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Abstract

A one-step recurrent term is a tem in $\lambda-\beta$-calculus whose one-step re-

ductums are all reducible to the term. It is a weakened notion of minimal form

or recurrent tem in the $\lambda-\beta$-calculus. In this paper, a one-step recurrent term

which is not recurrent is shown. That term becomes a counter example for

a conjecture presented by J.W.Klop. By analysis of the reduction cycles of

one-step recurrent terms, a neccessary and sufficient condition for a one-step

recurrent tem to be recurrent is given.

0. Introduction
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The reduction graph of a lambda term [1] is a directed graph which has

lambda terms at each node. Each arc represents a one-step reduction from a

term to another term. Thus, all the terms in the graph are reducible from

the term. The structure of the reduction graph of lambda terms or terms in

combinatory reduction systems has been studied in [1,4,5,9]. When we use

the lambda-calculus as a model of computation, given a term, we have to se-

lect an appropriate reduction path to reach the terminal node representing it$s$

computation result. The reduction strategies tells us which branch we should

follow. Some useful strategies and non-existence of some strategies with special

properties is show in [1, 2, 8].

As an attempt to solve a well-know open problem $[1,2]$ concerning the

reduction strategy, Klop [4] defined some notion and gave a conjecture. First,

we review his definitions. Two terms are said to be cyclically equivalent when

they are reducible to each other. An equivalence class by the relation is called

a plane. A term in a plane is called an exit when the tem is reducible to

another tem which is not reducible to any term in the plane. Klop presented

the following conjecture:

If a plane has an exit, then every point in the plane is an exit.

One of the authors of this paper introduced a notion of one-step recurrent term

and gave a reformulation of the above conjecture [6]. A tem is said to be

recurrent if the result of any reduction of the term can be reducible to the term

[7]. A term is called one-step recurrent if the result of any one-step reduction of

the tem is reducible to the term. One-step recurrent term is a weakened notion

of recurrent term. Recurrent terms are called minimal forms in $[1,3]$ . Using the

notion of recurrence, we can reformulate Klop’s conjecture as follows:

Every one-step recurrent $term$ ; recurrent.
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In [6], the conjecture was proved for the one-step recurrent term with at most

two redexes, and some properties of one-step recurrent terms are studied.

In this paper, we solve the problem in negative form, i.e., we give a one-

step recurrent term which is not recurrent. And we examine the difference of

one-step recurrent term and recurrent term. As a result of the analysis, we

obtain a necessary and sufficient condition for a one-step recurrent term to be

recurrent.

1. One– step recurrent terms and recurrent terms

In this section, we define the notions of one-step recurrent terms and

recurrent terms. And we prove that the set of all recurrent terms is a proper

subset of the set of all one-step recurrent terms. This is one of the main theorem

of this paper. We states two fundamental lemmas which we use through the

discussion.

First, we begin by explaining the notations and terminology, almost of

which are usual ones.

We use the letter $M,$ $M_{1},$ $M_{2},\cdots,$ $M_{i},$ $N,$ $\cdots$ for $\lambda$-terms. The upper case

greek letters $\Delta,$ $\Delta_{1},$ $\cdots$ stand for redexes, $\mathcal{F}$ stand for set of redexes of a term.

We use the symbol $\equiv for$ identity (up to $\alpha$-conversion) of terms. The set of all

redexes in a term $M$ is denoted by redex$(M)$ . We $usearrow for$ one step reduction,

$andarrow$ for the reflexive transitive closure $ofarrow$ . When there is a reduction

$Marrow N$ we say that $M$ is reducible to $N$ or that $N$ is reducible from $M$. If the

reduction is one-step reduction, we say that $M$ is one-step reducible to $N$ or that

$N$ is one-step reducible from $M$. When $M\equiv N$ the reduction is called a cyclic

reduction of $M$. The iower case greek letters $\sigma,$ $\tau,$ $\sigma_{1},\cdots$ stand for reductions.

Given a sequence of reductions $\sigma_{i}$ : $N_{i}arrow N_{i+1}(i=0,1, \cdots k)$ , the successive

composition of $\sigma_{i}’ s$ is denoted by $\sigma_{1}\sigma_{2}\cdots\sigma_{k}$ : $N_{1}arrow N_{2}arrow\cdotsarrow N_{k}arrow N_{k+1}$ .

