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Abstract

A one-step recurrent term is a term in A-B-calculus whose one-step re-
ductums are all reducible to the term. It is a weakened notion of minimal form
or recurrent term in the A-B-calculus. In this paper, a one-step recurrent term
which is not recurrent is shown. That term becomes a counter example for
a conjecture presented by J.W.Klop. .By analysis of the reduction cycles of
one-step recurrent terms, a neccessary and sufficient condition for a one-stvep

recurrent term to be recurrent is given.

0. Introduction




The reduction graph of a lambda term [1] is a directed graph which has
- lambda terms at each node. Each arc represents a oﬁe—step reduction from a
term to another term. Thus, all the terms in the graph are reducible from
the term. The structure of the reduction graph of lambda terms or terms in
combinatory reduction systems hés been studied in [1,4,5,9]. When we use
the lambda-calculus as a model of 'computatioh, given a term, we have to se-
lect an appfopriate reduction pathi to reéch the terminél’ node representing its
computation result. The reduction stré.tégies tellsvus which branch we should
follow. Some useful strategies and non-existence of some strategies with special
properties is show in [1, 2, 8]. |

As an attempt to solve a well-know open problem [1,2] concerning the
reduction strategy, Klop (4] defined some notion and gave a conjecture. First,
we review his definitions. Two terms are said to be cyclically equivalent when
they afe reducible to each other. An equivalence class by the relation is called
a plane. A term in a plane is called an ezit when the term is reducible to
another term which is not reducible to any term in the pla.ne.' Klop presented
the following conjecture:

If a plane has an ezit, then every point in the plane is an ezi.
‘One of the authors of this paper introduced a notion of one-step recurrent term
and gave a reformulation of the above conjectiu‘e [6]. A term is said to be
recurrent if the result of any reductioﬁ of the term can be reducible to the term
(7] A term is called one-step recurrent if the result of any one—stép reduction of
the term' is reducible to thé term. One—step recurrent term is a weakened notion
of recurrent term; Recurrent 'térms‘ are called minimal forms in [1,3]. Using the
notion of recurrence, we can reformulate Klop’s conjecfure as follows:

Every one-step recurrent term is recurrent.

2



)

e

In [6], the conjecture was proved for the one-step recurrent term with at most
two redexes, and some properties of one-step recurrent terms are studied.

In this paper, we solve the problem in negative form, i.e., we gifre a one-
step recurrent term which is not recurrent. And we examine the difference of
one-step recurrent term and recurrent term. As a reéﬁlt of fhe analysis, we
obtain a necessary and sufficient condition for a one-step recurrent term to be

;ecurrent.

1. One — step recurrent terms and recurrent terms

In this Seétion, we vdéﬁne the notions of one-step recurrent terms and
recurrent terms. And we prove that the set of all recurrent terms is a proper
subsét:of ﬂle set of all one-step recurrent terms. This is oﬁe of the main theorem
of this papég. We states two fundamental lemmas which we use through the
discussion. | |

First, we begin by explaining the notations and terminology, almost of
which are usual ones.. 1

We use the letter M, My, My,---, M;, N, - -+ for A-terms. The upper case
greek letters A, Ay, --- stand for redexes, ¥ stand for set of redexes of a term.
We use the symbol = for identity (up to a-conversion) of terms. The set of all
redexes in a term M is denoted by redez(M). We use — for one step reduction,
and —» for the reflexive transitive closure of —». When there is a reduction
M — N we say that M is reducible to N or that N is reducible from M. If the
reduction is one-step reduction, we say that M is oﬁe—step reducibleto N of that
N is one-step reducible from M. When M = N the reduction is called 2 cyclic
reduction of M. The lower case greek letters o, 1, 01, - stand for reductions.
Given a sequence of reductions g; : N; = N;y; (1 =0,1,: ‘. , k), the successive

composition of o;’s is denoted by o103 ---0 : Ny — Ng —» -+« — Np —» Np4p.
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If all N;’s are the same ’term and all o;’s are identical to o, then oy o2 «+- 0%
is denoted by o*. Given a reduction ¢ : M — M’, a redex A in M, a set 7
of redexes in M and a redex A’ in M’, A/o stands for the set of all residuals
of A by the reduction o. ¥/o stands for the union of the set A;/o for all
A; € 7. I A' is a residual of A by o, ie., A’ € A’/o, we rite A — Al or
(A, M) = (A’, M"). When A is not a residual of any redex in M, we say that
o creates A’ and write —— A'. When there is no residual of A in M’, we say
that o erases A.

Recurrent terms are called minimal forms in [1]. The notion of one-step
recurrent terms is defined in [6].

