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ABSTRACT

We discuss about the connection of logical inference system KAUS
to the existing conventional RDBMSs, where knowledge
representation of views and integrity rules in S-model
expressions, and P-models of user requests, which are generated
from S-models in the knowledge base by the inference engine in
KAUS are proposed for the purpose. A P-model is a semi-logical
program model of user requests which is addressed to be
transformed to target data sublanguages in remote RDBMSs or to be
evaluated by the interpreter provided by the local database
system. It is shown that the existing conventional relational
databases are put into deductive use via S-models and P-models
described in this paper. They provide us with vast classes of
data definition and manipulation facilities including transitive
closure - operations.

1. Introduction

In the last decade since the Codd's proposal of the relational
data model, the research and development in database fields have
been greatly advanced. The study of deductive databases is one
of them. A deductive database is a logic database which can make
logical inference onrelations among facts [1]. It is now

getting possible for us to implement a practical system of the
deductive database according to the recent rapid progress in the
computer hardware and software technology. Although the
conventional relational database systems (RDBMS) are still in
practical use, we think it would be more profitable that the
existing conventional RDBMSs, which have no deductive power,
could be put into the deductive use.

With this motivation, we aim to show that the conventional
relational databases are put into the deductive use by conjoining
logical inference system KAUS [15] to their management systems.
More strictly speaking, we try to make the existing conventional
RDBMSs turn to definite deductive database systems under the
closed world assumptions (CWA) by conjoining KAUS to them. We-
remarks here that KAUS is a knowledge processing system based on
multi-layer logic (MLL), which is an extended version of the
first order predicate logic [13,14]. The name of the system is
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the abbreviation of 'Knowledge Acquisition and Utilization
System'.

We conjoin KAUS to conventional RDBMSs through S-models in the
knowledge base and P-models generated from S-models. A P-model
is a semi-logical program model of user requests, and is
transformable to the connected RDBMS language. S-models are
user's views of the connected databases. The users may be any
level of the end users, application programmers, system
programmers, and database administrators. ‘

Concerning with the data access of an existing relational
database through a logical system, several approaches will be
considered. One extreme of them is to centralize distributed.
data files by converting them to the unified data format and then
to manage them only within the logical system. We think this
approach is promising for the user of a personal small database.
But this approach suffers from several difficulties when both of
public and very large databases are utilized. Even 1if -the
requested data files could be converted, we cannot make effective
use of most of the functions of their management systems. It is.
undesirable for us; even so from the general standpoint of
effective use of existing softwares. On the other hand, there
exists another approach which makes effective use of the
existing RDBMS functions including query evaluations. It is a
system by system connection, by which we can cover the
disadvantages of the former. We would like to adopt this
approach in this paper.

For the purpose, it must be first considered what operations
and/or data should be responsible to each of the systems. S-
models of the connected RDB described in the next section are
solely responsible to the users of KAUS, and are written in KAUS
knowledge representation language. They are used for KAUS to
produce the semi-logical program models called P-models of
database operations. The transformation of P-models to the
programs in the data sublanguage (DDL/DML) supported by the
connected RDBMSs may be done in either KAUS or RDBMS application
programs. But we do not deal with the real compilation problem
in the paper. Instead, we restrict our discussions to (1)
knowledge representation for RDBMS connection, (2) P-model
specification together with examples and (3) the method of
generation of P-models, where we also give some illustrative
examples.

2. Knowledge Representation in S-model

The figure 1 shows the overview of the connection between KAUS
and RDBMSs. The translators in the figure are interface modules
which translate P-models to the DDL/DML supported by the
connected RDBMSs. As noted in the introduction, the details of
these modules are not described hereafter. Only some examples of
intuitive transformations of P-models to the host RDBMS language
will be shown in the next section.



aside from the translators, the
main problems arising in the
connection are that

(1). what knowledge should be
described in the S-model,

(2). in what forms the S-model
is represented,

(3). the specification of P-
models, and

(4). how the inference engine
derives a P-model from

the S-model.

This section is concerned with
(1) and (2).

