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ASYMPTOTIC K - TH MEANS AND OSCILLATIONS OF ARITHMETICAL

CONVOLUTIONS
Y.-F.S. Pétermann

(The major part of the research discussed here was done
in Japan and made possible by grants from the Japan
Society for the Promotion of Science, the Fonds Marc
Birkigt (Gen&ve), and the Fonds National suisse pour

la Recherche Scientifique.)

First of all I wish to thank the persons who took part in
the organisation of this symposium for the opportunity to speak

they gave me.

I want to discuss a certain class of real functions that can
be written as convolutions, and among which we find error terms
related to arithmetical functions as the Euler ¢ - function or

the sum-of-divisors function.

We denote by o a real bounded sequence that satisfies, for

some real constant K,

J a(n) ~ Kx (x+00) | (1)
nix

and by f a real periodic function, of bounded variation, and
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such that if T is the period,

f(t) dt 0 (2)

S——
o .4
]

If now the real function h , defined on [1l,«), satisfies

heo) = [ 28 em) 4 0(1) (o), (3)
n<x :
we shall say that he‘C(d,f).
We now give a few examples of functions belonging to some
Cla,£f).

1) It is well known that if

_ ¢(n) _
= 7 R

n<x

H(x) ,X ' (4)

3o

where ¢ denotes the Euler function, then

H(x) = - Z'”ﬁn* by (x/n) + o(1) (x>e) (5)
n<x

where uy 1is the Moebius function and wl the first Bernoulli-
polynomial modulo 1 : wl(y) = {y} - 1/2 , {y} denoting the
fractional part’of Yo

[Note : it seems more natural to study first the errof term

R(x) := ] ¢(n) - 2,x* ; (6)

n<x

*”

since however we know [PiC 1] that
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R(x) ~ xH(X) (x>) , (7)
information concerning H can often be translated into an
equivalent information concerning R.]

2) We also know that if

2
F(x) := ) oln) _ % X + %logx +L+1 , (8)
<

2

where ¢ (n) denotes the sum of the positive divisors of n

and vy Euler's constant, then

1
n

F(x) = -7

wl(X/n) + o(l) (x+o) . (9)
n<x '

[As in the first example, if we define

N

E(x) := ] o(n) - I5x?, (10)
n<x
it is known [La] that
E(x) ~ x(F(x) + C) (xre) (11)
where C 1is a constant.]
3) The functions
G, g = ] 0% (x/n) | (12)

n<v/x
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G¥ ,(x) = ] n%y (x/m) , (13)
n<x :
where wz denotes the & - th Bernoulli polynomial modulo 1
(for an introduction to the b, see {R]), have close relations
with various divisor problems (see e.g. [IK,I] ; the most

famous example of such a relation is

) d(n) = xlogx + (2y-1)x - 265 1 (x) +0(1), (14)
n<x !

where d(n) 1is the number of the positive divisors of nj.

G and G*
a

a, s belong to:some C(a,wx) if a < -1.

r 2

4) We finally mention the functions

P(x) := ) 1 cos (x/n) (15)
n<x n :
and
Q(x) = ] = sin(x/n) , (16)
n<x

first studied by Hardy and Littlewood [HL].

As we shall see below, much information can be obtained for
functions in C(o,f) whose corresponding sums (3) can be

truncated. If ge C(o,f) satisfies

(n) - % % £ (u) ' ,
gx) = § 280Xy 4 Kf 28 3y + o(l) (x»>) , (17)
ngz ‘n n 1 u
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where K is defined by (1), and where =z = z(xX) is an
increasing and unbounded function such that z = o(x) as x>,
we shall say that g'eCE(a,f) and denote the sum on the right

side of (17) by gz(x).

2. Means, distribution functions, changes of sign.

Paolo Codecad proved in 1984 [Co 2]
THEOREM 1. If ge Cz(a,f) where z 1is a slowly varying
function (i.e. z = o(x%) for all positive € ), then the

asymptotic k - th mean of g,

X

M(g®) := lim

X>oo

X k
f (g(t)) at , (1)
1

exists for each positive integer k.