Definition 1.1 A term M is recurrent iff every term reducible from

M is reducible to M. M is one-step recurrent iff every term one-step reducible
from M is reducible to M.

The set of all recurrent terms and the set of all one-step recurrent terms
are denoted by Ao, and A; respectively. Since any one-step reduction is a re-
duction, any recurrent term is a one-step recurrent term. However the converse '
is not true in general.

, Theorem 1.2  There exists a one-step recurrent term which is not re-

current.

Proof Let M = XXYZ where X = Azyz.zzy(yz), Y = Azz.z(z2) ,

Z = Az.II(I1z) and I = Az.z. The term M has three redexes
Ag : the leftmost redex, ‘
Aj : the subterm I in the left position in Z, and
Aj : the subterm I in the right position in Z.

.By reducing Ao and Aj, we have a reduction

M=XXYZ - XXY(YZ) —» XXY(Y()2.I12)).

L}.
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Since
Y (Az.IIz2) — Aw.(Az.II2)((Az.]1z)w) — Aw  JI(IIw) = Z,

we have a reduction XXYZ — XXY (Y (Az2.IIz)) — XXY Z which erases
Ag and A;. Even if we reduce Ag and A,, we havé the (syntactically) same
reduction. Thus, there are reductions which erase each redex in M. Therefore,
M 1is one-step recurrent.

Next, consider the term X XY (Az.Iz) which is obtained by reducing all the
redexes Ag, A1 and As. Any reduction of the term does not produce a term
which has the subterm II. Therefore, it is not reducible to M. Thus, M is not
recurrent. []

Given a set 7 of redexes in M, a reduction M —Z» N is called a complete
development of (M, ¥) iff it erases all the residuals of ¥ and all the redexes
contracted through o are residuals of some redexes in ¥. The resulting ferm
by any complete developments of (M, ¥) is unique, so we denote it by G7(M).
When 7 1s the set of all redexes in M, we write it as G(M). The following lemma
says that if a reduction erases some redexes of é‘term then the resulting term
can be obtained by reducting the redexes first and followed by some reductidn.

Lemma 1.3  Let 7 be a set of redexesin M and o : M — N be a
reduction. If N has no residual of ¥, then G7(M) is reducible to N.

Proof By induction on the length of 0. Suppose that o is of the form
o:M 22, M' 2 N and that op reduces a redex A in M. Then by induction
hypothesis for o1 and 7 /00, G7/s,(M') is reducible to N. Let 7o be a complete
developmenf of (M, ¥), r1 be a complete development of (M’, ¥ /0o) and o3 be
a complete development of (Gz(M),A/r). Since both oor1 and 7ooy are the

complete development of (M, FU{A}), they produce the same term G/, (M’').
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Thus, we have Gr(M) 2» G 7/ao(M'). Therefore, G5(M) is reducible to N.

(See Figure1.) [ ]

Figure 1

Lemma 1.4 The following three conditions are equivalent.

(1) M is recurrent.

(2) G(M) is reducible to M.

(38) There is a cyclic reduction of M which erases all the redexes in M.

Proof The equivalence of (1) and (2) is proved in [3]. (2) = (3) is

trivial. (3) = (2) is an easy consequence of Lemma 1.3. []

2. Compatibility of redexes

~ In this section, the notion of compatibility of redexes in a term is deﬁned,

and a sufficient condition is given for a one-step recurrent term to be recurrent.

The notion is come from the analysis of the construction of cyclic re-
ductions from some simple cycles. First we explain the intuitive idea of the
analysis.
If we want to show that a one-step recurrent term M is a recurrent, we only have
to construct a reduction o : M —» M which erases all the redexes in M by
Lemma 1.4. Since M is one-step recurrent, we have reductions o1,03,+--,0 :
M —» M each of which erases a redex A; in M. So it would be natural to try
to construct the reduction o from o;’s. The reduction o; erases the redex A;,
however, the residuals of another redex A; would

(1) disappear, or

(2) appear in one position, or
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(3) appear in mofe than two places.
If (1) or (2) is true for all o;’s, each reduction would decrease the number of
residuals to be erased. Therefore, all redexes could be erased. However, if (3)
is true for some reductions, an essential difficulty arises for the case in which
Ay, Aj € Ajfo; and Aj, A; € A;/oj. In this case any times of reductions of o;
and o; léa.ves the residuals of o; or o; in the both positions A; and A; in the

resulting term. (See Figure 2.)

Figure 2

Thus we can not erase both A; and A; at the same time by this way. (In fact
the term given in Theorem 1.2 is such a term.) If such case does not happen
for the term, we can construct the desired reduction. That is the main theorem
in this section.