3
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If all $N_{i}’ s$ are the same term and all $\sigma_{i}’ s$ are identical to $\sigma$ , then $\sigma_{1}\sigma_{2}\cdots\sigma_{k}$

is denoted by $\sigma^{k}$ . Given a reduction $\sigma$ : $Marrow M’$ , a redex $\Delta$ in $M$, a set $\mathcal{F}$

of redexes in $M$ and a redex $\Delta^{/}$ in $M’,$ $\Delta/\sigma$ stands for the set of all residuals

of $\Delta$ by the reduction $\sigma$. $\mathcal{F}/\sigma$ stands for the union of the set $\Delta_{i}/\sigma$ for all

$\Delta_{i}\in \mathcal{F}$ . If $\Delta^{l}$ is a residual of $\Delta$ by $\sigma$, i.e., $\Delta^{l}\in\Delta^{l}/\sigma$ , we rite $\Delta\underline{\sigma}\Delta’$ or
$(\Delta,M)\underline{\sigma}(\Delta’,M^{l})$ . When $\Delta^{l}$ is not a residual of any redex in $M$, we say that

$\sigma$ creates $\Delta’$ and write $\Delta^{/}$
$\underline{\sigma}$ . When there is no residual of $\Delta$ in $M’$ , we say

that $\sigma$ erases $\Delta$ .
Recurrent terms are called minimal forms in [1]. The notion of one-step

recurrent terms is defined in [6].

Definition 1.1 A tem $M$ is recurrent iff every tem reducible from

$M$ is reducible to M. $M$ is one-step recurrent iff every term one-step reducible

from $M$ is reducible to $M$.
The set of all recurrent terms and the $s$et of all one-step recurrent terms

are denoted by $A_{\infty}$ and $A_{1}$ respectively. Since any one-step reduction is a re-

duction, any recurrent tem is a one-step recurrent term. However the converse

is not true in general.

Theorem 1.2 There exists a one-step recurrent term which is not re-

current.

Proof Let $M\equiv XXYZ$ where $X\equiv\lambda xyz.xxy(yz),$ $Y\equiv\lambda xz.x(xz)$ ,

$Z\equiv\lambda z.II(IIz)$ and $I\equiv\lambda x.x$ . The term $M$ has three redexes

$\Delta_{0}$ : the leftmost redex,

$\Delta_{1}$ : the subtem II in the left position in $Z$ , and

$\Delta_{2}$ : the subterm II in the right position in $Z$ .
By reducing $\Delta_{0}$ and $\Delta_{1}$ , we have a reduction

$M\equiv XXYZarrow XXY(YZ)arrow XXY(Y(\lambda z.IIz))$ .

$\angle+$
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Since

$Y(\lambda z.IIz)arrow\lambda w.(\lambda z.IIz)((\lambda z.IIz)w)arrow\lambda w.II(IIw)\equiv Z$,

we have a reduction $XXYZarrow XXY(Y(\lambda z.IIz))arrow XXYZ$ which erases

$\Delta_{0}$ and $\Delta_{1}$ . Even if we reduce $\Delta_{0}$ and $\Delta_{2}$ , we have the (syntactically) same

reduction. Thus, there are reductions which erase each redex in $M$. Therefore,

$M$ is one-step recurrent.

Next, consider the term $XXY(\lambda z.Iz)$ which is obtained by reducing all the

redexes $\Delta_{0},$ $\Delta_{1}$ and $\Delta_{2}$ . Any reduction of the term does not produce a term

which has the subtem II. Therefore, it is not reducible to $M$. Thus, $M$ is not

recurrent. a
Given a set $\mathcal{F}$ of redexes in $M$, a reduction $Marrow^{\sigma}N$ is called a complete

development of $(M, \mathcal{F})$ iff it erases all the residuals of $\mathcal{F}$ and all the redexes

contracted through $\sigma$ are residuals of some redexes in $\mathcal{F}$ . The resulting term

by any complete developments of $(M, \mathcal{F})$ is unique, so we denote it by $G_{\mathcal{F}}(M)$ .
When $\mathcal{F}$ is the $s$et of all redexes in $M$, we write it as $G(M)$ . The following lemma

says that if a reduction erases some redexes of a term then the resulting term

can be obtained by reducting the redexes first and followed by some reduction.

Lemma 1.3 Let $\mathcal{F}$ be a set of redexes in $M$ and $\sigma$ : $Marrow N$ be a

reduction. If $N$ has no residual of $\mathcal{F}$ , then $G_{\mathcal{F}}(M)$ is reducible to $N$ .