This is applicable [P3] to H , F , P and Q by refining
estimates of Walfisz' [W 2], Flett's [F] and Codeci's [Co 2].
It is also applicable to the Ga,z and G;’Q : Walfisz'
argument for Gfl,l IWw 2, Chapter III] can easily be generalised
if one uses the Fourier expansion of wz instead of that of
Yy

But Theorem 1 is an existence theorem, and it is of interest
to evaluate M(gk). For k larger than 2 however, this problem

appears to be difficult : it seems that, for any k - tuple of

positive integers (nl,...,nk), one requires the value of

N ,
lim % [ f(t/nl)f(t/nz)...f(t/nk)dt . : (2)
X+ 1
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As for the examples given in the preceding section we know
that [PiC 1, C]
- 2, _ 1
M(H) =0 and M(H ) = —2-71_-2- - (3)
The values of M(F) [PiC 21, of M(F?) [w 1] and of M(Q) [S]
are also known, and in general it shouldn't be very difficult
to evaluate M(g) and M(gz) if g is any of the examples

discussed in Section 1.

Higher odd asymptotic means are known in certain cases :

THEOREM 2 [P 3]. If ge Cz(u,f) for a slowly varying z ,
and if

£(t) = -f(-t) : (4)

except possibly on a set of measure zero, then

M((g - KJ flu) 'du)2k+l = 0 (5)
1 u

for all non-negative integers k (K is defined by (1.1)).

As a corollary we have, for any non-negative integer Kk,

H2k+l

M( ) = 0. (6)

Theorem 2 is also applicable to F , Q , and Ga,22+l‘

But it would be of the greatest interest to be able to
evaluate, or even estimate with a good accuracy, the higher
eyen asymptotic means M(ng) : it would provide information

on
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1) the distribution function

D (u) := lim < |[{n<x , g(n)>u}| (7)
g X0 x - -
if it exists - it does for instance [ES 2] if g = H , and the
method Erdds and Shapiro use to prove it is probably applicable
to g =F or equivalently to g =G 1.1 7 the case g = G 1,27
“Liy Y

however, already looks difficult

~e

2) the function

the number of changes of sign of

X (x) := { (8)
g g(t) (te R) in the interval [1,x).

The following result provides an illustration.

THEOREM 3. Let ge Cz(q,f) for a slowly varying 1z, and

suppose that
glx) = g(lx]) - C{x} + o(1) (x>00) (9)

for some real constant C # 0 . Then

. 2k+l {l _ (2k’+l)M(,g2k)

X (x) >
2k C2k

X + o(x) . (10)
g - 2 -1 -

If, in addition, the distribution function Dg exists and is

continuous, then

Xg(x) = 2|Dg(0) - Dg(C)lx + o(x) . (11)
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COROLLARY [P 1].

2
X (%) ~ 2(Dg(0)-D, (6/72))x > S(1~ Tox + o(x).  (12)

Proof : (3), (9) with k=1, and (10).

For other applications of Theorem 3 with k=1, see [P 1].

REMARK 1. The case k=1 of Theorem 3 (and (10)) is proved in
[P 1]; the general case can be obtained by following the same
argument with the principal term of

2k+1 2k+1

n+l 2k 1
Jn (g(t)) dt = m{(g(n)) -(g(n)-C) (13)

that can be written as a polynomial of degree k in the
argument (g(n) - C/2)2 , and whose constant term is then

(2k+1) "L(c/2) 2k |

REMARK 2, If g satisfies (9) we have the trivial upper bound
Xg(x)' < 2x +o0Q) , (14)

valid for all x > 1 . Is it true that
(2k+1) M (a25)

> 0 (kow) ? (15)
(6/m2) %K

with (10) and (14), it would imply that

V XHﬂx) ~ 2% (x>) (16)
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3. Oscillations.

It follows from the discussion in Section 2 that the
existence of M(gk) for all k, which looks first like a
strong condition of regularity, might in fact imply very wild
irregularities, as the existence'of many changes in sign. In
this section we discuss the amplitude of oscillations for

functions belonging to a C(a,f). We first recall

DEFINITIONS. Let h be a real positive function, and g a

real function. Then, as x»»,

1) g(x) = Q(h(x)) means that limsup |g(x)|/h(x) > 0 ;
X—>o0
2) g(x) = Q+(h(x)) means that limsup g(x)/h(x) > 0 ;
X0
3) g(x) = _(h(x)) means that 1liminf g(x)/h(x) < 0 ;
and
4) g(x) = Qi(h(x)) means that g(x) = Q+(h(x)) and g(x) = 2_(h(x)).

We know for instance that [PiC 1]

H(x) = Q(log log log:x) , (1)
and that [ES 1]

H(x) = Q,(log log log log x) . (2)

The idea of Erdds and Shapiro to prove (2) consists in
evaluating the mean of H over certain arithmetical progressions.