Knowledge described in the S-
model consist of the semantical
data model of databases, user's
views of the relations and
derivation rules which define
virtual or derived relations
among base relations in the
databases. Constraint rules are
also included in the S-model. 1In
the ANSI/SPARC terminology, the

S-model contains schemas in the

conceptual and external level of
the connected databases.
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the connection

The S-model is written in KAUS knowledge representation language.

Hereafter,
KRL/KAUS.

we call our knowledge representation language
With relation to database applications,

KRL/KAUS

possesses the following three characteristics:

(a). It provides us with the data abstraction facilities -
aggregation and association of objects
" used at conceptual data modelling [2].

as generalization,

such

The abstraction

hierarchies are specified by KRL/KAUS commands.

(b). All variables in well-formed formulas (wffs) in

are typed variables,
automatically.

(c).

so tha

Types can be also variables.

KRL/KAUS

t occur check is done

This enables us to

formulate hyperrelations as is the case in the DEDUCE-II

[8], Dbut also hierarchic
relations.

ally

aggregated data objects in

Figure 2 shows an example of abstraction related to person.
This is represented by KRL/KAUS commands as follows.

!sk_e *person employee;
'sk e *2employee rel emp;
'def_struct employee

[ ps_name

emp_sal

string,
integer,
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emp_mng : string,
dept : string :
1; : (2.3)

The first line (2.1) says that 'an employee is a person'. In
other words, it means that 'employee' is generalized to 'person',
The second line (2.2) says that 'a rel emp is a set of subsets of
employees’. The succeeding last few lines (2.3) define the
aggregation hiearachies of 'employee'. In the command line
!def struct, 'ps_name:string' denotes that the domain of the
attribute ps_name is a string. Then, the rel_emp can be
interpreted that it is a set of employee relations.

As seen in the above exam- - . - Association layer
1 KRL /KA lies th
ple, /XAUS appli S PERSON *PERSON * 2PERSON

set theory to represent P 7
abstraction hierarchies of Ul/,/i’/zxul,,f’”/#’“|

attributes, domains and EMPLOYEE —— *EMPLOYEE *2EMPLOYEE
relations in the database ’ lization layer
definition. For example, . ‘

a set of the all subsets

of a given set, which is - .

called a power set, is Aggregation layer PERSON

applied to define genera- l ,////,:;;7 |\::::?\\\\\
lization and association : -

hierarchies of objects. PS_NAME PS_SEX PS_BIRTH PS.AGE PS_ADDRS

Then, the command (2.1),

in which '*person' denotes Fig.2. An example of abstraction
the power set of persons, )

is interpreted that 'employee is an element of the power set of
persons'. It is noted here that the word 'employee' written in
the command line denotes the name of 'the set of employees'.
Also, *2employee denotes the power set of the power set of
employees. In database terminology, it is said that each element
of a power set is an association of base elements which
constructs the power set. (The more details of the syntax and
semantics of KRL/KAUS are omitted here because it is not the
purpose of this paper.).

The role of abstraction of objects in the S-model is mainly
concerned with type checking of objects at the inference stage.
Another role of the S-model is to represent the user's views or
constraint rules for database operations. They are written in
logical formulas defined in KRL/KAUS. Together with abstraction
of objects, they complete the -S-model for data definition and
data manipulation of objects. Let us consider, for example,
the next relations totally defined in the connected RDBMS.

EMP (NAME, SAL ,MNG,DEPT) (2.4a)

SALES (DEPT, ITEM, VOL) (2.4Db)

LOC(DEPT,FLOOR) - (2.4c).

Relation EMP describes the fact that employees have a salary,
work for a manager who is also an employee and work in a
department. Relation SALES says that a department sells items in
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certain volumes. Relation LOC says that a department is on a
certain floor. If a user's view on relation EMP is that it is a
relation which says that a certain employee works in a certain
department, it is written as follows. '

[AX/person][AY/gepartment]
(| (work X Y) '(get_db #emp #name X #dept Y)). (2.5)

The formula denotates the following meaning: To show that a
person X works in a department Y, get the relation EMP and find
a tuple where EMP.NAME is X and EMP.DEPT is Y. If it is found,
it is known that X works in Y. The variables X and Y are
appreciated here that they play a role of domain variables in
relation EMP. Another KRL/KAUS expression which is semantically
equivalent to the above formula is an expression with a tuple
variable:

