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1. INTRODUCTION

It has long been known empirically that in most statistical
tables expressed in decimal form , the proportion of numbers with
the first significant digit less than or equal to k ( k =1, 2,
*+e , 9 ) is approximately log;e (k+1) + The base of logarithms is
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taken to be 10 , unless otherwise stated. UWe do not admit O as
a possible first digit, thus the nine first digits, without regard
to position of decimal point , do not occur with equal frequency,
and many observed tables give a frequency for the occurrence of a

given first digit k appraoximately equal to 1log,e(k+1)/k « Thus

the first significant figure is oftener 1 than any other digit ,
and the frequency diminishes up to 9.

This peculiar logarithmic distribution of first digits, while
not universal , is so common and yet so surprising at first glance
that it has given rise to a varied literature , among the authors
of which are mathematicians, statisticians, economists, engineers,
physicists and amateurs . Simon Newcomb L[RRJ formulated this law
without any actual numerical data . Frank Benford CEEJ made many
counts from a large body of actual data and numerical tables , ow-
ing to which this peculiality is known as Benford’s law after his
name.

Several authors, such as W. H. Furry and Henry Hurwitz [II1] ,
S. A. Goudsmit and Furry [KK] , Roger S. Pinkham [SS]1 and Ralph A.
Raimi [TT] have sought the explanation of this phenomenon by as-
suming that all phisical constants are selected from a population
with some scale-invariant underlying distribution and have shouwn
that certain assumptions about this distribution lead to the loga-
rithmic law.

Some writers have pointed out that tables which occur natu-
rally often represent distributions which are mixtures or compo-
site of other distributions , and that the mixing process itself

improves the approximation to Benford’s law . If ’Xi are identi-

cally distributed independent random wvariables ,'consider their

e

product YN =11 Xi. The central 1imit theorem then shows that the
n=1
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random variable 1log Yn { mod 1 ) approaches uniform distribution
as n increases . Thus Yn tends to obey Benford’s law . Furry

and Hurwitz [II] stated this result in terms of convolution . A.
K. Adhikari and B. P. Sarkar [AA] and Adhikari [BBJ proved this
result directly for a special distribution and gave a partial con-
verse on scale invariance. |

R. W. Hamming C[LLJ adopts the finite point of view of a com—
puting machine with floating point arithmetic and showed Benford’s
law.

Thus Benford’s law , started as an empirical law , has been
studied in various areas , such as probability theory; statistics,
computer arithmetics, etc. ‘And Goudsmit and Furry [KK1, Furry and
Hurwitz [II] and Warren Weaver [XX] recognize " Benford’s law is
merely the result of our way of writing numbers ' , or " Benford’s
law is a built-in characteristic of our number system " , or some-
thing like that.

With thié underlying philosophy, B. J. Flehinger [HH] consid-
ered that the smallest population which <contains the set of sig-
nificant figures of all possible physical constants, past, present
and future, must be the set of all positive integers. The expla-
nation of Benford’s law shaould , therefore , lie in the properties
of the set of integers aé represented in a radix number system.

As far as we consider the distribution of the first signifi-
cant digits , it is quite natural to restrict ourselves to the set
of all positive integers . Thus we adopt the set of all positive
integers as a model of the population, which would contain signif-
icant humbers of all possible numerical constants. From this pop-
ulaticn, we sample integers according to a certaih sampling proce-
dure and determine whether Benford’s law holds or not for the re-

sulting sémpled integer sequences.
_3_
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Benford’s law was proved to be true for a geometrically sam-

pled integer sequences 2" , as an application of an ergodic dy-
namical system in [DDJ and aiso in CUUD . It is <clear that the

first digit of an integér a is equal tg k if and only if

ke1to™ < a < Ck +1).10"

for some nonnegative integer m . Then the uniform distribution

mod 1 of <{log an}’ is a sufficient condition for Benford’s law

to hold for {an}. By making use of this criterion, we treat gen-

eral geometrical sequences <{c+r"}, where ¢ and r # 1 are pos-
itive integers and prove Benford’s law except for some special
cases.