Proof By induction on the length of $\sigma$ . Suppose that $\sigma$ is of the form

$\sigma$ : $Marrow^{\sigma_{0}}M^{l}arrow^{\sigma_{1}}N$ and that $\sigma_{0}$ reduces a redex $\Delta$ in $M$. Then by induction

hypothesis for $\sigma_{1}$ and $\mathcal{F}/\sigma_{0},$ $G_{\mathcal{F}/\sigma_{0}}(M’)$ is reducible to $N$ . Let $\tau_{0}$ be a complete

development of $(M, \mathcal{F}),$ $\tau_{1}$ be a complete development of $(M’, \mathcal{F}/\sigma 0)$ and $\sigma_{2}$ be

a complete development of $(G_{\mathcal{F}}(M), \Delta/\tau_{0})$ . Since both $\sigma_{0}\tau_{1}$ and $\tau_{0}\sigma_{2}$ are the

complete development of $(M, \mathcal{F}\cup\{\Delta\})$ , they produce the $s$ame term $G_{\mathcal{F}/\sigma_{0}}(M’)\circ$

$\sigma$
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$\sigma_{2}$

Thus, we have $G_{\mathcal{F}}(M)arrow G_{\mathcal{F}/\sigma_{0}}(M^{/})$ . Therefore, $G_{\mathcal{F}}(M)$ is reducible to $N$.
(See Figure 1.) $\square$

Figure 1

Lemma 1.4 The following three conditions are equivalent.

(1) $M$ is recurrent.

(2) $G(M)$ is reducible to $M$.
(3) There is a cyclic reduction of $M$ which erases all the redexes in $M$.
Proof The equivalence of (1) and (2) is proved in [3]. (2) $\Rightarrow(3)$ is

trivial. (3) $\Rightarrow(2)$ is an easy consequence of Lemma 1.3. ロ

2. Compatibility of redexes

in this section, the notion of compatibility of redexes in a term is defined,

and a sufficient condition is given for a one-step recurrent term to be recurrent.

The notion is come from the analysis of the construction of cyclic re-

ductions from some $s$ imple cycles. First we explain the intuitive idea of the

analysis.

If we want to show that a one-step recurrent term $M$ is a recurrent, we only have

to construct a reduction $\sigma$ : $Marrow M$ which erases all the redexes in $M$ by

Lemma 1.4. Since $M$ is one-step recurrent, we have reductions $\sigma_{1},\sigma_{2},$ $\cdots,\sigma_{k}$ :

$Marrow M$ each of which erases a redex $\Delta_{i}$ in $M$. So it would be natural to try

to construct the reduction $\sigma$ from $\sigma_{i}’ s$ . The reduction $\sigma_{i}$ erases the redex $\Delta_{i}$ ,

however, the residuals of another redex $\Delta_{j}$ would

(1) disappear, or

(2) appear in one position, or

6
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(3) appear in more than two places.

If (1) or (2) is true for all $\sigma_{i}’ s$ , each reduction would decrease the number of

residuals to be erased. Therefore, all redexes could be erased. However, if (3)

is true for some reductions, an essential difficulty arises for the case in which

$\Delta_{i},$ $\Delta_{j}\in\Delta_{j}/\sigma_{i}$ and $\Delta_{j},$ $\Delta_{i}\in\Delta_{i}/\sigma_{j}$ . In this case any times of reductions of $\sigma_{i}$

and $\sigma_{j}$ leaves the residuals of $\sigma_{i}$ or $\sigma_{j}$ in the both positions $\Delta_{i}$ and $\Delta_{j}$ in the

resulting term. (See Figure 2.)

Figure 2

Thus we can not erase both $\Delta_{i}$ and $\Delta_{j}$ at the same time by this way. ($h$ fact

the tem given in Theorem 1.2 is such a term.) If such case does not happen

for the term, we can construct the desired reduction. That is the main theorem

in this section.

Definition 2.1 Let $\Delta_{1}$ and $\Delta_{2}$ be distinct redexes in $M$. We write

$\Delta_{1}\succ\Delta_{2}$ iff there is a cyclic reduction $\sigma:Marrow M$ such that

(a) $\Delta_{2}/\sigma=\emptyset$ ,

(b) $\Delta_{1},$ $\Delta_{2}\in\Delta_{1}/\sigma$.
$\Delta_{1}$ and $\Delta_{2}$ are incompatible iff $\Delta_{1}\succ\Delta_{2}$ and $\Delta_{2}\succ\Delta_{1}$ . $\Delta_{1}$ and $\Delta_{2}$ are

$compat;ble$ iff they are not incompatible. $M$ is compatible iff every two redexes

in $M$ are compatible.

Lemma 2.2 Let $\Delta$ be a redex in $M,$ $\sigma$ be a reduction $Marrow M$ and $k$

be the number of redexes in $M$. If $\Delta\not\in\Delta/\sigma^{i}$ for all $i\leq k$ , then $\Delta/\sigma^{k}=\emptyset$ .

Proof Let $M_{i}$ be the term $M$ after the reduction $\sigma^{i}$ . Since all $M_{i}’ s$ are

syntactically identical, $M_{i}$ has the corresponding redex occurrence of $\Delta^{l}$ in the

same position in it for each redex $\Delta’$ . So let it be denoted by $(\Delta^{l},M_{i})$ .