[AX/#emp](work X:#name X:#dept). | (2.6)

In the formula (2.6), the variable X plays a role of the tuple
variable of relation EMP. Comparing with the first expression,
it is more compact, but rather implicit or skolemized with
respect to the arguments of the predicate work. Another point is
that the first expression with domain variables is more rule like
expression and the second with a tuple variable is more fact like
expression. Due to our method of generating a P-model from the
S-model, we adopt to express views by formulas which use only
domain variables. Considering with a criteria for providing a
natural language interface, the rule based expression seems to be
more suitable and flexible for the purpose.

The above example is of less deductive use, because the relation
work is nothing than a projection on NAME and DEPT of the base
relation EMP. The next example which defines a relation co-
worker is of more deductive use.

[AX,Y/person][AZ/department] .
(| (coWorker X Y) “(work X Z) “(work Y Z) ~'(ne X Y)). (2.7)

This says that if X and Y work in the same department Z, they are
co-workers with. each other.

On the other hand, aggregate operations may appear frequently to
evaluate queries. For example, consider that we want to get the
average salary of employees in a certain department. Then, S-
model representation becomes as follows.

[ADept/department ] [AX/integer]
[AEmp/person][ASals/*lnteger][ESal/Sals]
(| (avg_salary Dept X)
(work Emp Dept)
“(earn Emp Sal)
“'(average Sals X)
). : ' ' (2.8)
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We can observe here that the variable Sals is a set type each of
which elements is an integer Sal satisfying (earn Emp Sal). This
suggests that a grouping operation would be necessary at the
database manipulation.

The last example of a view expression is related to a-recursive
relation. Assume that we think that a manager who manages a
manager of a certain employee is also a manager of the employee,
This is written as follows.

[AX,Y/person] .

(| (manager X Y) '(get_db #emp #name Y #mng X)). , (2.9a)
[AX,Y,Z/person] _ -

(| (manager X 2) (manager X Y) (manager Y Z)). (2.9b)

In the conventional database systems, such a recursive relation
would be ruled out from views because it might fall into an
infinite loop in the query evaluator unless it is treated well
with considerable attention. Recently, the recursion problem in
database fields is being investigated by several authors([3,6].
Using connection graphs is one approach to solve the problem
[3,6]. But we take a different approach, where we embed the
meta-predicate concerning with recursion in the given view
description. Then, the (2.9b) is corrected to

[AX,Y,Z/person]
(| (manager X %)
"'(recursion manager)
“(manager X Y) ~(manager Y Z)). (2.9¢c)

This is read that if the predicate manager is treated as a
recursive predicate, and if X is a manager of Y and Y is a
manager of 7, then X is a manager of Z. Such a meta-level
information will be utilized for generating P-models from the S-
model. The subject is to be discussed in the section 4.

In addition to view modelling, constraint modelling is also a
significant part of the S-model construction. As is well known,
the valid database state is maintained by imposing integrity
constraints on the database update. Type constraints and data
dependencies constraints are among them. Similar to -view
modelling, these constraint rules can be described by the wffs in
KRL/KAUS. As described earlier, type constraints are self-
contained in the quantification part of wffs in KRL/KAUS. The
body of the followed definite clause describes conditions that
must be obeyed before or after the database modification is
performed. For example, assume that relation FATHER(PS1,PS2),
where PS1 is the father of PS2, is defined in the database. We
constrain relation, FATHER to obey the following conditions.

(C1). The sex of PS1 is male.

(C2). The PS2's father is unique.
(C3). Relation FATHER is asymmetric.
(C4). Relation FATHER is not cyclic.
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Then, these constraints would be described as follows.

[AX/male][AY/person]
(I (validated #rel father X Y)
“(cond c2 X Y)
“(cond c3 X Y)
“(cond c4 X Y)
). (2.10)

This rule can be addressed to be evaluated by the With statement
in a P-model (see the next section). The other constraint rules
as well, for example, that of access right can be described in
the similar fashion.