The definition of uniform distribution mod 1 1is as follows:

DEFINITION. A sequence (xn)v of real numbers is said to b

uniformly distributed mod 1 , if , for every real number a and

b with 0<a<b<1,

AN([a, b); (xn))

38 N =b-a,

where AN(Ea, b); (xn)) is the number of indices n between 1

and N for which the fractional part {xn} falls 1 La, b) .

Linear recurrence sampling procedures have been considered
with a special reference to Fibonacci numbers . R. L. Duncan L[GG]

proved that the sequence {log Fn} is uniformly distributed mod 1,
where Fn is the n-th Fibonacci numbers, which signifies that Ben-

ford’s law holds for Fibonacci numbers. L. Kuipers [NNJ] gave ano-
ther proof of Duncan’s result . John L. Brown, Jr. and R. L. Dun-
can [FF]l and L. Kuipers and Jau—-Shong Shiue [001 extended the re-

sults in [GGJ] and [NNJ and proved that the sequence {Vn} obeys
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Benford’s law , where Vn satisfies a linear recurrence faormula
with some restrictions.

K. Nagasaka LPP] succeeded in extending these results and re-
moved unnecessary restrictions on linear recurrence formulae . UWe
pointed out that the condition on the roots of maximum modulus of
the characteristic equation for the corresponding linear recur-
rence formula is essential and indispensable.

Nagasaka and J.-S. Shiue [QQ] give another proof of results
in [PPJ by using one of van der Corput’s difference theorems and
extended them to the case that the roots of maximum modulus of the
characteristic equation are purely imaginary . In the case that
the characteristic equation has +two conjugate complex roots of
maximum modulus , it is not known whether Benford’s law holds for

the sequence {Vn}, but the asymptotic distibution Function mod 1

of the sequence d{un/un+1} is represented explicitily by Peter
Kiss and Robert F. Tichy [MM] , where vn satisfies such a second
order recurrence.

Another typical integer sequence satisfying Benford’s law is
the sequence ({n!} , [JJ] . Sequences treated above increase rap-
idly , at least of exponential order . Slouwly increasing integer
sequences such as prime numbers , polynomials, do not have the li-
miting frequency distribution for the occurrences of a given first

digit k . Thus we need other summation methods.

Flehinger considered successive cumulative averages ( Hdlder
sums ) calling their Timit the Banach limit . Roy L. Ad]ef and
Alan G. Konheim [CCJ proved that the Banach 1imit is a finitely
additive measure on the set of all positive integers and assigns
zero measure on every finite subset of positive integers. We [PPI]
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applied the Banach limit to the sequence {Pn} of positive inte-

gers generated by a polynomial and proved that Benford’s law haolds
for it in the sense of the Banach limit . The proof needs a long
calculation technique on complex analysis.

Peteb Schatte named the Banach limit the Hm—summatinn method

and considered the mantissa distribution in [W3J , which is a gen-
eral notion including Benford’s law . He remarked that our result

above for polynomial integer sequences (Pn} may be obtained as

an application of his theorem 8.3 in [VV] and got a quantitative

result as to the speed of convergence [WWIJ.
2. RECURRENCE SEQUENCES OF FIRST ORDER.

In the preceding paper [4], we considered a linear recurrence

formula of order 1 . The recurrence sequence { h_ 3 _
: n n-l,z,"'

satisfies the following recursion formula:

(2.1) hn+1 = r-hn + s,

where "r # 1, s and h1 are positive integers. Then it is

proved that Benford’s law holds for the sequence ( h, }n_1 2 e
I

except for the case r = 10™ with m some nonnegative integer.
In this Section, we consider, instead of (2.1), the following
recursion formula of first order:

(202) Yn+1 = T“Yn + 'F(n)’ n = 1’2,"' E)

where r and yl are positive integers and the range of { f(n) 3
is also positive integers. Then we obtain

THEOREM 2.1. Let ( Yo }n_1 2 e be an integer sequence
- 1 ’
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generated by the recursion formula (2.2). If the series

© “1.
S -1 f(ny 7 pN is convergent, then the sequence { vy }n=1,2.°-

obeys Benford’s law except for the case r = 10™ with m some

nonnegative integer.