$r_{l}$
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Suppose that $\Delta/\sigma^{k}\neq\emptyset$ . Then $M_{k}$ has a residual of $(\Delta,M_{0})$ . Therefore,

each $M_{i}(i=0,1, \cdots,k)$ has residual $(\Delta_{i},M_{i})$ which is a redex of $\Delta$ , and

$(\Delta_{i},M_{i})\underline{\sigma:}(\Delta_{i+1},M_{i+1})$ where $\Delta_{0}=\Delta$ . (See Figure 3.)

Figure 3

At first stage $M_{1}$ , since $\Delta\not\in\Delta/\sigma$, the redex $(\Delta_{1},M_{1})$ is distinct from $(\Delta_{0},M_{1})$ .
Now $ass$ume that the redexes $(\Delta_{0},M_{i}),$ $\cdots,$ $(\Delta_{i},M_{i})$ are distinct in the i-th stage

$M_{i}$ . Then at $i+1arrow th$ stage, $M;+1$ has $i+1$ redexes $(\Delta_{1},M_{i+1}),$ $\cdots,$ $(\Delta_{i+1},M_{i+1})$

each two of which are distinct, because they are the residuals of distinct redexes

in the previous stage. Moreover, they are not identical to $(\Delta_{0},M_{i+1})$ , because

$\Delta\not\in\Delta/\sigma^{f\dotplus}2$ Thus $M_{i+1}$ has $i+1$ redexes. Therefore, $M_{k+1}$ has $k$ redexes. A

contradiction. Therefore, $\Delta\in\Delta/\sigma^{i}$ for $s$ome $i\leq k$ . ロ

Remark 2.3 In the deflnition of $\Delta_{1}\succ\Delta_{2}$ , the existence of a reduction

$\sigma:Marrow M$ is required such that

(a) $\Delta_{2}/\sigma=\emptyset$ ,

(b) $\Delta_{1},$ $\Delta_{2}\in\Delta_{1}/\sigma$.
However, the requirement (a) can be removed as follows. Suppose that $\sigma$ sat-

isfies the condition (b). Since $\Delta_{1},$ $\Delta_{2}\in\Delta_{1}/\sigma$ , we have $\Delta_{2}\in\Delta_{1}/\sigma^{i}$ for all $i$.
Therefore $\Delta_{2}\not\in\Delta_{2}/\sigma^{i}$ . Thus, we have $\Delta_{2}/\sigma^{k}=\emptyset$ by Lemma 2.2, where $k$ is

the number of redexes in M. So the reduction $\sigma^{k}$ satisfies both (a) and (b).

Therefore, all we have to show to prove $\Delta_{1}\succ\Delta_{2}$ is an existence of a reduction

$\sigma:Marrow M$ which satisfies (b). $\square$

Lemma 2.4 Let $M$ be a compatible one-step recurrent term. Then

for any set $\mathcal{F}$ of redexes in $M$, there is a reduction $\sigma^{*}$ : $Marrow M$ such that

$\mathcal{F}/\sigma^{*}=\emptyset$ .
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Proof By induction on the number $n$ of redexes in $\mathcal{F}$ .
Base step $n=1$ . Since $M$ is one-step recurrent, the redex in $\mathcal{F}$ is erased by

some reduction $\sigma^{*}$ : $Marrow M$.

Induction step Let $\mathcal{F}=\mathcal{F}0\cup\{\Delta\}$ where $\Delta\not\in \mathcal{F}$ . By induction hypothesis,

there is a reduction $\sigma$ : $Marrow M$ such that $\mathcal{F}_{0}/\sigma=\emptyset$ . Let $k$ be the number of

redexes in $M$.

Case 1 $\Delta/\sigma^{k}=\emptyset$ .
Since $\mathcal{F}_{0}/\sigma=\emptyset$ we have $\mathcal{F}0/\sigma^{k}=\emptyset$ . Therefore $\mathcal{F}\cup\{\Delta\}/\sigma^{k}=\emptyset$ . Then put

$\sigma^{*}=\sigma^{k}$ .
Case 2 $\Delta/\sigma^{k}\neq\emptyset$ .
Then by Lemma 2.2 $\Delta\in\Delta/\sigma^{i}$ for some $i\leq k$ . Since $M$ is one-step recurrent,

there is a reduction $\tau$ : $Marrow M$ such that $\Delta/\tau=\emptyset$ . Let $\theta=\sigma^{i}\tau$ : $Marrow^{\sigma_{l}}$

$Marrow^{\tau}M$.
Now suppose that $\Delta/\theta^{k}\neq\emptyset$. Then by Lemma 2.2, we have $\Delta\in\Delta/\theta^{j}$ for some

$j\leq k+1$ . Let $M_{0}\equiv M$, and $M_{1},M_{2},M_{3},M_{4}$ , be the terms after reduction $M_{1}$

be the tem $M$ after $\sigma^{i},\theta,$ $\theta^{j}$ and $\theta^{j}\sigma^{i}$ respectively. (See Figure 4.)