3. P-model specification

The S-model described in the previous section has exclusively
concerned with view expressions in the semantical level of the
connected databases. In terms of deductive databases, it defines
the proper axioms (non-logical axioms) of the connected
databases. P-models described here are derived from the given S-
model. They present rather operational aspects of the user's
requests. Therefore, a P-model is said to be a semi-logical
program model of a user's request. The P-model constructs are
designed so that it satisfies the following requirements.

(a). Expressiveness for vast classes of user requests.
(b). Transformabilityto various target DSL and embedded DSL.
(c). Readability.

With respect to (a), P-model should be able to express requests
for negated facts, computations of aggregates, transitive
closures, data defini-
tions, database up-
date, and so forth, as
well as ordinary
requests.

Ri : Relations (From statement)

S/H : Selection and flapping
(Uhere statement)

Considering (b), the
existing relational
data sublanguages are
classified into two
types; ones based on
relational algebra and
the others based on
relational calculus.

MERG : File merging
(Hhere statement)

Typical P-mode! Expression

From ..... From .....
Relational calculus is Gt ..... Uith  .....
also subdivided into . Uhere ..... | Update .....
tuple calculus and S LA Uhere .....
domain calculus. SQL :
in System-R and QUEL.
in INGRES are typical- , )
ly tuple calculus Fig.3. A partial graphical
oriented; . QBE in © representation of a P-model
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Query-by-Example is typically domain calculus oriented. Our p.
model is then required to be transformable to each of the types,
We note here that the P-model expressions seem to be a hybrid of
the above types, that is, that possesses both of algebraic ang
relational calculus features.

Figure 3 shows partial graphical representation of P-models
described hereon. According to the figure, a P-model description
is a semi-logical program model of a user's request, which
describes his or her goal with a goal command preceded by a From
statement and followed by a Where statement. The set of goal
commands consist of Get, Insert, Delete, Update, Define ang
Create. They denote the classification of offered queries. A
From statement describes the used relations to attain the goal.
The Where statement describes conditions (restrictions) to attain
the goal. As the Where statement takes a leading part in P-model
constructs, we give the details of it here. The general form .of
the Where statement is as follows.

Where [Q1V1/D11[Q2V2/D2]...[QnVn/Dn]l
(C R1[S1/M1]1<V11,...,V1i>,
R2[S2/M21<V21,...,V23>)[S3/M3]<V31,...,V3k> (3.1)

Where, [QiVi/Di] denotes that the variable Vi is quantified by Qi
(Qi=A or E) and its domain is Di. C denotes the file merge type,
which is either one of &(AND-merge), |(OR-merge), and *(RECURSIVE-
merge). The R1 and R2 are relational file names to be merged.
[S1/M1] and [S2/M2] denote selection and/or arithmetic
calculation related only to relation R1 and R2 respectively.
[S3/M3] denotes selection and/or arithmetic calculation to be
done in the C-merged relation. <...> denotes a projecting list;
for example, <V11,...,V1i> denotes a projecting list onto which
R1[S1/M1] is projected, and <V31,...,V3k> is a projecting list
for the C-merged relation (C R1... , RZ2...) under restriction
[S3/M3]. It is remarked here that all of the components of the
projecting lists must be declared in the quantification part, and
that because a merged file is also a relation, (C ....)
constructs a nested form.

In the sequel, we give some examples for the illustrative
purpose. Rather the strict notation of P-model constructs will
be seen in the appendix.

Example 3.1. The following is the P-model expression of the
query to find the items sold by at least two departments on the
second floor.

From sales(dept,item), loc(dept,floor)
Get item
Where [EX/item][EYY/*dept][AY/YY]
(& sales[ ]<Y,X>,
loc[floor="2"'1<¥Y>)[count(YY)>=2]1<X> (3.2)

The quantification [EX/item][EYY/*dept][AY/YY] is interpreted in
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the generative mode; that means that, for a given item X, a
subset YY is generated from the set of departments under the
condition that each element of YY satisfies the succeeding
formula (& sales[]<Y,X>, loc[floor='2']1<Y¥>). Then, the items X
associated with count(YY)>=2 are selected. The followings are
the semantically equivalent (in the sense of denotation) SQL,
QUEL and QBE expressions which would be obtained from the above
p-model.