REMARK 1. In the case that f(n) = s for every n , (2.2)
is identical to (2.1), so that this Theorem 2.1 contains Theorem
3.2 in [4] as a special case.

In order to prove Theorem 2.1 we need again Lemma 3.1 in [4]
and further one of wvan der Corput’s difference theorems in [31],
p.378.

LEMMA 2.1. Let { x_ 3

e a sequence of real num-
— n n=1’2,o'- — — q ————

bers. I1f

A;Q,( n+1 ~ *n ) = a,

uwhere a 1is irratiocnal, then the sequence ¢ X0 }n-l IR is
=il Ly

uniformly distributed mod 1 .

PROOF. From the recursion formula (2.2), we have

y = r“‘l.yl + P20 (1) 4+ eee 4 pef(n-2) + Fin-1) .

lLet us consider the ratio of consective terms of { yv_ 3} _ :
n n=1,2,¢0

(2.3) y /oy

n+1 n
= ¢ Moy, 4 PPThe ) rT2002) 4 e R (R 3/
{ rn_1°y1 + 20001y + 2PTBlp2) 4+ e+ F(R-1) 3

= ey, + FUD 4 F/0 + oen 4 fosr Ty

2

Cyy b B+ S e s fn-D/7r"1

=L Peyy ¥ { FCD) + £ (20/p + «00 + f(n)/rn—l Y17/

n—-2

L vy * { {1 + F(2)/r + ++v¢ + f{n-1D/r Y/ r J.
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Put

FC1Y + £(2)/r + oo + £(n-12/r"72

v
I

Then

n—-2 n-1

+ £(n)/r

0
i

fC + £(2)/r + ++oo + f(n=-1)/r

= s + fme"h

which implies that
Ai@ 5n T Ai@ Sh-1 T B>0,

n-1

since the sum 2 n:1 f{n)/r is convergent. Taking the 1imit of

(2.3), we get

&i@ ( Yn+t / n )

( reyy + B ) / ( y1-+ B/ r)

{r ¢ r‘yl + B ) ¥ /s ( r'yl + B )

Therefore

log Yo+l ~ log Yo = logr , @as n= o ,

From Lemma 3.1 in [41, log r 1is irrational. Lemma 2.1 asserts

that the sequence { log vy 3 ., - ,,, 1is wuniformly distributed
Th el

mod 1 . Reconsidering the same argument as in the first part of
the proof of Theorem 3.1 [4], we complete the proof. \
¢ Q.E.D)

NOTE 1. If we don’t stick ourselves to positive integer se-
quences, we can obviously relax assumptions in Theorem 2.1 .

Indeed, r may be a positive constant greater than one and not of
the form 10™  for any nonnegative rational number m . y, may

also be a given positive rational number and the range of { fi(n) 3

is nonnegative rational numbers.

_8_.
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3. LINEAR RECURRENCE SEQUENCES OF ORDER 2.

In this Section, we consider a linear recurrence formula

L(2,38,¢C) of order 2 . The recurrence sequence { u_ 2} _
-_ - n n_1’2,“'

gatisfies the following recursion Formu]a of order 2 :

(3.1) u = 85U + ajru. N > 1 « a, £ 0 ,

n+2 n+1

and its characteristic equation is

(3.2) 12 = a2 + a

2 1 ( ay # 0 ).

THEOREM 3.1. If the characteristic equation (3.2) has two

real distinct roots a« and B8 with lal > I8l and a« and 8

are not of the form +10™  for any nonegative integer m , then

{ u_ 2

n Tn=1,2,¢0. obeys Benford’s lau.