Figure 4

Since $M_{0},M_{1},M_{2},M_{3}$ and $M_{4}$ are syntactically identical to $M$, each $M_{i}$ has a

redex occurrence of $\Delta$ at the corresponding position. Let it be $(\Delta,M_{i})$ . Since

$\Delta\in\Delta/\theta^{j}$ , $M_{1}$ has a residual $(\Delta^{l},M_{1})$ of $(\Delta,M_{0})$ such that $(\Delta,M_{0})\underline{\sigma_{l}}$

$(\Delta’,M_{1})$ , $(\Delta^{l},M_{1})\underline{\tau\theta^{jarrow 1}}(\Delta,M_{3})$. The reduction $\tau$ erases $(\Delta,M_{1})$ , so that

$(\Delta^{l},M_{1})$ is distinct from $(\Delta,M_{1})$ . Therefore $\Delta$ and $\Delta^{l}$ are distinct. Thus we

have two redexes $\Delta,$
$\Delta^{l}$ and two reductions $\sigma^{i},\tau\theta^{j-1}\sigma^{i}$ such that $\Delta,$ $\Delta^{l}\in\Delta/\sigma_{i}$

$\eta$
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and $\Delta,$ $\Delta^{l}\in\Delta’/\tau\theta^{j-1}\sigma^{i}$ . This contradicts the assumption that $M$ is compatible.

Thus we have $\Delta/\theta^{k}=\emptyset$ .

On the other hand, we have $\mathcal{F}_{0}/\theta^{k}=\emptyset$ by the definition of $\theta=\sigma^{i}$ and the

assumption $\mathcal{F}0/\sigma=\emptyset$ . Therefore, we have $\mathcal{F}\cup\{\Delta\}/\theta^{k}=\emptyset$ . Then we can put

$\sigma^{*}=\theta^{k}$ . ロ

Theorem 2.5 Every compatible one-step recurrent term is recurrent.

Proo$f$ Let $\mathcal{F}$ be the set of all redexes in a compatible one-step recurrent
$\sigma^{*}$

tem $M$. By Lemma 2.4, there is a reduction $Marrow M$ such that $\mathcal{F}/\sigma^{*}=\emptyset$ .
Then $M$ is recurrent by Lemma 1.4. ロ

Remark 2.6 The converse of Theorem 2.5 does not holds in general,

i.e., every recurrent term is not always compatible. For example consider the

tem $N\equiv$ VVXYWI(XXYZ) where $V\equiv\lambda vxyzwiz.vvxywi(xxy(wi)),$ $X\equiv$

$\lambda xyz.xxy(yz),Y\equiv\lambda xz.x(xz),$ $Z\equiv\lambda z.II(IIz),I\equiv\lambda x.x$ and $W\equiv\lambda iu.ii(iiu)$ .
Recall that we constructed the term $M\equiv XXYZ$ in Theorem 1.2. The term

$M$ has three redexes

$\Delta_{0}$ : the leftmost redex,

$\Delta_{1}$ ; the left redex II in $Z$ , and

$\Delta_{2}$ : the right redex II in $Z$ .
Let $\sigma_{1}$ be the reduction which reduces $\Delta_{0}$ and $\Delta_{1}$ . Then we have $XXYZarrow^{\sigma_{1}}$

$XXY(Y(\lambda z.(IIz)))$ where the subterm II in the result of $\sigma_{1}$ is a residual of

$\Delta_{2}$ . Since there is a reduction $\tau$ : $Y(\lambda x.IIz)arrow\lambda w.(\lambda z.IIz)((\lambda z.IIz)w)$

$arrow\lambda w.II(IIw)\equiv Z$ , we have $XXYZarrow^{\sigma_{1}\tau}$ XXYZ. Since the subtem II’s

in the result $M$ are the residual of the redex II in $Y(\lambda z.IIz),$ $\Delta_{1}$ and $\Delta_{2}$ are

the residuals of $\Delta_{2}$ by $\sigma_{1}\tau$ . Thus $\Delta_{1},$ $\Delta_{2}\in\Delta_{2}/\sigma_{1}\tau$ . We can apply the $s$ imilar

argument for the reduction $\sigma_{2}$ which erases $\Delta_{0}$ and $\Delta_{1}$ . Therefore we have

$\Delta_{1},$ $\Delta_{2}\in\Delta_{1}/\sigma_{2}\tau$ . Therefore XXYZ is incompatible. So $N$ is not compatible. $O$

$|C$
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3. Admissible class of redexes

In Theorem 1.2 of section 1, we gave a term $M$ which has two incom-

patible redexes $\Delta_{1}$ and $\Delta_{2}$ , i.e., $\Delta_{1}\succ\Delta_{2}$ and $\Delta_{2}\succ\Delta_{1}$ . For that term, we

have shown the impossibility of erasing both redexes by any cyclic reduction. in

Theorem 2.5 of section 2, we proved that all redexes of a recurrent term can be

erased by some cyclic reduction, if any two redexes in the term are compatible.