They obtain
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I ] H(an-B) = -H(B) + O(l) (3)
n<x
. . _ _ 1/2
for the special choice A = | |p = X (the symbol ©p
p<B

is as usual the prime numbers' monopoly). With (3), (2) is an

easy consequence of (1).

In [Co 1] Codeca proves an interesting formula for

lim & ) g (An+B)
X+ nix

: M(a,B) , (4)

valid for any fixed pair of positive integers A and B, and
applicable to geC(a,f) if the error term in (l.1l) is not too
large. By then making arbitrarily large special choices of A
he uses this formula to show that the functions H , F and Q
are not bounded above nor below. But since, unlike the
parameters A and B of (3), those of (4) are not allowed to
increase with x, no explicit § - result is obtained.

If however we give up the existence of the limit on the left
side of (4), A and B can be let loose under certaih conditions.

Here is one version, usable to seek { - results.

THEOREM 4 [P 4]. Let A = A(x) > 0 and B = B(x) > 0 be
integers, and z(x) be a real, increasing, unbounded function
such that

z (2x)
z (x)

A
8

limsup
X0

(5)

- 10 -
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and that

u(x) := 2z(Ax+B) = o(x) (x+0) (6)

Then, if geCZ (a,f), we have

a(i)[%* Zk*f(%*+ g)] + 0(1) , (7)
n< : ’

M

} g(An+B) = )
n<x k<u
where k* denotes k/(A,k), (A,k) Dbeing as usual the greatest

common divisor of A and k.

In order to use the right hand side of (7) to obtain Q-
results, we must first estimate the inside sum. This is possible

if for instance f satisfies a distribution property as

B . {2;2(2“B/k) if k*=1
sinf{ n B
27 (ot —)J = (8)
ngk* COS[ S 0 otherwise ;
1 ‘n B 1 B

"From (7), (8) and (9) we can obtain

' COROLLARY [P 4].

H(x) = @, (log log log log x) ; (2)
F(x) = Q%(log log x) ; (10)
P(x) = @, ,(log log x) ; (11)
) = g, ((log log x/?) ; (12)

G—l,zﬂ(x) = Q*(log log x) , (13)

- 11 -



157

where in (13) , denotes the sign of B, the 22-th

QII

Bernoulli number.

NOTE 1. (11) and (12) are essentially due to Hardy and Littlewood.

[HL]. (10) and (13) we believe are new.
NOTE 2., A more precise form of Theorem 4 [P 4] leads to
Galzz(x) = Q*(l) (a<-1) , | (14)

where , 1is defined as in (13).

4, Changes of sign on integers.

In this section we.use the letter ¢ freely to denote in
general any positive constant.

In Section 2 we have obtained, as a consequence of Theorem 3,
that

Xy (x) ~ cx (x+) ‘. (1)

The function H(t) decreases linearly by 6/m? on each
interval [n,n+l) and jumps (upwards) by ¢(n+l)/(n+l) at

t = ﬁ+l (n being any'positive integer). The problem of
~estimating the function NH(X) , that counts only the changes
in sign of the restricted H(n) (ne ®M) in the interval [1,x),
appears to be more difficult than that of estimating XH(x).

ErdSs conjectures [E] that

NH(x) ~ cx (x+o) (2)

- 12 -
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By exploiting the special choice of A and B for which (3.3)

is valid and [PiC 11's method of proving (3.2) I have shown [P 2]
that

NH(x) > ¢ log log x + O0(1) . (3)
As it is pointed out in [P 4], this can be slightly improved to

NH(x) > c(log log x)3/2(log log log x)_2 + 0(1) (4)

by exploiting the special choices of A and B that one is
allowed to make when one applies Theorem 4 to the function H ,
which we know [W 2, P 3] belongs to Cz(u,wl) for
z(x) = exp(c(logx)2/3(log log x)4/3).

Unfortunately, if we believe in Conjecture (2), this method

is hopeless : we cannot expect to obtain better than
NH(X) > c(log log x)e(x) + O(1) , (5)

where e(x) 1s such that

] Hi = 2,x + 0x/e(x) ; (6)
n<x . .

and even under the assumption of the Riemann Hypothesis we

only know to date that [Su]
(ea)'= o@/? *e ) (7)

for all positive ¢ .

Similar results [P 2, P 4] and a similar remark apply to

the function F .

- 13 -
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