PROOF. The n—-th term u, can be represented by

(3.3) o = A"t el a1,

where A and B are constants depending only on al, 32, uy and
Uy - Moreover a*8 # 0 , since a; # O « We then have

-1

CAa” +B8" ) /7 ( aQ™ ! 4+ B L

~
c
i

n+l n

{ Aea + BB/ Lg 3y /(A +B B/ .
Suppose further that |lal > Bl and A # 0, then

log oyl log u, = log ¢ U, / up, ) » loga , as n 2 =

+1
log a is irrational by Lemma 4.2 1in [4] and from Lemma 2.1, the

sequence { leog u_ 3 _ is uniformly distributed mod 1 .
n n=1,2,¢

In the case that A = 0 , we have

B-8"1 ,n>1.

U
n

8 is not of the form x10™ for any nonnegative integer m .

Then
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log ¢( u / u_ )

109 U,y — 189 u, n+1 n

log ( B-8" ) / ( B-g""1 )

log 8 ,

that is irrational. We derive, again from Lemma 2.1 uniform

distribution mod 1 for the sequence { u_ 2} _ . k
. n—l,z""

n

For the case Jlal = |8l , we may assume, without loss of gen-
erality, that 0 < a = lal = |8l , that is B8 = -« , then we can
show also by Lemma 2.1 thaf { log wu, }n=1,3,5'°' and

{ log u_ }n=2,4,6~" are both wuniformly distributed mod 1 , from

which { log ug H is uniformly distributed mod 1 too.

n=1’2’on-

Hence { u_ 2 obeys Benford’s law.

n n=1,2,¢¢.

( G.E.D. )

NOTE 2. This Theorem 3.1 is almost identical to Theorem 4.1

in [4] but we gave another proof wusing Lemma 2.1, one of the van
der Corput’s difference theorems. The aonly difference between

this Theorem and Theorem 4.1 in [4] is the additional assumption:

8 is neither of the form 10" for any nonnegative integer m .
This assumption is indispensable when A = 0O , but necessary only
for the case that A =0 in (3.3).

REMARK 2. The condition on « cannot be removed . Consider:

and ¢ ul, u2 ) =« Cl’ c2 ) , where c1 and c2 are arbitrary
positive integers. The roots of the corresponding characteristic

0
equation are +1 = +10 , and the sequence { u_ 3} _ is
n n—1,2,“‘

purely periodic with period of length 2 . Obviously, the se-

quence { u_ 32 does not obey Benford’s law.

n "n=1,2,+¢-

— 10 —_—



THEOREM 3.2. 1f the characteristic equation (3.2) has a dou-

h is not of the form +10™ for any nonnega-

ble real root a w

hic
tive integer m , then { u_ 3} _ obeys Benford’s lauw.
n n—1’2""

PROOF. We can express the n—-th term up by

u = CAn +B yea" 1, >,

where A and B are constants depending only wupon ags a5, Uy
and Uy o Then

- log u

log un+1 n

/ u_ )

= log ¢ un+1 n

=1og { CAn+A+BlX"3/{ CAn+Bra"ls
=log | Asn+A+B| /] An+B | + log lal

= log lal , as n » = ,
Since log lal is irratiopal;* repeating the same argument with
Lemma 2.1 as in the proof of Theorem 3.1, we finish the pfoof.
¢ Q.E.D. )
REMARK 3. As a general setting throughout , we agree that

{ u_ 3

N Pn=1,2. 00 is a sequence of positive integers. From the
—d *

recurrence formula (3.1) with a and c integral wvoctors, U,

may be a negative integer. In this case, we consider the sequence

{ v 32 { lu | 3

4] n=1,2,°" - n n=192,"‘ ’

instead of { u_ 3 and Theorem 3.1 and Theorem 3.2 holds

n n=1,2’...

for the sequence ¢ Vi }n=1,2,'~'

REMARK 4. The modulus Jal in Theorem 3.1 and in Theorem

3.2 is greater than one, since a*8 = a, # 0 1is an integer. Then

’|Un! tends to infinity as n tends to infinity posibly except
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when A =0 . Suppose that A=0 , B# 0 and lunl > 0 as

n 2= . Since { u, }n=1,2,-—-

is an integer sequence, u is al-
ways zero from a certain point on, which is of no interest . If

A =B =0, this sequence { ug }n=1,2,‘°'

is the sequence of ze-
ro’s, which is of no interest either .
Apart from the characteristic equation (3.2), let us consider

a sequence { up, H originally defined by

n=1’2""'

oo o=Cr"leps™ L nnn,

where C # O, D, v and & are real constants and O < 18] < I7l.

