arrow derivation’(2)$

since no variable in $I(\eta)$ is instanciated in $t_{1}\star_{1u\iota.k.\nu 0\mu]}t_{i+1}$ . Because of the inductive
assumption,we have a corresponding $operational*$-derivation with degree less than or
equal to $d$ issuing from $s^{1}$

$S’\equiv S_{0}’4^{s_{1*}’}\circ\cdot\star s_{m}’$ (1)
which gives $\tau$: such that

$s_{l}\backslash \cdot[u_{i}.k.\tau\circ\sigma|^{S}i+1$

$\tau_{i}\circ\sigma_{i}\preceq\rho\ovalbox{\tt\small REJECT} V:\#$ .
Thus there exists a substitution $\sqrt{}$ such that $\rho=\sqrt{}\circ(\tau_{i}\circ\sigma:)$ . Therefore

$\eta i=(\eta\circ(\tau:\circ\sigma_{i}))|V_{i\prime}$

Now,let
$V_{i+1}=(V:\cup\gamma(\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{ n}\supset\gammaarrow\delta)\cup I(\tau:\circ\sigma_{i}))-P(\tau i\circ\sigma_{i})$ ,
$\eta:+1=\sqrt{}|\gamma_{:+\iota}$

We get (i) and
$\eta i=(\eta i+1^{\circ t:}\tau:\circ\sigma))|V:$. $(^{*})$

(We impose $D(\tau i\circ\sigma:)\cap I(\tau_{i}\circ\sigma:)=\emptyset$).
Now similarly to variables in $U$, let us consider $X$ in $V_{i+1}.There$ are two cases:
(a) $X\in I(\tau_{i}\circ\sigma_{i}),\cdot$ then $\exists Y\in P(\eta_{i})$ such that $X\in V(r:\circ\sigma_{i}(Y)),and\eta_{i}(Y)\equiv\eta_{i+1}(\tau i\circ\sigma:(Y))$

normalized implies $\eta:+1(X)$ normalized.
(b) otherwise $\tau:\circ\sigma_{i}(X)\equiv X$ since $X\not\in D(\tau i\circ\sigma_{i})$ and therefore $\eta i+1(X)\equiv\eta i(X)$ is

normalized.
which proves (ii). We now assume (iii) for $i$

$\eta|V=(\eta i^{\circ\theta_{i})|V}$,
and show it for $i+1.From(^{*})above,we$ get

$(\eta_{i}\circ\theta_{i})|V=(((\eta_{i+1}\circ(\tau:0\sigma_{i}))|V)\circ\theta_{i})|V$ .
From the definition of $\theta_{i},we$ get $I(\theta_{i})\subseteq V_{i}$ and $V\subseteq V_{i}\cup D(\theta:)$ . The above expression
simplifies therefore to

$(\eta i+\iota^{o}(\tau_{i}\circ\sigma_{i})\circ\theta_{i})|V=(\eta i+1^{o\theta_{i+1})|V}$

proving (iii).
Finally we get easily $\gamma(s_{i})\subseteq V_{1}$ from wbich we get

$\eta i+1(s:+1)\equiv\eta i+1^{O}(\tau:\circ\sigma;)(s_{i}[u_{i}\Leftarrow\delta])\equiv\eta_{i}(s_{i}[u_{i}\Leftarrow\delta])\equiv t_{i+1}$,
proving (iv). Note that because of (iii) every $\theta_{i}|V$ is normalized.

$The\Leftarrow$-part (b) is as follows. Let us conside$r$ any operational $\sim$-derivation (2) and
any substitution $\eta$ such that $\theta_{\hslash}\preceq\eta\beta V\#$ in the definition of “projectability“ Let $\rho$ be such
that $\eta|V=(\rho\circ\theta_{n})|V$ . We define substitutions $\eta_{i}$ for $0\leq i\leq n-1$ by

$\eta_{i}=\rho\circ(\nu_{n}\circ\mu_{n})\circ(\nu_{n-1}\circ\mu_{n-1})\circ\cdots\circ(\nu_{i}\circ\mu_{i})$ ,
and substitution $\eta_{n}$ as being $\rho$ . With $t_{i}\equiv\eta i(s_{i})$ , it is easy to show by induction on $i,that$

?
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$\eta(S)\cdotsarrow t\iota.arrow\iota\cdot$ .
Now $t_{0}\equiv\eta_{0}(s_{0})\equiv\eta_{0}(s)\equiv$

.
$\eta_{n}\circ\theta_{n}(s)\equiv\eta(s)$, since $\gamma(s)\subseteq V$ .

The second lemma guarantees consistency and completeness of the extended Fay-
Hullot’s algorithm.

Lemma 2. When $\underline{R}$ is confluent and terminating,
(a) $\theta(s)\downarrow\theta(t)$ holds for $g$ when a substitution $\theta$ is generated by the meta-unify.
(b) The meta-unify can $ge$nerates a substitution $\theta$ such that $\theta\preceq_{\underline{1}}\rho\beta VJ$ for any substitution

$\rho$ if $\rho(s)\downarrow\rho(t)$ holds for $arrow R$ where $V=\gamma(\iota.t)$ .
Proof. The proof is a slight modification of the Lemma l,Lemma 2 and Theorm 2 in Hullot
[16] pp.324-325.

The proof of consistency (a) is as follows. Suppose meta-unify$(s, t)$ returns $\theta$ . Let $d$ be
the the maximum operational degree used in the $\sim$-derivation issui$ng$ from $h_{2}(s,t)$ :

$h_{2}(s,t)\equiv s_{0}\sim\cdot s_{1}\sim s_{2}\sim\cdots\sim\iota_{n}\equiv h_{2}(s,f)$,
such that $\iota$ and V are unifiable by a substitution $\nu$ and let $\theta_{n}$ is the composition of substitu-
tions along the derivation. Then using the condition $(!))$ in the definition of orprojectable
for $\underline{R}_{d}$ with $\eta=\theta_{n}$ , we can associate to this $*$-derivation the follwoing operational
$arrow$-derivation with degree less than $or$ equal to $d$.