However, as we have shown in Remark 2.6, the compatibility is not always a

necessary condition for the redexes to be erased by some cyclic reduction. In

fact, even if a term has incompatible redaxes in it, all redexes can be erased by

some cyclic reduction–recall Lemma 1.3.

In this section we examine the reason why incompatible redexes can be

erased by some cyclic reduction when the term is recurrent. And we give a

necessary and sufficient condition for a one-step recurrent term to be recurrent.

Definition 3.1 We define the equivalence relation $\sim$ of redexes in a

term, inductively by

(1) $\Delta\sim\Delta$ ,

(2) $\Delta_{1}\succ\Delta_{2},$ $\Delta_{2}\succ\Delta_{1}\Rightarrow\Delta_{1}\sim\Delta_{2}$ ,

(3) $\Delta_{1}\sim\Delta_{2},$ $\Delta_{2}\sim\Delta_{3}\Rightarrow\Delta_{1}\sim\Delta_{3}$ .
$”\sim"$ is the equivalence relation generated by “incompatibility”. We call an

equivalence class module $”\sim"$ simply an equivalence class or a class.

Proposition 3.2 Let $\Delta_{1}$ and $\Delta_{2}$ be redexes in a term $M$. If $\Delta_{1}\sim\Delta_{2}$ ,

then there is a reduction $\sigma$ : $Marrow M$ such that $\Delta_{2}\in\Delta_{1}/\sigma$.

Proof By induction on the definition of $”\sim$ .
Base step (1) Take an empty reduction as $\sigma$ , then we have $\Delta\Delta\underline{\sigma}$ .
Base step (2) Suppose that $\Delta_{1}\succ\Delta_{2}$ and $\Delta_{2}\succ\Delta_{1}$ . Then there is a reduction

such that $\Delta_{1}\Delta_{2}\underline{\sigma}$ by the definition of $\Delta_{1}\succ\Delta_{2}$ .

$11$
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Induction step (3) Suppose that $\Delta_{1}\sim\Delta_{2}$ and $\Delta_{2}\sim\Delta_{1}$ . By induction hypoth-

esis, we have reductions $\sigma_{1}$ and $\sigma_{2}$ such that $\Delta_{1}\Delta_{2},$$\Delta_{2}\Delta_{1}\underline{\sigma_{1}}\underline{\sigma_{2}}$ . Therefore

$\Delta_{1}^{\underline{\sigma_{1}\sigma_{2}}}\Delta_{3}$ . Put $\sigma=\sigma_{1}\sigma_{2}$ . ロ
Recall that given a reduction $\tau$ : $N_{1}arrow N_{2}$ and a redex $\Delta_{2}$ in $N_{2}$ , we

say that $\tau$ creates $\Delta_{2}$ if$f\Delta_{2}\not\in\Delta_{1}/\tau$ for all redex $\Delta_{1}\in N_{1}$ , and we write

$\underline{\tau}\Delta_{2}$ .
Definition 3.3 An equivalence class $\mathcal{F}$ of redexes in a tem $M$ is $adarrow$

missible iff there is a redex $\Delta\in \mathcal{F}$ and a reduction $\sigma$ : $Marrow M$ such that $\sigma$

creates $\Delta$ .
Proposition 3.4 For each admissible equivalence class $\mathcal{F}$, there exist

some reductions $\sigma 0,\sigma_{1},$ $\cdots,\sigma_{n}$ : $Marrow M$, and the elements of $\mathcal{F}$ can be num-

bered such that

(1) $\mathcal{F}=\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{n}\}$ ,

(2) $\sigma_{0}$ creates $\Delta_{0}$ ,

(3) $\Delta_{i+1}\in\Delta_{i}/\sigma_{i}$ for $i=0,1,$ $\cdots$ , $n-1$.