Definition 2.1 Let Ay and A3 be distincf redexes in M. We write

Ay > Ag iff there is a cyclic reduction o : M —» M such that

(a) Agfo =0,

(b) A1,Aqz € Ay/o.
A; and As are incompatible iff Ay > Ag and Ag > A;. Aj; and Ay are
compatible iff they are not incompatible. M is compatible iff every two redexes
in M are compatible.

Lemma 2.2 Let A be a redex in M, o be a reduction M —» M and k
be the number of redexes in M. If A ¢ A/o* for all i < k, then A/o* =0.

Proof Let M; be the term M after the reduction o*. Since all M;’s are
syntactically identical, M; has the corresponding redex occurrence of A’ in the

same position in it for each redex A'. So let it be denoted by (A', M;).
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Suppose that A/o* # . Then M; has a residual of (A, Mp). Therefore,
each M; (i = 0,1,---,k) has residual (A;,M;) which is a redex of A, and
(A, M;) 2 (Aigr, Miy1) where Ag = A. (See Figure 3.) |

Figure 3

At first stage M, since A ¢ A/o, the redex (A, M) is distinct from (Ao, M7).
Now assume that the redexes (Ao, M), -+ -, (A4, M;) are distinct in the i-th stage
M;. Then at ¢ + 1-th stage, M, has ¢ + 1 redexes (A1, Miy1),- -+, (Aip1, Miyq)
each two of which are diétinct, because they are .the residuals of distinct redexes
in the previous stage. Moreover, they are not identical to (Ao, Mi11), because
AgA/ o™+2, Thus M1 has ¢ + 1 redexes. Therefore, My, has k redexes. A
contradiction. Therefore, A € A/ o* for some 7 < k. D

Remark 2.3 Inrthe definition of A; > Aj, the existence of a reduction
o : M —» M is required such that '

(a) Az/o =40,

(b) A1, Az € Ayf0.

However, the requirement (a) can be removed as follows. Suppose that o sat-
isfies the condition (b). Since Ay, A € A1'/a, we have A € Ay/o? for all 4.
Therefore Az ¢ Aa/o'. Thus, we have Az/o* = @ by Lemma 2.2, where k is
the number of redexes in M. So the reduction o* satisfies both (a) and (b).
Therefore, all we have to show to prove A; > Ag is an existence of a reduction
o : M —» M which satisfies (b). L[]

Lemma 2.4 Let M be a compatible one-ste? recurrent term. Then
for any set ¥ of redexes in M, there is a reduction o* : M —» M such that

Flo* = 0.
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Proof By induction on the number n of redexes in ¥.
Base step n = 1. Since M is one-step recurrent, the redex in ¥ is erased by
some reduction o* : M —» M.

Induction step Let ¥ = % U {A} where A ¢ 7. By induction hypothesis,

there is a reduction o : M —» M such that % /o = 0. Let k be the number of
redexes in M.

Case 1 A/d*=0.

Since %/o = @ we have %/oF = @. Therefore 7 U {A}/o* = 0. Then put
o* = oF.

Case 2 Ajo* #40.

Then by Lemma 2.2 A € A/ o' for some 7 < k. Since M is one-step recurrent,
there is a i‘éduct@én T: M —» M such that A/r = 0. Let § = o'r : M LN
M- M.

Now suppose that A/g* # 0. Then by Lemma 2.2, we have A € A /87 for some
J < k+1. Let My = M, and M;,M>,M3,M,, be the terms after reduction M,

be the term M after o%,0, 67 and 670° respectiveiy. (See Figure 4.)

Figure 4

Since My, My, M;, M3 and My are syntactically identical to M, each M; has a
redex occurrence of A At the corresponding position. Let it be (A,Mi). Since
A € A/, M has a residual (A', M) of (A,Mo) such that (A, Mo) F2s
(A", M), (Al,M;) iy (A, M3). The reduction 7 erases (A,Mi), so that
(A’ ,Ml) is distinct from (A, Mj). Therefore A and A’ are distinct. Thus we

have two redexes A, A’ and two reductions 0,767 716" such that A, A’ € A/o;



and A, A’ € A'/r§7-15*. This contradicts the assumption that M is compatible.
Thus we have A /6% = 0.

On the other hand, we have % /0% = § by the definition of § = o* and the
assumption % /o = @. Therefore, we have ¥ U {A}/8* = §. Then we can put

o* = 6%, D

Theorem 2.5 Every compatible one-step recurrent term is recurrent.