$h_{2}(\theta_{n}(s), \theta_{n}(t))\equiv t_{0}arrow t_{1}arrow t_{2}arrow\cdotsarrow t_{n}\equiv h_{2}(\iota^{l},\#^{\iota})$ ,
and thus,we have

$\theta_{n}(s)arrow$ . a $\theta_{n}(t)arrow t^{n}$ .
Moreover,sinc$e\eta_{n}=<>$ in this case,we have $s^{||}\equiv s$ a $f^{1}\equiv f$ . Thus

$f\circ\theta_{n}(s)\downarrow f\circ\theta_{n}(t)$,
in&, since two terms $areoperationallyarrow$-reducible to the same term.

The proof of completeness (b) is as follows. Suppose $\rho$ is a R-unifler of $s$ and $t$ and $\eta$ is a
$\underline{R}$-normalized substitution of $\rho$ . (We rename some variables by $\eta$ so that $D(\eta)=V(h_{2}(s,t)).$)
Then by $U_{d=0}^{\infty}\underline{R}_{4}=\underline{R}$ , there exists an operational degree $d$ such that the derivation isuing
from $h_{2}(\eta(s), \eta(t))$ to $h_{2}(r, r)$ is in –,i.e. we have an $operationalarrow$-derivation with degree
less than or equal to $d$

$h_{2}(\eta(s), \eta(t))\equiv t_{0}arrow t_{1}arrow t_{2}arrow\cdotsarrow t_{\hslash}\equiv h_{2}(r,r)$ ,
By the condition (a) in the definition of “projectable for $\underline{R}_{i}$ , the corresponding operational
$\wedge\sim$-derivation with degree less than $or$ equal to $d$ is such that

$\eta_{n}(s_{n})\equiv h_{2}(\eta_{n}(s^{l}), \eta_{n}(f))\equiv t_{n}\equiv h_{2}(r,r)$.
Thus $\eta_{n}$ is a unifier of $s_{n}$ and $t_{n}$ . Let $\theta’$ be the most general unifler. Then there exists $\rho$

such that $\eta_{n}=\rho\circ\theta,therefore$

$(\rho\circ\theta)\circ\theta_{n}|V=(\eta_{n}\circ\theta_{n}|V)=(\eta|V)=\underline{R}(\rho|V)$.
that is, $\mu\circ\theta_{n}\preceq_{\underline{A}}p\beta V$J.

The thi$rd$ lemma says that the logical reduction relationT is identical to the operational
reduction relation $\underline{R}$ under the condition $\underline{R}$ be confluent and terminating. Then $\underline{R}$ and 72:
define a same congruence relation. We denote it simply by $=\epsilon$ and deflne $\preceq_{\iota}$ similarly to
one in 2.2.1.

Lemma 3. When $\underline{R}$ is confluent and terminating, $sarrow t\in\underline{R}$ iff $\iotaarrow t\in T$, that is, $\underline{R}=T$.

Proof. Both proofs are by induction on degree.
$\underline{R}\subseteq\chi$ holds without the condition that $g$ be confluent and terminating.

Bsse Case: Let $\iotaarrow t$ be in $\underline{R}_{1}.$ Then $\underline{R}_{1}\subseteq T$ is trivial,because $\underline{R}_{1}=\pi_{1}$ .

$/a$
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Induction Step : Assume $\underline{R}_{4}\subseteq$ lt and let $sarrow t$ be in $\underline{R}_{d+1}$ . Then $s/u$ is an instance by
some substitution $\mu$ of the left hand side of the head of a rule $\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{;}\cdot\vee\downarrow$

$\delta_{m}\supset\gammaarrow\delta$ and $\mu(h_{m}(\gamma_{1}.\gamma_{2}, \ldots,\gamma_{m}))$ and $\mu(h_{m}(\delta_{1}.\delta_{2}\ldots., \delta_{m}))$ are meta-unifiable by some
substitution $\nu$ in $\underline{R}_{d}$ . Because of the inductive assumption, $\nu\circ\mu(h_{m}(\gamma_{1},\gamma_{2}, \ldots,\gamma_{m}))$ and
$\nu\circ\mu(h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m}))$ are reducible to a same term in $\pi$. Then $sarrow t$ is in $T$ by the inductive
definition of $\chi_{d+1}.$ Therefore $\underline{R}_{d+1}$ is included in $T$.

$T\subseteq\underline{R}$ needs the condition that $\underline{R}$ be confluent and terminating.
Base Case: Let $sarrow t$ be in $\mathcal{R}_{1}$ . Then $T_{1}\subseteq\underline{R}$ is trivial,because $\pi_{1}=\underline{R}_{1}$ .
Induction Step : Assume $T_{d}\subseteq\underline{R}$ and let $sarrow t$ be in $\pi_{d+1}$ . The$n\iota/u$ is an instance by
some substitution $\theta$ of the $ie\ddagger\triangleright hand$ side of the head of a rule $\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow$

$\delta_{m}\supset\gammaarrow\delta$ and $\theta(h_{m}(\gamma_{1}, \gamma_{2}, \ldots,\gamma_{m}))\downarrow\theta(h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m}))$ holds for $\chi_{d}$ . Because of the
inductive assumption, they are also reducible to a same term in $\underline{R}$. Let $\mu=\theta|V(\gammaarrow\delta),\theta=$

$\rho\circ\mu$ and $V=\gamma(\mu(h_{2}(h_{m}(\gamma_{1}, \gamma_{2}, \ldots,\gamma_{m}), h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m}))))$. $Now,since\underline{R}$ is confluent
and terminating, we can use Lemma 2 and $\mu(h_{m}(\gamma_{1},\gamma_{2}, \ldots,\gamma_{m}))$ and $\mu(h_{m}(\delta_{1}, \delta_{2}, \ldots, \delta_{m}))$

ar$e$ meta-unifiable in $\underline{R}$ by a substitution $\nu$ such that $\nu\preceq_{\underline{l}}\rho\beta V\#$ and $\nu$ instanciates $no$

variables in $\gamma(\mu(\gammaarrow\delta))$ . Then $\epsilonarrow t$ is in $\underline{R}$ by the inductive defnition of $\underline{R}$. Therefore $\pi_{d+1}$

is included in $\underline{R}$.