(SQL) SELECT ITEM
FROM SALES
WHERE DEPT 1IN
(SELECT DEPT FROM LOC WHERE FLOOR='2')
GROUP BY ITEM ‘ '
HAVING COUNT(DEPT) >= 2 (3.3)

(QUEL) RANGE OF S IS SALES
RANGE OF L IS LOC
RETRIEVE (S.ITEM)
WHERE COUNT(S.DEPT BY S.ITEM WHERE S.DEPT=L.DEPT

AND L.FLOOR='2") »>= 2 (3.4)
(QOBE) LOC(DEPT:dpt, FLOOR:'2'") ‘
SALES(DEPT:cnt.all.dpt>=2, ITEM:p) (3.5)

Example 3.2. The example is related to obtaining the transitive
closure of given relations. 1In the section 2, we have discussed
about the recursive relation, where we have considered that a
manager who manages a manager of a certain employee is also as a
manager of the employee. If we inquire that who are all managers
of Anderson with this view, its P-model becomes as follows. (see
details in the next section).

From emp(name,mng)
Get mng
Where [EXX/*mng][EY/XX][EZ/XX]
(* emp[name='Anderson']<Y>,
emplname=Y]<Z>) [ ]<XX> ' (3.6)

Explaining shortly, the Where statement declares that the
required managers are obtained by applying the usual- - transitive
definition R such that xRy " yRz --> xRz; in the above case, it
is read that if x is a manager of y and y is a manager of z, then
x is a manager of z. Then, given z='Anderson', his managers are
obtained to the set of all x and y each of which satisfies the
transitive definition. The extended file merging connective * in
the Where statement specifies the recursive join between relation
EMP and itself. :

Unfortunately, most of the existing data sublanguages do not
allow transitive view definitions of relations. So that, it may
be unable to obtain the direct transformation of the transitive
P-model to the target data sublanguage. But in the alternative,
we will be able to compile it to the host language. As for the
transitive closure, many authors have proposed solutions of such
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a compilation problem, though they might not be general solutiong
[3I4I6]-

Example 3.3. A P-model is also expressive of the request for
updating database. For example, the following is a P-model which
means that Anderson's salary is increased by the amount of 10000,

From emp (name,sal)

With [EX/sallemp[name="'Anderson]<X>

Update sal

where [EY/sal] _ '
emp[name="'Anderson’', ¥Y=X+10000]<> (3.7)

Usually, a RDBMS performs constraint checking before the actual
update 1is done. Constraint checking 1is ‘very important to
maintain the database to be consistent. We provide constraint
rules in the S-model, and they can be applied to consistency
checking of the database. Associated with this, the P-model
constructs may include a With statement before the modification
statement, that specifies constraint rules applied to the
succeeding statements. The With statement in (3.7) says that
Anderson's current salary should be used before updating.

4. Generation of P-model from S-model

We have described, in the section 2, that the S-model represents
hierarchical abstraction of domains and attributes of data
objects, user's views for applications and constraint rules for
database update. They are general and domain specific knowledge
concerning with the connected databases,
and they constitute the knowledge base of

i ) Query
KAUS. They are used for derivation of P- i
models of user's requests under the it
control of the inference engine in KAUS. Internel Form
DEDUCTION

Figure 4 shows the total steps by which
user's requests are sent to the connected
RDBMS. In the figure, deduction and
transformation-1 are processes related to
P-model generation. The deduction
process is a proof procedure, which is
similar to that in the Robinson's
resolution principle [9]. First, a query
in KRL/KAUS is transformed to the

‘internal guery tree, and then the gg TRANS-2
deduction tree is generated from . the i
query tree by the deductive proof Target DSL

procedure. After the termination of
deduction, all the leaf nodes of the i

dedugtlon tree has been replaced by the Connected RDBMS
special nodes called procedural type

atoms (PTAs for short). A PTA is a

primitive evaluated by the special Fig.4. Query trans-
procedure associated with it. For formation

10
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example, '(add Z X Y) is a PTA, whose truth value is determined
- by evaluating the relation that X plus Y is equal to Z. The
predicate get_db presented in the section 2 is also a PTA. After
all, the deduction tree thus obtained can be interpreted as a
program model of the given query. Then, a P-model expression is
a translation of the deduction tree and is semantically
equivalent to it.