Then { log Iunl 3} is unifnrm]y distributed mod 1 wunless

n=1’2,0‘l

7 is of the form +10™ with m a nonnegative rational number .

In this situation, |7l may be smaller than one, i.e. u, o,

as n - o , Then by considering the first nonzero digits of

u, s Benford?’s law holds also for { u_ 2 ( From Theorem

n n=1’2’coo
1 in Persi Diaconis [23 ).

If +the characteristic equation (3.2) has two complex conju-

gate roots, « and « , where 2z is the complex conjugate of z ,
then the situation is a little cnnfusing. We shall consider only

for the case: a, = 0 and D = 431 <0 .
In this case, two complex conjugate roots are
a = VE; = ai , a = —-ai ,

by setting a = J~al « Then

(3.4) o =aED" !+ " RGED™ s,

where
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A ( cl-a - czi Y / 2a .

1f we suppose further that A 1is real, then Uy, = ¢, must be ze-—

ro and from (3.1), Up = 0, m>1 . Original Benford’s law sig-

nifies that the distribution of the first significant digits ex~
cept zero obeys the Jlogarithmic Jaw. Thus we agree to say that

Benford’s law holds for an integer sequence { a, }n_1 2 e if
TdyLy

the distribution of the first digits of { b 2

n n=1,2,“‘ Ubeys

~the logarithmic law, where { b_ 3 is the subsequence of

n n=1’2,u‘o

all non-zero elements of ( a_ }n=1'2,...

Direct calculation from (3.4) shows that

u = 2Re Aa*® i n=ak+ 1,
= —2im A-a%* | ip n =4k 2,
= -2Re A-a" "2, if n=4k+ 3,
= 2Im A-a%%*3 | if n =4k + 4.

From the above convention, we may suppose, without loss of

generality, that un # O for arbitrary n . Then the following

four sequences { log lunl Yh=1,5,... » L 109 lu | 22,6, 000

{ log lu_| 3

n n=3,7, are uniformly

and { ]Dg ‘unl }nz'ﬂ-,8,"'

distributed mod 1 wunless a is of the form 10" for some nonneg-—

ative integer m .+ Thus € lu | 2 obeys Benford’s law.

n n=1,2""
Considering Remark 3 and the convention above, we get

THEOREM 3.3. f the characteristic equation has two purely

imaginary complex roots and ay is not of the form -10™  for any

obeys Benford’s

nonnegative integer m , thenr { YUn }n=1,2,"‘

law.

——
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4. LINEAR RECURRENCE SEQUENCES OF ARBITRARY ORDER.

In this final Section, we treat a general linear recurrence

formula L{(d,a,¢c)> and the recurrence sequence {u_ 3 _
='= n n=1,2,¢4-

satisfies the following linear recursion formula of order d @

+ ¢ + g

(4.1 u n>1,

n+td - 3d-1"Yn+d-1 * 3g-2"Yn+d-2 0'Yn *
and also the initial conditions:

(4.2) Cys Up = Cpy *o and Uy = Cys

where

L

A
[11]
=

a
o
1}

a=(« 4.1 q4-o ( Cys Cos *** 4 Cy )

are d-dimensional integral vectors. The characteristic equation

of (4.1) 1is

d

(4.3) 29 = d-1 2472

+ 3 . + e 4+ g
d-2

1°4 *ag

Analogously to Theorem 3.2, we get the following Theorem 4.1,
which we did not consider in the preceding paper [41].