Now we have almost mished the proof of that the $e$xtended Fay-Hullot’s algorithm is
consistent and complete.

Theorem 1 (Consitency an$d$ Completenesg) When $\underline{R}$ is confluent and terminating,
$u(s_{l}t,W_{0})=$ { $\theta|V|me:a- unify(\mathcal{E}_{0})$ with initialization $W:=W_{0}$ stops with answer 9}

is a complete set of $\mathcal{E}$-unifiers of $\mathcal{E}0$ away from $W_{0}$ , where $W_{0}\supseteq V=\gamma(\ell)\cup V(t)$ .

Proof. The theorem is,so to say, the consistency and completeness w.r.$t$ . logical reduc-
tion,that is,
(a) $\theta(s)\downarrow\theta(t)$ holds for $\chi$ when a substitution $\theta$ is generated by the meta-unify.
(b) The meta-unify can generates a substitution $\theta$ such that $\theta\preceq_{e}\rho\ovalbox{\tt\small REJECT} VJ$ for any substitution

$\rho$ if $\rho(s)\downarrow\rho(t)$ holds for $\chi$.
But it is trivial by Lemma 3 and Lemma 2 when $\underline{R}$ is confluent and terminating.

Remar$k$. The converse of Lemma 3 does not hold,i.e. even if $\pi$ is confluent, $\underline{R}$ is not
necessarily confluent. For example,let $\mathcal{E}$ be a conditional equational theory

$a=b$.
$a=c$.
$f(b)=g(c)$ .
$f(Y)=g(Y)\supset b=0$ .
$f(Y)=g(Y)\supset c=0$.
$f(Y)=g(Y)\supset f(X)=suc(X)$.
$f(Y)=g(Y)\supset g(X)=suc(X)$ .

Though $T$ is confluent and terminating, $\underline{R}$ is a strict subset of $\chi$ and not confluent.
($f(0)arrow suc(0)$ is not included in $\underline{R}.$ ) $Hence,the$ completeness does not hold even if $\mathcal{R}$ is
confluent and terminating. Fo$r$ example,suppose we meta-unify $f(A)$ and $suc(A)$ . Then,though
$<A\Leftarrow 0>$ is a meta-unifier, we can’t compute any meta-unifler subsuming it by the ex-
tended Fay-Hullot’ meta-unification algorithm.

3. Syntai of Talos

3.1. Deflnition of Data Types

//
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Definition of data types is similar to the algebraic speciflcation of abstract data types

except the separation of constructors. Constructors are operators from which every instance

of the type is freely and uniquely constructed. For example, a data type list as two$st$ has $t$

constructors nil $([])$ and cons $($ [ $|$ ] $)$ . (We follow the DEC-10 Prolog-like syntax [17].) The

choice of constructors is left to programmers.

Example 3.1. A data type number is defined as follows.
data number $=new$.

constructor.
zero.
$suc(N:number)$ .

operator.
add($M,N$ :numbe$r$):number.

$M+0=M$.
$M+(N1+1)=(M+N1)+1$ .

less-than$(M,N:number):booie$.
$0<N+1=true$ .
$M<0=false$ .
$M+1<N+1=M<N$ .

end.
We assume a data type boole is already defined. $0.+,$ $1,$ $<are$ built-in symbols and $su\epsilon^{i}(N)$

is represented by $N+i$.

3.2. $DeAnltion$ of Functlons

Functions are deflned by a set of conditional equations of the form
$\gamma=\delta$ where $\gamma_{1}=\delta_{1},\gamma_{2}=\delta_{2},\ldots,\gamma_{m}=\delta_{m}$.

When $m=0,the$ condition part (including where) is omitted.

$Ex$ample 3.2. A function inserting an elemnt into a binary tree labelled with numbers is

defined as follows.
function inse$rt(X:number,T:tree):tree$ .

inse$rt(X,\emptyset)=tree(\emptyset,X,\emptyset)$ .
insert$(X,tree(L,Y,R))=tree(L,Y,R)$ yvhere $X=Y$.
insert(X tree$(L,Y.R)$)$=tree(insert(X,L),Y,R)$ where $X<Y$ .
insert(X,tree(L,Y,$R)$)$=tree(L,Y,insert(X,R))$ where $Y<X$ .

end.
The comparison of the element being inserted and the root element is do$ne$ in the condition

parts. We have added syntactic sugar for $booleanarrow valued$ function $p$ to eno $p1,2,$ $\ldots,$ $n$to denot$e$ ($t$ $t$ t)

in place of $p(t_{1},t_{2}\ldots.,t_{n})=true$ .

3.3. Queq

A query is a conditional term of the form
-t vhen $s_{1}=t_{1}.s_{2}=t_{2\cdots\cdot\iota}s_{m}=t_{m}$.

Example 3.3. A query to request searching an instance of $C$ satisfyi$ng$ insert(A, insert(B, tree

$(\emptyset, 1, S)))=tree(tree(\emptyset, C,\emptyset), 1, T)$ is given as follows.
:- $C$ when insert$(A,insert(B,tree(\emptyset,1,S)))=tree(tree(\emptyset,C.\emptyset),1,T)$ .