Before explaining the deduction and transformation process, we
must supplement here that, the gquantification part of wffs in
KRL/KAUS usually represent not only internal data type
constraints of variables but also their semantical data type
constraints. For example, [AX/person] constrains X to be a
person. In comparison with variables, the real instances of data
objects in databases are usually represented according to the
internal schema, and they are internally either of strings,
integers, and floats. For our purpose of database connections,
these syntactical type constraints are bridged over the
semantical type constraints in somewhat tricky way in KRL/KAUS.
For example, by the command '!sk_e *person string;', instances of
'person' are declared that they are represented in strings.

In the following, we illustrate the deduction process and
transformation process by some examples. In the examples,
notations of wffs in KRL/KAUS are slightly modefied for the
purpose of comprehension. Queries in natural language and their
corresponding KRL/KAUS expressions are also illustrated. Let us
begin with a simple example.

Example 4.1. Assume that a view (2.5) is given in the S-model
and a query, 'in what department Anderson works?', is supposed:

View : [AX/person][AY/departmeht] ' (4.1a)
(work X Y) <-- '(get_db #emp #name X #dept Y) (4.1Db)
Query : In what department Anderson works?
[EX?/department] 7 (4.2a)
(work "Anderson" X) (4.2b)

First, by the unification algorithm peculiarly tailored for KAUS,
corresponding arguments of the predicate work of (4.1b) and
(4.2b) are examined with type constraints (4.1a) and (4.2a). As
no violation occurs in this case, the arguments and their types
are unified respectively, and (4.2a) and (4.2b) are then
replaced by ‘ :

[EX?/department ] ' ‘ (4.3a)
‘(get_db #emp #name "Anderson" #dept X) (4.3b)

Any more deduction process does not need to proceed in this state
because the leaf nodes of the deduction tree represented by (4.
3a) and (4.3b) consist 'of only one PTA. Next, the transformation
process begins as follows: From (4.3a), it is recognized that
the value of X is addressed to output. From (4.3b), it is also
recognized that X is found in the column #dept in relation ffemp

11
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and that #name is another column data related to X. Then, 'Fron
emp(name,dept)' and 'Get dept' statements are obtained. Again
from (4.3b), it is known that #name is restricted to "Anderson",
This fact contributes to construct the selection expression
[name='Anderson'] in the Where statement. As the domain of X is
complied to be expressed with the real attribute name in the
relation, the quantification part of the Where statement becomesg
[EX/dept]. The notion of projection in the Where statement is
<X> because the value X is required to output. Consequently,
the generated P-model is ’

P-model: From emp(name,dept)
Get dept
Where [EX/deptlemp[name='Anderson']<X> (4.4)

Example 4.2. Assume the following views sell and totalSal saying
that the total salary Y in the department X is obtained from
relation EMP by,summing up N to Y, and a query in (4.7).

View: [AX/department][AY/item]

(sell X Y) <-- '(get_db #sales #dept X #item Y) (4.5)
[AX/department][AIntSet/*salary][EN/IntSet]
[AY/integer]
(totalsal X Y) <-- '(get_db #emp #sal N #dept X) °
"(sum IntSet Y) (4.6)

Query: Among all departments with total salary greater than
10000, find the departments which sell dresses:

[EXdepts/*department ] [AX?/Xdepts][EY/integer]
(totalsSal X Y) " ¥>10000 " (sell X "DRESS") (4.7)

For obtaining the P-model expression, we first reduce (totalSal X
Y) in (4.7) to the premise of (4.6), and (sell X "DRESS") in
(4.7) to the premise of (4.5) in the deduction process. Then,
the process is terminated with the following result:

[EX?/department ] [EIntSet/*salary][AN/IntSet][EY/integer]
"(get_db #emp #sal N #dept X) °

'(sum IntSet Y) © Y¥>10000 ° :
'(get_db #sales #dept X #item "DRESS") . (4.8)