Proof Let 7 be the set of all redexes in a compatible one-step recurrent
term M. By Lemma 2.4, there is a reduction M 2" M such that 7 [Jo* =0.
Then M is recurrent by Lemma 1.4. O

Remark 2.6 The converse of Theorem 2.5 does not holds in general,
i.e., every recurrent term is not always compatible. For example consider the
term N = VVXYWI(XXY Z) where V = Avzyzwizwvzywi(zzy(wi)), X =
Azyz.zzy(yz),Y = Azz.z(z2), Z = A2 JI(I12),] = Az.z and W = Aiu.ii(siu).
Recall that we constructed the term M = X XY Z in'Theorem 1.2. The term
M has three redexes

. Ag : the leftmost redex,

Ay : the left redex IT in Z, and

Aqg : the ﬁght redex IT in Z. |
Let oy be the reduction which reduces Ag ‘a.nd Al', Then we have XXY Z -Zt»
XXY (Y ()\2.(IIz))) where the subterm I in the result of o1 is a residual of
Ajz. Since there is a reduction r : Y (Az.JI2) — Aw.(Az.IIz)((Az.1Iz)w)
—» Aw JI(IIw) = Z, we have XXY Z 2% XXYZ. Since the subterm II’s
in the result M are the residual of the redexv Ilin YtAz.I Iz), >A1 and A, are
the residuals of As by oy7. Thus A1, A € Aj/olr; We can apply the similar
argument for the reduction oy which erases Ag and A;. Therefore we have

A, A € Al/azr.‘ Therefore XXY Z is incompatible. So N is not compatible. 0
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3. Admissible class of redexes

In Theorem 1.2 of section 1, we gave a term M which has two incom-
patible redexes A; and Ag, ie., Ay > Az and Az > A;. For that term, we
have shown the impossibility of erasing both redexes by any cyclic reduction. In
Theorem 2.5 of section 2, we proved that all redexes of a recurrent term can be
erased by some cjrclic reduction, if any two redexes in the term are compatible.
However, as we have shown in Remark 2.6, the compatibility is not always a
nec;assa.ry condition for the redexes to be erased by some cyclic reduction. In
fact, even if a term has incompatible redexes in it, all redexes can be erased by
some cyclic reduction — repall Lemma 1.3.

In this section we ex:;.mine the reason why incompatible redexes can be
erased by some cyclic reduction when the term is recurrent. And we give a
necessary and sufficient condition for a one-step recurrent term to be recur;'erit.

Definition 3.1 We define the equivalence relation ~ of redexes in a

term, inductively by
(1) A~ A,
(2) AL > Az, Ag > Ay = Ay ~ Ay,
(3) Ar~ Az, Az ~ Az => A1 ~ As.

”~7” is the equivalence relation generated by ”incompatibility”. We call an

”»

equivalence class module ”~” simply an equivalence class or a class.

Proposition 3.2 Let A; and Ag be redexes in a term M. If A; ~ Ag,

then there is a reduction o : M —» M such that A; € Ay /0.
| Proof By induction on the definition of ”~".
Base step (1) Take an empty red"uction as o, then we have A — A.
Base step (2) Suppose that Ay > Ag and Az > Aj. Then there is a reduction

such that A; — Ag by the definition of A; ’> As.
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Induction step (3) Suppose that Aj ~ Ay and Az ~ A;. By induction hypoth-

esis, we have reductions o; and o3 such that A; Ly Ag, Ag 2 Aq. Therefore
Aq 772 Ag. Put o0 = o0107. E\

Recall that gi;v'en a reduction 7 : N; —» N3 and a redex Aj in Ng, we
say that 7 creates Ay 1ff Ag € A;/r for all redex A; € Ny, and we write

r
— Ao,

Definition 3.3 An equivalence class ¥ of redexes in a term M is ad-

missible iff there is a redex A € 7 and areduction o : M —» M such that o
creates A.

Proposition 3.4 For each admissible equivalence class ¥, there exist

some reductions 09,01,+++,0, : M —» M ) and the elements of # can be num-
bered such that
(1) F={A0,A1,--+,An},
(2) ao‘crea,tes Ao,
(3) Ai+‘1 € A;/o; fc:>rz'=0,1,---,n—1.
Proof Since 7 is admissible, there is a redex Ag € F and a reducf.ion
0o : M —» M such that og creates Ag. Let {A1,A1,--+,A,} be other redexes
in 7. Since ¥ is an equivalence class, we have A; > Ay for:=0,1,---,n—1.
Then by Proposition 3.2, there is a reduction o; : M —» M such that A;; €
Ao, O
We denote the condition (2) and (3) of Proposition 3.4 by

b o o Tn—1
}—ierl-—-jl-)All—i)---l-ﬁ-—)An,

Lemma 3.5 Let 7 be a set of redexes in M, A be a redex in M, k be |
the number of redexes in M, and o, 7 be reductions M —» M. If /o = 0 and