4. uetrUniflcation for Conditional Equatlonal Theories with $Con\#.ructor$’

$/\lambda$
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We present a nondeterministic equational algorithm for meta-unification with construc-
tors and its property.

4.1. Conditional Equational Theories wlth Construetors

By separating constructors in the definition of data types, we have the signature $Z$

partitioned into $C\theta D$ . We call operators in $C$ the constructors. (We assume there are
at least one constant constructors.) A constructor $term$ is a term on $C$ . The set of all
constructor terms is denoted by $\tau_{c}$ and the set of all ground constructor terms is denoted
by $\theta c$ . A semi-constructor term is either a variable $or$ a term whose root function symbol
is a constructor.

The conditional equatio$nd$ theory $\mathcal{E}$ corresponding to a Talos program $P$ is a conditional
equational theory with proper axioms as follows.

$\gamma=\delta$ for all $\gamma=\delta$
. in the deflnition of data types

$\gamma_{1}=\delta_{1}\wedge\gamma_{2}=\delta_{2}\wedge\cdots\wedge\gamma_{m}=\delta_{m}\supset\gamma=\delta$

for all $\gamma=\delta$ where $\gamma_{1}=\delta_{1},\gamma_{2}=\delta_{2},\ldots,\gamma_{m}=\delta_{m}$
“ in the definition of functions

The condi$t$ional term $re$writing system $R$ corresponding to a Talos program $P$ is a
conditional term rewriting system as follows.

$\gammaarrow\delta$ for all $\gamma=\delta$
“ in the definition of data types

$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta$

for all $\gamma=\delta$ where $\gamma_{1}=\delta_{1},\gamma_{2}=\delta_{2},\ldots,\gamma_{m}=\delta_{m}$
“ in the definition of functions

Example 4.1. The conditional euqational theory and the conditional term rewriting system
corresponding to the definitions of the data types boole,number,tree and the function insert
have four constructors zero $O,s$uccessor function $suc$, empty tree $\emptyset$ and tree constructor tree.

We assume $\mathcal{E}$ and $\underline{R}$ satisfy th\‘e following three conditions.
(A) $\underline{R}$ is confluent and terminating.
(B) Every left hand side of the head equation in $\mathcal{E}$ (or the head rewriting rule in $R$ ) is not

$a$ semi-constructor term.
(C) For any ground term $\iota\in\beta$ , there exists a ground constructor term $t\in g_{c}$ such that

$sarrow t$ .
The condition (B) implies for every ground constructor terms $s,t\in g_{c}$ we have $s=\iota t$ only
if $s\equiv t$ . The condition (C) with the condition (B) guarantees that the initial algebra of $\mathcal{E}$

is isomorphic to $\delta\circ\cdot$

Remark. Seve$r$al sufficient syntactical conditions of (A) are investigated. But the sufficient
condition ”left-line$ar$ and nonoverlappin$g$ for the usu$a1$ term rewriting systems ([11],[12]) is
no longer sufficient and we need more explorations. A sufficient syntactical condition of (C)
for usual term rewriting systems is investigated in [13].

4.2. $Meta\cdot Uniflcation$ with Constructon

Now let us consider $a$ conditional equational theory $\mathcal{E}$ with constructors and $\mathcal{E}$ -unification
of a set of equations $\mathcal{E}_{0}$ . The logical and operational narrowing and meta-uniflability are
defined similarly to those in 2.2 and we use the same notation. By combining the well-known
equational unification algorithm and the Fay-Hullot’s $meta- u\dot{m}fication$ algorithm, we obtain

$l3$
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a nondeterministic equational algorithm for metaunifications with constructors as follows.

$meta- unify_{\epsilon}$ ( $\mathcal{E}_{0}:set$ of equations) : substitution;
$\theta:=<>$ ,
while $\mathcal{E}_{0}\neq\emptyset$ delete one of the equations in $\mathcal{E}_{0}$

when the equation is of the form $X=X$
do nothing.

when the equation is of the form $X=t$ or $t=X$ ($X$ does not occur in t)
apply variable-elimination to $X$ and $t$ .

when the equation is of the form $s=t$ (eithe$r\iota$ or $t$ is a non-variable term)
$lf$ root function symbols are &fferent constructors
then stop with failure
else apply term-reduction to $s$ and $t$

endwhile
return $\theta$ .
variable.elimination(X:variable,t:term);

let $\sigma$ be a renaming of variables in $t$ away from $W$ and $f$ be $<X\Leftarrow\sigma(t)>_{\dot{l}}$

apply $\tau\circ\sigma$ to $\mathcal{E}_{0}:\theta:=(\tau\circ\sigma)\circ\theta;W:=W+I(\tau)$

term-reduction(s,t:term),
when $s$ and $t$ are of the form $f(s_{1}.s_{2}, \ldots,s_{m})$ and $f(t_{1}.t_{2}, \ldots.f_{m})$ ($f$ is a constructor);

add $s_{1}=t_{1},$ $s_{2}=t_{2},$ $\ldots\iota_{m}=t_{m}$ to $\mathcal{E}_{0}$

when $NS_{pr*}(s.W)\neq\emptyset$

select $\sigma\in NS_{pr*}(s,W)$ and let the corresponding conditional $r$ule be
$\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta\cdot(\sigma(\gamma)\equiv\sigma(s/u))$ ;

$W:=W+I(\sigma)$: let $f$ be $meta- u\dot{m}fy_{\epsilon}(\sigma(\{\gamma_{1}=\delta_{1},\gamma_{2}=\delta_{2},\ldots,\gamma_{m}=\delta_{m}\})),\cdot$