THEOREM 4.1. 1f the characteristic equation has only one

root a of multiplicity d which i not of the form +10™  for

any nonnegative integer m , then Benford’s law holds far the lin-

recurrence sequen 3
ear quence { u, n=1,2,0 0

PROOF. By (4.1) and (4.3), we have that

n—-1

nd~1 g ,

u = (b sn + ¢¢¢ + b

n 0 + b

1 d-1"

where by, by, ¢+ and b, , are constants depending only on a ,

c and « . From Remark 4, we may suppose that up, # O for any

n. Then

d-1

/u =L {ba+b (n+1) Yea™ 3/

NVRVATR o (n+1) + -«c + b

d-1
d-1

1

£ (ba + boon + s++ + b ) e

0 1 d-1°n
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d-1

=L {by+ b,{n+tl) + ¢ev + b {(n+1) Yeao 1/

0 1 d-1

n—1

(b d-1'"

+ b,en + see + b )

0 1
> & , a5 n = o ,
Thus

log lu | - log lunl - log lal , as n =» = .,

n+l
The number o« is algebraic and therefore log lal 1is an ir-
rational number. Hence Lemma 2.1 is applicable and we deduce that

{ log lu | 3 is uniformly distributed mod 1 , which in-

n n=1,2,¢+:

dicates that the recurrence sequence { u_ obeys Ben-

n n=1’2’ooo

ford’s law.

{ Q.E.D. )
Hereafter we suppose that the characteristic equation (4.3)

has distinct roots x4 a2, +++ and ap with multiplicity mys
Moy ** and mp , respectively. For our convenience, we arrange
the roots Qis Qny *0 and ap according to the magnitude of

their modulus, that is,

It is known that un can be represented by

1

1 +een 4 b (n-Deal Tt

+ bat(n-1) a7l

- 1Yy . N
(4.4) u, = b, {(n-1) ay o 2

1
b s+e¢ and b are polynomials of degree at most

Wwhere b o9 p

1’
m1-1, m2—1, +++ and mp-l , respectively. Under this setting, we

obtain

THEOREM  4.2. Suppose that the distinct roots Aps Gyt

and «a of the characteristic equation (4.3) satisfy

— “p
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(4.5) !all > lazl > la3l D e > lapl .

and ay is not of the faorm +10™  for any nonnegative integer m

and  further bl(n—l) in (4.4) is not identically zerao. Thep the

linear recurrence sequence { u_ 2 obeys Benford’s law.

1] n:1’2’0‘o

NOTE 3. This theorem is identical to Theorem 4.3 in [4]1. In
order to make clear the situation of the roots, we add an adjec—

tive "distinct" and delete the assumption that a«; 1is real, since
(4.3) indicates that @y is real.

Another added assumptiaon on bl(n—l) is not so essential.
If bj(n-l) is the firs{ non-zero polynomial among bl’ b2, coe
and bp » then (4.5) may be replaced by

la.l > |

el 2 e 2 agl

p

and aj is required not being of the form +10™  faor any nonnega-

tive integer m .

PROCF . The n-th term ug of the recurrence sequence

can be represented by

{ un }n=1’2’ooo
_ 1y Nl _1y..0"1 i _1y..0"1
u, = bl(n 1) ay + b2(n 1) 2o + + bp(n 1) ap .

where bl’ b2, s++ and bP are polynomials of degree at most

ml—l, m2-1, +++ and mp—l s, respectively. Considering Remark 4,

we may suppose that un # O for any n « Then

/u_ = Cb,(nea + batmyeal + oo + b (M) ea” ) /
n 2 P

n
n+1 1 1 2 P

1 1 1

(n-2) al” )

+ by 2

( b, (n=1)a"”

n—-
1 1 + e bp(n 1)'ozP
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povnd n 4 L) n [ N B * n
= ay { bl(n) + b2(n) (a2/a1) + + bp(n) (ap/al) Y/
" b (n=1) + ba(n-1)+(as/a )" 4 cee 4 b (n-1)eta_sa " 13
p by 2 272 p p’%1

log lu | - log luni - log lall , a5 n > o ,

n+l

and log Iall is irrational. Hence Lemma 2.1 applies and we ob-—

tain that { log lu_| 3

n n=1,2, 00 is uniformly distributed mod 1 .