T creates A, then (o7)*%! creates A and 7 U {A}/(ar)*+! = 0.
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Proof Since ?/6 = @, we have 7 /(o7)* = 0 for alli. Since 7 creates A, it
follows that (o7)* creates A for all <. So it suffices to show that A/(o7)**! = 0.
Since (o7)* creates A, A can not be a residual of any redex by the reduction
(o7)f. Therefore, A ¢ A/(o7)t. Therefore, by Lemma 2.2, we have A /(or)*t! =
p. U

Lemma 3.6 »Let ¥ be a set 6f redexes in M-, Ag,Ay,--+, A, be redexes
in M and 0,70,T1,**sTh : M —» M. If 7

(1) Flo =0,

(2) m0 creates Ay,

(8) Ajp1 € Ayfryfori=0,1,-++,n+1,
then 7 U {Aq,A1,---,An}/bn = 9; where k is the number of redexes in M and
6o = (oro)"';'l, 0;41 = (O;rom1 - - r,-_*;l)"“‘”l fori=0,1,---,mn—1,

Proof By induction on n.

Base step n =0. Lemma 3.6 is idg_ntica.l to Lemma 3.5 for this case.

Induction stép By induction hypothesis ¥ U {Ag,Ay,--,A;}/8; = 0. Since

b T T Ti+1 .
o Ag 5 Ay > eee 5 Ay B3 Ay, it follows that oy - -- 17y cre-

ates Ajyy. Therefore, by Lemma 3.5, we ha.ve ?U {Ao, A1, 0+, A, Ajg }
[(8:irors - 773 )¥ = 0. Thus FU {Ag, -+, Ai1} /91.‘_:'11 =¢. [

Lemma 3.7 For any admissible equivalence class 7 of redexes in M,
there is a reduction o : M —» M such that 7 /o = 0.

Proof By Proposition 3.4, there exist some reducf;ions T0sT1y***sTn &
M —» M and the elements of 7 are numbered such that

(1) F ={Ao,A1,-+,An},

(2) 7o creates Ay,

(3) Ay € A,'/T,' fort=0,1,---,n—1.

o)
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Let k be the number of redexes in M, o = T(f"'l, 0;11 = (83707 - -~ 73Ty ) ¥ for
t=0,1,---,m» —1 and ¢ = #,. Then we have ¥/o = 0 by Lemma 3.6. O

Theore;n 3.8 A one-step recurrent term is recurrent iff all the equiva-
lence class of the redexes of the term are admissible.

Proof Only—if — part: Let M be a recurrent term. Then there is a

reduction ¢ : M —» M’ = M which erases all the redexes in M. Therefore M’
has no residual of the original term M. Thus, every redex in M’ is created by
o. Therefore, every equivalence class is admissible.

If —part: Let #,%, -+, Fn be all the equivalence classes. By induction on
1= i, 2,---,m , we prove the existence of a redﬁction 0; : M —» M such that
AU---UFfo;=0.

Base step: Since # is admissible there is a reduction o1 such that # /o1 =0 by
Lemma 3.7.

Induction step: By induction hypothesis there is a reduction o; : M —» M

such that AU--- % /o; = @. Since F4; is admissible, by Proposition 3.4 there are
4 some reductions 79,71,-++,7; : M —» M and the elements of #; are numbered
such that
(1) Fir1 ={A0, A1y, Ay},
(2) 70 creates Ag,
(8) Ajy1 € Aj/rjfor y =0,1,---,1— 1.
Then we can apply Lemma 3.6 for FU---UZ, Ao, A1, -, AL 05,70, 1y, T
, obtaining a reduction 0;,; : M —» M such that AU---UFU {Ag, A1,--+, A1}
Joix1 =0. Thus AU---U FU Fyy Joip = 0. il
Remark 3.9 In Theorem 1.2, as an example of one-step recurrent term
which is no recurrent we constructed the following term M = X XY Z where

X = Azyz.zzy(yz),Y = Azz.2(zz), Z = A2.JI(I12) and I = Az.z. "M has three t

V4
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redexes Ag, A1, Ag. Ag is the leftmost redex. A; and As are in the subterm Z.
The equivalence classes of the redexes of the term are {Ao} and {A1, A2}. Since
neither A; or As can not be created by any cyclic reduction of M, the class

{A1, Az} is not admissible. That is the reason why the term is not recurrent. O
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