$\ddagger f$ there exists a variable $X\in W$ for which $r\circ\sigma(X)$ is not in R-normal form
then stop with failure
else add $s[u\Leftarrow\delta]=t$ to $\mathcal{E}_{0:}$ apply $\tau\circ\sigma$ to $\mathcal{E}_{0};\theta:=(r\circ\sigma)\circ\theta_{\dot{l}}$

when $NS_{pre}(t,W)\neq\emptyset$

select $\sigma\in NS_{pr*}(t_{l}W)$ and let the corresponding conditional rule be
$\sim\gamma_{1}\downarrow\delta_{1}\wedge\gamma_{2}\downarrow\delta_{2}\wedge\cdots\wedge\gamma_{m}\downarrow\delta_{m}\supset\gammaarrow\delta\cdot(\sigma(\gamma)\equiv\sigma(t/v))$;
$W:=W+1(\sigma)$ ; let $f$ be $meta- unify_{e}(\sigma(\{\gamma_{1}=\delta_{1}.\gamma_{2}=\delta_{2}, \ldots,\gamma_{m}=\delta_{m}\}))$;
$r$ there exists a variable $X\in W$ for which $\tau\circ\sigma(X)$ is not in R-normal form
then stop with failure
else add $s=t[v\Leftarrow\delta]$ to $\mathcal{E}_{0},\cdot$ apply $f\circ\sigma$ to $\mathcal{E}_{0};\theta:=(\tau\circ\sigma)\circ\theta$ ,

otherwise
stop with failure

Figure 4.2. Equatlonal $Met\triangleright UnlAcatlon$ with Constructon

Example 4.2. Let $\iota$ be insert(A, insert(B, tree$(\emptyset,$ $1,$ $S)$)) and $t$ be tree(tree(\emptyset , $C,\emptyset),$ $1,$ $T$). The
meta-unification process proceeds similarly to Example 3.2.2 except peeling off root construc-
tors and generating simultaneous equations. For $ex$ample,if the narrowing to insert(A, tree
(insert$(0.\emptyset).1,$ $S_{1}$ )) in the second repetition is applied at the root using the fourth $r$ule, we
have three equations

insert$(O,\emptyset)=tree(\emptyset, C,\emptyset),$ $1=1,$ $insert(suc(suc(A_{2})),S_{2})=T$.
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Remark: Note that the “occur check$\cdot$ defers some binding. For example,when the equation
selected from $\mathcal{E}_{0}$ is $X=[car([A|X])|Y]$ ( $[A|X]$ is a list with head $A$ and tail $X$), this equation
is forced to be transformed to $x=[A|Y]$ in the third when onc$e$ , becaues $X$ occurs in
[car$([A|X])|Y$ ].

4.3. Consistency an$d$ Ground Completeness

The algorithm in 4.2 is a specialization of the Fay-Hullot’s algorithm. But it is too
special to ke$ep$ its general completeness. For $ex$ample,consider the meta-unification of
{insert(A, $S)=insert(A,$ $T)$}. Our algorithm won’t generate the meta-unifier $<S\Leftarrow W,$ $T\Leftarrow W^{\backslash }$,
. Nevertheless it still keeps enough completeness to guarantee the equivalence of the opera-
tional semantics and the model theoretic semantics of Talos. Before explaining it,we prepare
three lemmas.

The first lemma says that once a preb (occurrences near the root) of a term is Mled
with constructors in $anyarrow$-derivation issuing from a term $t_{0}$ to a term $t_{n}$ in our conditional
rewriting system, the fuction symbols at these occurrences in $t_{n}$ are determined. (This lemma
justifies the peeling off of constructor symbols at $ro$ot in the equational meta-unification
algorithm with constructors in 4.2.)

Lemma 4. Let $\mathcal{E}$ and $R$ be $a$ conditional equational theory and a conditional term $rew\Gamma^{o}\iota ting$

system $satisf\dot{p}ng$ the three conditions in 4.1,
$\iota_{0}arrow[u_{0}.k_{o}.\nu_{0}\circ\mu_{0}[t_{1^{arrow}[u_{1}.k_{1}.\nu_{1}\circ\mu_{1[}}\cdotsarrow[u_{*-1\cdot-\iota}k..\nu_{*-\iota}\circ\mu.-\iota 1^{t_{n}}$

be $anyarrow$-derivation issuing from $t_{0}$ and ending with $t_{n}$ . It root function symbols of $t_{i}/v$ are
constructor $sym\dot{o}ols$ for all $v\prec v_{0}$ , then $u_{j}\wedge v_{0}$ for all $i\geq j$ and the root function symbols
of $t_{i}/v$ and $t_{n}/v$ are identical for all $v\prec v_{0}$ .

Proot. We prove the lemma by structural induction on $t_{n}$ . Let $t_{i}\equiv f(s_{i}, s_{2}, \ldots, s_{m})$ be
the first term in the $\sim$.-derivation whose root symbol $f$ is $a$ constructor. Because of
the condition (B) in 4.1, the succeeding narrowings neve$r$ occur at the root. Hence $t_{n}\equiv$

$f(r_{1}, r_{2}, \ldots, r_{m}),$ $s_{1}arrow r_{1},$ $s_{2}arrow r_{2},$ $\ldots,$ $s_{m}arrow r_{m}$ , and $r_{1}.r_{2},$
$\ldots,$

$r_{m}$ are all smaller than $t_{n}$ .
Hence from induction hypothesis,the lemma holds.

We specialize the concept “projectable’ in 2.3 to ground cases. The $meta- unify_{e}$ is said
to be ground projectable when all terms to, $t_{i},$ $\ldots,t_{n}$ in $the*$-derivation (1) in 2.3 in the
definition of $*projectability$ are ground. (Henc$e$ it is $aarrow$-derivation.)