Proof Since $\mathcal{F}$ is admissible, there is a redex $\Delta_{0}\in \mathcal{F}$ and a reduction

$\sigma_{0}$ : $Marrow M$ such that $\sigma_{0}$ creates $\Delta_{0}$ . Let $\{\Delta_{1}, \Delta_{1}, \cdots, \Delta_{n}\}$ be other redexes

in $\mathcal{F}$ . Since $\mathcal{F}$ is an equivalence class, we have $\Delta_{i}\succ\Delta_{i+1}$ for $i=0,1,$ $\cdots$ , $n-1$ .
Then by Proposition 3.2, there is a reduction $\sigma_{i}$ : $Marrow M$ such that A$i+1\in$

$\Delta_{i}/\sigma_{i}$ . a
We denote the condition (2) and (3) of Proposition 3.4 by

$rightarrow^{\sigma_{0}}\Delta_{0}\Delta_{1}\underline{\sigma_{1}}\underline{\sigma_{2}}$ ... $\underline{\sigma_{narrow 1}}\Delta_{n}$ .

Lemma 3.5 Let $\mathcal{F}$ be a set of redexes in $M,$ $\Delta$ be a $re$dex in $M,$ $k$ be

the number of redexes in $M$ , and $\sigma,$ $\tau$ be reductions $Marrow M$. If $\mathcal{F}/\sigma=\emptyset$ and

$\tau$ creates $\Delta$ , then $(\sigma\tau)^{k+1}$ creates $\Delta$ and $\mathcal{F}\cup\{\Delta\}/(\sigma\tau)^{k+1}=\emptyset$.

$\mathfrak{l}2$
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Proo$f$ Since $\mathcal{F}/\sigma=\emptyset$ , we have $\mathcal{F}/(\sigma\tau)^{i}=\emptyset$ for all $i$ . Since $\tau$ creates $\Delta$ , it

follows that $(\sigma\tau)^{i}$ creates $\Delta$ for all $i$ . So it suffices to show that $\Delta/(\sigma\tau)^{k+1}=\emptyset$ .

Since $(\sigma\tau)^{i}$ creates $\Delta,$ $\Delta$ can not be a residual of any redex by the reduction

$(\sigma\tau)^{i}$ . Therefore, $\Delta\not\in\Delta/(\sigma\tau)^{i}$ . Therefore, by Lemma 2.2, we have $\Delta/(\sigma\tau)^{k+1}=$

$\emptyset$ . ロ

Lemma 3.6 Let $\mathcal{F}$ be a set of redexes in $M,$ $\Delta_{0},$ $\Delta_{1},$ $\cdots$ , $\Delta_{n}$ be redexes

in $M$ and $\sigma,\tau_{0},\tau_{1},$ $\cdots,\tau_{n}$ : $Marrow M$. If

(1) $\mathcal{F}/\sigma=\emptyset$ ,

(2) $\tau_{0}$ creates $\Delta_{0}$ ,

(3) $\Delta_{i+1}\in\Delta_{i}/\tau_{i}$ for $i=0,$ $i,$ $\cdots,n+1$ ,

then $\mathcal{F}\cup\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{n}\}/\theta_{n}=\emptyset$ . where $k$ is the number of redexes in $M$ and

$\theta_{0}=(\sigma\tau_{0})^{k+1},$ $\theta_{i+1}=(\theta_{i}\tau_{0}\tau_{1}\cdots\tau_{i+1})^{k+1}$ for $i=0,1,$ $\cdots$ , $n-1$ ,

Proof By induction on $n$ .
Base step $n=0$. Lemma 3.6 is identical to Lemma 3.5 for this case.

Induction step By induction hypothesis $\mathcal{F}\cup\{\Delta_{0}, \Delta_{1}, \cdots , \Delta_{i}\}/\theta_{i}=\emptyset$. Since

$\underline{\tau_{0}}\Delta_{0}\underline{\tau_{1}}\Delta_{1}$ ... $\underline{\tau:}\Delta_{i}\underline{\mathcal{T}i+1}\Delta_{i+1}$, it follows that $\tau_{0}\tau_{1}\cdots\tau_{i}\tau_{i+1}$ cre-

ates $\Delta_{i+1}$ . Therefore, by Lemma 3.5, we have $\mathcal{F}\cup\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{i}, \Delta_{i+1}\}$

$/(\theta_{i}\tau_{0}\tau_{1}\cdots\tau_{i}\tau_{i+1})^{k+1}=\emptyset$. Thus $\mathcal{F}\cup\{\Delta_{0}, \cdots, \Delta_{i+1}\}/\theta_{i+}^{k+_{1}1}=\emptyset$. $\square$

Lemma 3.7 For any admissible equivalence class $\mathcal{F}$ of redexe$s$ in $M$,

there is a reduction $\sigma:Marrow M$ such that $\mathcal{F}/\sigma=\emptyset$ .