It should be noted here that the order of quantifications of
variables in (4.8) is significant. They are obtained from the
unification rule provided by KAUS, and contribute to keep the
correct meaning of the original query. The next is to transform
(4.8) to the P-model expression: The Get statement and From
statement concerning with (4.8) are easily obtained in the same
way described in the example 4.1. Then, we go ahead to create
the Where statement from (4.8). We first remember that all PTAs
are AND-connected. Next, we examine the arguments of the first
PTA get_db in (4.8). As it is known that they are not locally
restricted by the other PTAs, emp[]<N,X> is obtained. Then, the
next predicate get_db is searched for in (4.8). As we found it,
we transform it to sales[item='DRESS']. The remaining PTAs '(sum

12
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IntSet Y) and Y>10000 are understood that they do not contribute
to local restrictions on both get_db PTAs but contribute to the
restriction on their merged relation. They are simplified to
sum(IntSet)>10000. Consequently, we obtain the following P-model
expression of (4.7).

From emp(sal,dept), sales(dept,item)
Get dept |
Where [EX/dept][EIntSet/*sal]l[AN/IntSet]
(& emp[ J<N,X>,
sales[item:'DRESS']<X>)[sum(IntSet)>10000]<X> (4.9)

Example 4.3. Generating the P-model of a query (4.11) asked for
a negated fact is exhibited. Assume the same views sell in the
example 4.2 and a view floorOf in (4.10).

View : [AX/department][AY/location]
(floorOf X Y) <-- '(get_db #loc #dept X #floor Y) (4.10)

Query: Find the departments and their items sold by no
department on the second floor.

[EX?/department ][EY?/item][AZ/department]
(sell X YY) " “(sell Z Y) " (floorOf Z 2) (4.11)

The deduction process on this query is complicated for the reason
that there exist three literals to be resolved and among them,
(sell Z Y) is negated. We note here that the negation as failure
in CWA [10] is applied during the whole process of generation of
the P-model. Then, (4.11) is deduced to the following wff.

[EX?/department 1 [EY?/item][AZ/department]

_'(get_db #sales #dept X #item Y) ~

“'(get_db #sales #dept Z #item Y)

'(get_db #loc #dept Z #floor 2) (4.12)

In the transformation process, we are complied to select a couple
of relations from (4.12) which is claimed to be merged in the
first. We can find that the couple is the relation SALES in the
second PTA and relation LOC in the third PTA, Dbecause the fifth
argument of the third PTA of get_db is constant and its third one
is ‘common to the second PTA of get db. The priority of selecting
a couple of relations to be merged relates to the optimization of
query evaluations. In consequence, we obtain the P-model of the
query (4.12) as follows.

From sales(dept,item), loc(dept,floor)
Get dept,item
where [EX/dept][EY/1tem][AZ/dept]
(& (& sales[]1<Z,Y>,
loc[floor—'2 ]<Z>)[]<Y>
sales[]<X,Y>)[1<X,¥Y> (4.13)

Example 4.4. The recursive P-model is generated in this example.
Assume a couple of views (2.9a) and (2.9c) related to the
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transitivity of managers, where we have thought that a manager
who manages a manager of a certain employee is also a manager of
the employee. Then, with this view, the next guery can be
supposed.

Query: Find all managers of Anderson.
[EXX/*person] [AX?/XX](manager X "Anderson") (4.14)

As noted in the previous section, a view expression of j
recursive relation is complied to declare explicitly with a meta-
level predicate that the view is recursively defined. In (2. 9c¢),
'(recursion manager) is a meta-level predicate that says that
the view is recursive, and should be evaluated by the special
functional module (demon) in the deductive program so that the
deductive process does not fall into an infinite loop. Then, the
query (4.14) is reduced by the deductive process to the following
deduced form.