Lemma 5. Wh$en\underline{R}$ and $\mathcal{E}$ satisfy the conditions in 4.1,
$(a)\theta(s_{1})\downarrow\theta(t_{1}),$ $\theta(s_{2})\downarrow\theta(t_{2}),$

$\ldots,$
$\theta(s_{m})\downarrow\theta(t_{m})$ hold for $\underline{R}$ when a substitution $\theta$ is generated

by the meta-uni$fy_{e}$ tor $\mathcal{E}_{0}=\{s_{1}=t_{1}, s_{2}=t_{2}\ldots., s_{m}=t_{m}\}$ .
(b) The $meta- unify_{c}$ can generates a substitution $\theta$ such that $\theta\preceq_{\underline{l}}\rho\beta VJ$ for any substitu-

tion $\rho$ if $\rho(s_{1})\downarrow\rho(t_{1}),$ $\rho(s_{2})\downarrow\rho(t_{2}),$
$\ldots,$

$\rho(s_{m})\downarrow\rho(t_{m})$ hold for $\underline{R}$ and $\rho$ instanciates
$\mathcal{E}_{0}=\{s_{1}=t_{1}, s_{2}=t_{2}, \ldots, s_{m}=t_{m}\}$ to a set of ground equations, where $V=\gamma(\mathcal{E}_{0})$ .

Proof. (a) is trivial. As to $(b),the\Rightarrow$-part (a) in lemma 1 must holds when the flrst term is
ground. We only need to conside$r$ the ground projectability due to the following three facts.

(a) Let $\eta$ be a $\underline{R}$-normalized meta-unifier of $s$ and $t$ such that $\eta(s)$ and $\eta(t)$ are ground.
Because of the condition (C) in 4.1. there is $aarrow$-derivation (1) in 2.3 which issues from $a$

ground term $h_{2}(\eta(s), \eta(t))$ and ends with $a$ ground constructor term $h_{2}(r, r)$ . When fi is a
substitution which instanciates all variables in $thearrow$-derivation to any R-normal ground

$/r$
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terms. Then $\vec{\eta}\circ\eta$ is a R-normalized meta-unifier of $s$ and $t$ and $v\circ\eta=\underline{R}\eta\beta V(s)\cup V(t)I$ .
(b) Consider a $\sim$.-derivation which is for operational meta-unification of the condition part

of a ground reduction nd gives a meta-unifier $\nu$ . When it starts from $h_{2}(s,t)$ and $\nu$ is
a substitution which instanciates all variables in the fiJst term $\eta(h_{2}(s,t))$ to $\underline{R}$-normal
ground terms, $V\circ v$ is also a meta-unifier of the condition part. Because it is for $t$he
condition part of the $gr$ound reduction, $\nu$ has no effect to the original ground reduction.

(c) Two ground terms $s$ and $t$ are reduced to a same ground constructor term if $s=Rt$
because of the condition (C) in 4.1. In such a case, the &unifier in the last step of $\overline{th}e$

Fay-Hullot’s algorithm can be computed equationally in our algorithm. (Note that our
algorithm can cnly compute most general $\emptyset- u\dot{m}fiers$ of two terms when root function
symbols of corresponding nonvariable subterms are identical constructors. We can’t
compute -unifiers in gene$r$al, while the Fay-Hullot’s algorit$hm$ do$es$ it directly in the
frst when.)

The proof goes similarly to those of Lemma 1 and Lemma 2 except $t$he peeling off of
constructor symbols in term-reduction. This manipulation is justified by lemma 4, i.e. once
root symbols of $t_{i}/1v$ and $t_{i}/2v$ are identical constructor for all $v\prec v_{0}$ in $an$ operational
$arrow$-derivation, they are determined and thereafter there occur$s$ no reduction inside $v_{0}$ ,i.e.,
$u_{j}\wedge v_{0}$ if $i\leq j$. Hence,the correspondence between ground $operationalarrow$-derivations and
operational $*\cdot$-derivations is not lost even with the peeling off. We omit the details due to
space limit.

Lemma 6. When $\underline{R}$ is confluent and terminating, there exists a ground operational reduction
$sarrow t$ iff there exists a ground logical reduction $sarrow t$.
Proof. The proof goes similarly to that of Lemma 3 except $t$he peeling off of constructor
symbols in term-reduction. The correspondence between ground operational reduction and
ground logical reduction is not lost even with the peeling off. Due to space limit,we also
omit other details.

A set of $\mathcal{E}$-unifler $l$ is called a ground complete set of $\mathcal{E}$ -uniflers of a set of equations
$\mathcal{E}_{0}$ away from $W$ iff it satisfle$s$ the condition (a) and (b) and $a$ modiflcation of (c) in 3.1.3.
(a) $\forall\theta\in u$ ($p(\theta)\subseteq V\ \theta$ is away from $W$).
(b) $u\subseteq u_{\mathcal{E}}(\mathcal{E}_{0})$ .
(c) $\forall\sigma\in u_{C}(\mathcal{E}_{0})(\forall s=t\in \mathcal{E}_{0}(\sigma(s)\in g\wedge\sigma(t\}\in g)\supset\exists\theta\in u\theta\preceq\iota\sigma\beta VJ)$

Theorem 2 (Consistency and Ground Completeness) Whe$n\underline{R}$ is confluent and terminating,
$u(\mathcal{E}_{0},W_{0})=$ { $\theta|V|meta- unify_{e}(\mathcal{E}_{0})$ with initialization $W:=W_{0}$ stops with answer $\theta$ }

is $a$ ground complete set of $\mathcal{E}$-unifiers of $\mathcal{E}_{0}$ away from $W_{O\iota}$ where $W_{0}\supseteq V=\gamma(s)\cup\gamma(t)$ .

Proof. The theorem is,so to say,$t$he consistency and ground completeness w.r.$t$ . logical
reduction. The proof goes in the completely same way as Theorem 1.

Remark. Again the $meta- unify_{e}$ is not complete even if $\chi$ is confluent and terminating.
The example in the remark of 2.3 is with two constructor zero $0$ and successor function $su\epsilon$ .