Proof By Proposition 3.4, there exist some reductions $\tau_{0},\tau_{1},$ $\cdots,$ $\tau_{n}\circ$

$Marrow M$ and the elements of $\mathcal{F}$ are numbered such that

(1) $\mathcal{F}=\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{n}\}$ ,

(2) $\tau_{0}$ creates $\Delta_{0}$ ,

(3) $\Delta_{i+1}\in\Delta_{i}/\tau_{i}$ for $i=0,1,$ $\cdots$ , $n-1$ .

\dagger 3
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Let $k$ be the number of redexes in $M,$ $\theta_{0}=\tau_{0}^{k+1},$ $\theta_{i+1}=(\theta_{i}\tau_{0}\tau_{1}\cdots\tau_{i}\tau_{i+1})^{k+1}$ for

$i=0,1,$ $\cdots,n-1$ and $\sigma=\theta_{n}$ . Then we have $\mathcal{F}/\sigma=\emptyset$ by Lemma 3.6. a
Theorem 3.8 A $onearrow step$ recurrent term is recurrent iff all the equiva-

lence class of the redexes of the term are admissible.

Proof Only–if- part: Let $M$ be a recurrent term. Then there is a

reduction $\sigma$ : $Marrow M’\equiv M$ which erases all the redexes in $M$. Therefore $M’$

has no residual of the original tem $M$. Thus, every redex in $M^{l}$ is created by

$\sigma$ . Therefore, every equivalence class is admis$s$ ible.

If-part: Let $\mathcal{F}_{1},$ $\mathcal{F}_{2},$

$\cdots,$
$\mathcal{F}_{m}$ be all the equivalence classes. By induction on

$i=1,2,$ $\cdots,m$ , we prove the existence of a reduction $\sigma_{i}$ : $Marrow M$ such that

$\mathcal{F}_{1}\cup\cdots\cup \mathcal{F}_{i}/\sigma_{i}=\emptyset$.
Base step: Since $\mathcal{F}_{1}$ is admissible there is a reduction $\sigma_{1}$ such that $\mathcal{F}_{1}/\sigma_{1}=\emptyset$ by

Lemma 3.7.

Induction step: By induction hypothesis there is a reduction $\sigma_{i}$ : $Marrow M$

such that $\mathcal{F}_{1}\cup\cdots \mathcal{F}_{i}/\sigma_{i}=\emptyset$ . Since $\mathcal{F}_{i+1}$ is admissible, by Proposition 3.4 there are

some reductions $\tau_{0},\tau_{1},$ $\cdots,\tau_{l}$ : $Marrow M$ and the elements of $\mathcal{F}_{i}$ are numbered

such that

(1) $\mathcal{F}_{i+1}=\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{l}\}$ ,

(2) $\tau_{0}$ creates $\Delta_{0}$ ,

(3) $\Delta_{j+1}\in\Delta_{j}/\tau_{j}$ for $j=0,1,$ $\cdots$ , $l-1$ .

Then we can apply Lemma 3.6 for $\mathcal{F}_{1}\cup\cdots\cup \mathcal{F}_{i}$, $\Delta_{0},$ $\Delta_{1},$
$\cdots,$

$\Delta_{l},$ $\sigma_{i},$ $\tau_{0},$ $\tau_{1},$ $\cdots,\tau_{l}$

, obtaining a reduction $\sigma_{i+1}$ : $Marrow M$ such that $\mathcal{F}_{1}\cup\cdots\cup \mathcal{F}_{i}\cup\{\Delta_{0}, \Delta_{1}, \cdots, \Delta_{l}\}$

$/\sigma_{i+1}=\emptyset$ . Thus $\mathcal{F}_{1}\cup\cdots\cup \mathcal{F}_{i}\cup \mathcal{F}_{i+1}/\sigma_{i+1}=\emptyset$ . ロ

Remark 3.9 In Theorem 1.2, as an example of one-step recurrent term

which is no recurrent we constructed the following term $M=XXYZ$ where

$X\equiv\lambda xyz.xxy(yz),$ $Y\equiv\lambda xz.x(xz),$ $Z\equiv\lambda z.II(IIz)$ and $I\equiv\lambda x.x$ . $M$ has three

$\}\angle\vdash$
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redexes $\Delta_{0},$ $\Delta_{1},$ $\Delta_{2}$ . $\Delta_{0}$ is the leftmost redex. $\Delta_{1}$ and $\Delta_{2}$ are in the subtem $Z$ .
The equivalence classes of the redexes of the term are $\{\Delta_{0}\}$ and $\{\Delta_{1}, \Delta_{2}\}$ . Since

neither $\Delta_{1}$ or $\Delta_{2}$ can not be created by any cyclic reduction of $M$, the class

$\{\Delta_{1}, \Delta_{2}\}$ is not admissible. That is the reason why the term is not recurrent. ロ
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