[EXX/*person][AX?/XX]
'(get_db #emp #name '"Anderson" #mng X) v
{ [EXX/*person][AX?/XX]1[EY/person]
'(get_db #emp #name Y #mng X) °
'(get_db #emp #name '"Anderson' #mng Y) }* (4.15)

We note here that (4.15) is equivalent to a regular expression
b*a, where b*a = a U ba U bba U bbba U ..., and a = '(get_db #emp
#name "Anderson" #mng Y), b = '(get_db #emp #name Y #mng X), bb =
'(get_db #emp #name Y #mng X) "~ '(get_db #emp #name X #mng XX),
bbb= '(get db #emp #name Y #mng X) " '(get_db #emp #name X #mng
XX) © '(get_db #emp #name XX #mng XXX), and so on. Then, the
P-model expression (3.6) of the query (4.14) is obtained from (4.
15), and the required managers are to be obtained in the set XX,
where each elements satisfies (4.15), namely, (3.6).

Example 4.5. We show that a P-model describing an update
operation is also obtained from a user's request and S-model
expressions in the knowledge base. Suppose the following query:

Query: Increase Anderson's salary by the amount of 10000.
(increase salary "Anderson'" 10000) (4.16)

To obtain the P-model, we need the following S-model expression.

[AXattr/attr][AOfS/object][AByN/number][AXval/number ]
(increase Xattr OfS ByN) :
<-- (cond Xattr OfS Xval) " '(update Xval added ByN) (4.17)

This S-model expression is very general, and it would be
available for any queries asked for such updating that 'the
value(Xval) of an attribute(Xattr) of an object(OfS) is increased
by the amount of n(ByN)'. 1In (4.17), the PTA update is a meta-
level predicate, and (4.17) is read that, to increase the value
of Xattr of the object 0fS by ByN, add ByN to Xval under the
condition (Xattr OfS Xval) is currently true. Then, the P-model
(3.7) of (4.16) is obtained from
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[EXval/number]
'"(get_db #emp #name "Anderson" #sal Xval)
'(update Xval added 10000) (4.18)

5. Concluding Remarks

We have discussed about the model based connection to
conventional RDBMSs so as to make it possibble that they are put
into deductive use via logical inference system KAUS. Knowledge
representation in the S-model and P-model expressions for user
requests provide us with the general facilities concerning with
flexible view expressions, integrity checking, and vast classes
of data manipulations including transitive closure operations.

It is also expected that the S-model representation would be
suitable for the bridge between natural language input and
deductive access to the conventional databases. One more point
is that views and integrity rules in engineering database systems
as well as those in social economy could be expressible in
KRL/KAUS and then put into deductive use. We have not exhibited
how it can be done and several other details for the lack of
spaces.

APPENDIX. SYNTAX OF P-MODEL EXPRESSION

P-model-expr ::= dm-expr | dd-expr
- dm-expr = from-stmt dm-goal-stmt where-stmt
| from-stmt with-stmt dm-goal-stmt where-stmt
dd-expr I Create relation-name ( active-col-list )

| Define relation-name ( active-col-list )
From R-1list
With cond-expr
dm-goal-name arg-list
Where cond-expr
relation-name ( active-col-list )

| relation-name ( active-col-list ) , R-list
defined-name-in-the-connected-RDBMS
column-name

| column-name , active-col-list
defined-name-in-the-connected-RDBMS
quantification body-expr

From-stmt
with-stmt
dm-goal-stmt
where-stmt
R-1list

*e eo s ep o0
ee se o0 0 e
LI | I T TR ||

relation-name
active-col-1list

S

column-name
cond-expr

e o0 e
TN

quantification [ quantifier var-name / domain ]

| [quantifier var-name/ domain |

guantification

quantifier ::= A | E
var-name o= string-beginning-with-upper-case-letter
domain ti= column-name | powered-col-name | var-name
powered-col-name: : = *n column-name ( n: integer > 0 or omitted)
arg-list = column-name | function

| column-name , arg-list l function , arg-list
function HHE function-name ( active-col-list ) \

o= ( merge-type file , file ) [ restriction ]

body-expr
: < proj-list >
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merge-type ti= & | || *

file t:= relation-name [ restriction 1 < proj-list »
| body-expr

restriction HHE boolean-expr | arithmetic-expr

boolean-expr , restriction
arithmetic-expr , restriction

proj-list HEES var-name | var-name , proj-list
dm-goal-name ::= Get | Insert | Update | Delete
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