5. Semantics of Talos

5.1. 0perational Semantlc $s$

A query of the form
f-t when $s_{1}=t_{1},s_{2}=t_{2}\ldots.,s_{m}=t_{m}$ .

$/l$
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is a request to prove
$\exists X_{1},$ $X_{2},\ldots,$ $X_{*}(s=t\wedge s_{1}=t_{1}\wedge s_{2}=t_{2}\wedge\cdots\wedge s_{m}=t_{m})$

for some constructor term $s$ , where $X_{1},X_{2}\ldots.,X_{n}$ ar$e$ all variables in the conjunction of
equations.

When the Talos interpreter receives $a$ query $7_{-}t$ when $s_{1}=t_{1},$ $s_{2}=t_{2}\ldots.,$ $s_{m}=t_{m}$ .“,
it generate a set of equations $\mathcal{E}_{0}=\{!Value=t, \iota_{1}=t_{1}, s_{2}=t_{2}, \ldots, \iota_{m}=t_{m}\}$, where
!Value is a special variable Value annotated by !. (Variables amotated by “¡‘ are called
eager variable, while those without it are called lazy variable.) Then it compute $a$ meta-
unifier $\theta$ of $\mathcal{E}_{0}$ away from $V(\mathcal{E}_{0})$ nondeterministically and returns $\theta|\gamma(\mathcal{E}_{0})$ as the result. The
meta-unifier is extended to treat the distinction of lazy and eager variables. It behaves in a
manner similar to one in 4.2 except variable-elimination as follows.

execute( $\mathcal{E}_{0}:set$ of equations) : substitution;
$\theta:=<>’$.
while $\mathcal{E}_{0}\neq\emptyset$ delete $0$ne of the equations in $\mathcal{E}_{0}$

when the equation is of the form $X=X$ or $!X=!X$
do nothing.

when the equation is of the form $X=t$ or $t=X$ ($X$ does not oceur in t)
apply lazy-variabl -elimination to $X$ and $t$

when the equation is of the form $!X=t$ or $t=!X$ ($t$ is a semi-constructor term)
apply eager-variable-elimination to $|\circ X$ and $t$

when $t$he equation is of the form $s=t$ (either $\iota$ or $t$ is a non-variable term)
lf root function symbols are different constructors
then stop with failure
else apply term-reduction to $s$ and $t$

endwhile
return $\theta$ .

lazy-variable-elimination($X:lazy$ variable,$t:term$);
let $\sigma$ be a renaming of variables in $t$ away from $W$ and $\tau$ be $<X\Leftarrow\sigma(t)>,\cdot$

apply $\tau\circ\sigma$ to all equations in $\mathcal{E}_{0};\theta:=(\tau\circ\sigma)\circ\theta;W:=W+I(\tau\circ\sigma)$

eager-variable-elimination($!X:eager$ variable,t:term);
whcn $t$ is a variable $Y$ (either lazy or eager)

let $<Y\Leftarrow!Z>$ be a renaming of the $var$iable $Y$ away from $W$

and $<!X\Leftarrow!Z>$ be a renaming of the variable $!X$ away from $W_{l}$
.

apply $<!X\Leftarrow!Z,$ $Y\Leftarrow!Z>$ to all equations in $\mathcal{E}_{0},\cdot$

$\sigma:=<!X\Leftarrow!Z,Y\Leftarrow!Z>\circ\sigma;W:=W+\{!Z\}$

when $t$ is $f(t_{1}, t_{2}, \ldots, t_{m})$ ($f$ is a constructor)
add $!X_{1}=t_{1},$ $!X_{2}=t_{2},$

$\ldots,$
$!X_{m}=t_{m}$ to $\mathcal{E}_{0}$ ;

apply $<X\Leftarrow f(!X_{1}, !X_{2}, \ldots, !X_{m})>$ to all equations in $\mathcal{E}_{0}$ ;
$\sigma:=<!X\Leftarrow f(!X_{1}, !X_{2}, \ldots, !X_{m})>\circ\sigma,$ $W:=W+\{!X_{1}, !X_{2}, \ldots, !X_{m}\}$

( $!X_{1},$ $!X_{2},$
$\ldots,$

$!X_{m}$ are fresh eager variable$s$)

Figure 5.1. Talos Interpreter

Example 5.1. When the Talos interpreter receives $a$ query
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-C when insert(A, insert(B, tree$(\emptyset_{l}1,$ $S))$) $=tree(tree(\emptyset, C,\emptyset), 1, T)$ .
one of the $an$swers is

$!Value=0$,
$A=A_{4}+2$ .
$B=0$,
$c=0$.
$s=s_{4}$ ,
$T=iusert(A_{4}+2,S_{4})$:

by meta-unifying {$!Value=C$, insert(A, insert(B, tree$(\emptyset,$ $1,$ $S)))=tree(tree(\emptyset,$ $C,\emptyset),$ $1,T)$},
while the corresponding answer is

$!Value=[0,tree(\emptyset,2,\emptyset)]$ ,
$A=2$,
$B=0$,
$c=0$,
$s=\emptyset$ ,
$T=tree(\emptyset,2,\emptyset)$ ;

when the query is
i- $[C, T]$ when insert(A, insert(B, tree($\emptyset,$ $1$ , S)))=tree(tree(\emptyset , $C,\emptyset),$ $1,$ $T$).

because it meta-unifies {$!Value=[C,T]$, insert(A, insert(B, tree($\emptyset,$ $1$ , S)))=tree(tree(\emptyset , $C,\emptyset),$ $1,$ $T)$}
and $\alpha!$

. is propagated to force evaluation of $T$ . Note that the Talos interpreter needs non-
deterministic search, though data types and func$*.ions$ themselves are deterministic.