This proves { u_ 2} obeys Benford’s lauw.

n n=1,2’ooo
( Q.E.D. )
Now we would like to treat, instead of (4.5), the following

case (4.6):
(4.6) ' lall = Iazl > Ia3I > eee > la | .

We suppose further that

4.7

Then we distinguish two cases;

I. y and @, are real:

Hence wu can be represented by

n
= - - PN Ll IR Lt S 1y .l n—1
u, = { bl(n 1) + b2(n 1) 3 oy + b3(n 1 ag + + bp(n 1) ap ,
if n 1is odd,
_ _ _ _ -1 PR b S _1y..0"1
= { bl(n 1 b2(n 1) 3 oy + b3(n 1 ag + f bp(n 1 ap s

if n 1is even.

Likewise as in Theorem 4.2, we may subpose that b1 and b2

are non-zero polynomials and b1 # b2 « Then, for odd n = 2m + 1,

—_ 17 -
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Yom+2 7 Yom
= [{b, (2m+1)+b, (2m+1) Y eas™ Labo(2me1) -as™ 1 oo +bp(2m+1).a§m+1]/
[0y (2n-1)+by2m-1)3ea 2™ Tabo2n=1) 03" 14 ot 4b_(2n-1) 02" 13
hd a? sy 4% n =« .
Thus
log lu2m+2| - log Iu2ml - 2+.l09 lall , @ n > ® ,
If Iall is not of the form 10™ for any nonnegative integer m,

then’  log lu,, | *p=1,2,+. 15 uniformly distributed mod 1 and
by the same argument { log lu, .| 3} 4 o, 1is uniformly dis-

tributed mod 1 . Thus { leg lu_| 3 is uniformly dis-

n n=1,2,'°'
tributed mod 1 .

1I. @y and @, are purely imaginary:
In this case, we put
al = ai and a2 = -—-ai ,

where a > 0+ Then (4.4) may be rewriten as

_ -1y, . n—1 1ye(—niyn—l _1y.an—1 .
(4.8) u, = bl(n 1)+« (ai + b2(n.1) (-ai) + b3(n 1) as +
_1y..0n"1
+ bp(n 1) ap .
Since
lail = |-ail > iaal 2 e D> Iapl '
and { u }n=1,2,‘-o is a sequence of integers, thus
bl(n~1)‘(ai)n_1 + b2(n—1)°(—ai)n_1

is real for sufficiently large every n , and consequently
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(h=1)+aid™ ! & b(n=1)«(-agi)""1

by 2

=1+ (-ai)™ ! & 5_GhTDy - (a7

= by 2

for every n . Thus we get

bl(n—l) = b2(n—1) , for every n .

As we have seen before, the distribution of

{ log lu_| 2

nl Yh=1,2,... depends only upon ( n-1 )-log Iall . Ana-

jogously to the proof of Theorem 3.3, we consider four subse-

quences of { log lu | 2 and if a 1is not of the form

n n=1’2’0oc

10m for any nonnegative integer m , theh each of four subse-

quence of { log lu_| 2 is uniformly distributed mod 1 .

n n=1,2"“

Hence { log lu_| 3 is uniformly distributed mod 1 and

n n=1,2’oll

the original sequence { u '} _, , obeys Benford’s law, using
i ’

the convention in the last Section, if necessary. Thus we get

THEOREM 4.3. Suppose that the distinct roots ai, @y

21}
o

ap of the characteristic equation (4.3) satisfy (4.6) and

(4.7) and &y is not of the form +10™ for any nonnegative inte-

ger m and further bl(n—l) and bz(n—l) in (4.4) are neither

identically zero nor identically equal mutually. Then the linear

recurrence sequence { u_ 2 obeys Benford’s law.

n n=1,2,oot

REMARK 5. We fix the base of logarithms to be 10 , but if
we change the base to an arbitrary positive integer g > 1 , our

arguments still remain valid by exchanging the assumption on oy

from 10m to gm .
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