Remark. So far we have described $a$ nondeterministic algotithm. In its sequential implemen-
tation, we make the meta-unification a self-recursive program and search meta-uniflers using
Prolog-like backtracking. We need to choose an appropriate equation in the meta-unification.
We keep a set of simultaneous equations in $a$ stack. The equation at the top is popped at
each meta-unification call and processed. It is either simply erased (possibly wit$h$ some
application of substitution) or it $ge$nerates several new equations and the generated equa-
tions are pushed at the top. Then new meta-unification is called with the new stack. We
also need to choose $an$ appropriate pre-narrowing substitution $\sigma$ in term-reduction. Before
choosing it, we set the backtracking point $t$here. Depending on the choice of the occurrence
at which narrowing is applied, we can integrate various evaluation strategies into Talos such
as $ca11arrow by- value.call- byarrow name,call- by- need,1azy$ evaluation and eager evaluation. Once some
occurrence is chosen, the $r$ewriting rules in the deflnition $are$ tried from top to bottom fol-
lowing the control of Prolog. When we $e$ncountered “stop with $f\dot{u}1ure$ , we backtrack to
the latest backtracking point and try another alternatives.

5.2. Model Theoretic Semantics

The model theoretic semantics of Talos is deflned by $t$he set $M_{0}$ of all ground equations
valid in all models of $\mathcal{E}$ (cf.[6]). This formulation is located between the initial algebra for
algebraic data type specifications (cf. Gogue$n$ and Meseguer [8]) and the minimum Herbrand
model for Prolog (van Emden and Kowalski [4]).

The flxpoint semantics of Talos is deflned similarly to that of Prolog. Let $T$ be a
transformation of sets of ground equations associated with the set $\mathcal{E}$ of quation$a1$ definite
clauses denned by

$T(I)=\{s=t|\bullet$ and $t$ is a ground term&
there is some ground instanc$e\epsilon_{1}=t_{1}\wedge s_{2}=t_{2}\wedge\cdots\wedge s_{m}=t_{m}\supset s=t$

such that $s_{1}=t_{1},$ $s_{2}=t_{2},$
$\ldots,$

$\iota_{m}=t_{m}$ are all in $I$}

$/f$
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Then it is obvious that $M_{0}$ is the least fixpoint of $T$ and $\bigcup_{i=0}^{\infty}T^{i}(\emptyset)=M_{0}(cf.[6])$ .

ExampJe 5.2. A Talos program $P$ consisting of the definitions of the data types boole,number,tree
and the function insert defines all the set of equations $M_{0}$ holding between ground terms
denoting boole,number and tree in our common sense. The quotient $\beta/M_{0}$ is isomorphic to
the set of ground constructor terms denoting boole,number and tree.

5.3. Equ!valence of Two SemantIcs

Now we prove the most important theorem for the semantics of Talos.

Equivalence Theorem
When $\mathcal{E}$ and $R$ satisfy the conditions in 3.1, $\tau_{-t}$ stops and returns a $gr$ound constructor

term $s$ satisfying $s=et$ for any ground term $t$.
Proof. Because the “¡‘ annotation is propagated only to force instanciation, it answers
correctly when it stops. Moreover it is ovbious that this annotation does not prevent any
computation of ground meta-uniflers frcm termination, because any ground term is reducible
to a ground constructor term.

6. Discussions

Several attempts have been done to amalgamate relational programming languages and
functional programming languages. Bellia [2] introduced Horn clauses with equalty into
relational program, but their language is substantially completely deterministic functional
programming language. Fribourg [6] used equational Horn clause and clarified its seman-
tics based on the paramodulation, which is very similar to the general narrowing. But
because he did not impose any conditions (like confluence and terminatio$n$), his complete-
ness theorem needed superposition between programs and additional functional reflexive
axioms. Moreover the narrowings was not restricted to those $at$ occurrences of non-variable
terms. Tamaki [19] introduced a reducibility predicate into Prolog and defined its semantics
based on source-level expansion of nested terms to conjunction of atoms. Because he did
not impose the termination condition, he $h$ad to add the reflexivity $ofarrow$ to the expanded
programs, which plays a very important role. Gogue$n$ and Meseguer [8] suggested the use
of narrowing in computation in their functional-relational language Eqlog based on rigouros
logical basis of many sorted logic [9]. They allowed general algebraic speciflcation of abstract
data types and used the $ge$neral narrowing.

We claim our contributions in this paper are the following two. First, our equivalence
theorem is a one-st$ep$ advance towards the completeness of more general languages using
the narrowing such as Eqlog [8] and SLOG [6]. (The completeness of “SLD-resolution $+$

meta-unification“ in Eqlog is left open. See comment in [8] pp.206-207 and [6] p.173).
Secondly,our framework makes the programming reasonably easy as well as the interpreter
reasonably efficient. Eqlog’s general $d$ata type specification indeed $\dot{g}ves$ high expressive
powe$r$ . Though Talos lacks such generality, existence of constructors is helpfull not only
fo$r$ programmers but also fo$r$ the meta-unification process. To programmers who uses such
languages as programming languages, it gives concrete svmbolic objects to manipulate and
conceive easily in mind. From the meta-uniflcation process, it alleviates the too frequent
check of unifiability and enables us to compare corresponding terms only when they $are$

semi-constructor term. (Note that we always have to compare corresponding terms at the
first when in the Fay-Hullot’s algorithm. cf. comment in [8] p.206). The constructor terms
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in Talos exactly do play the same role as general terms in Prolog do.

We have shown only one of the feature of Talos,i.e. conditional computation. Talos has
another three prominent features, nondeterministic computation, “call by need“ computation
$[14],[7],[10]$ and computation $wi$th stream [1]. The first version of Talos was implemented in
MACLISP from April in 1982 to March in 1983. The language features and implementation
details are explained in the forthcoming paper.

7. Conclusions

We have presented a computation mechanism gcomputation by meta-unification with
constructors“ stemed from the behaVior of an interpreter of $an$ equational programming
language Talos.
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