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Congruence relations between class numbers of quadratic fields

A B F F5 (PRR 2)
Yoshihiko YAMAMOTO (Osaka University)

0. Introduction.

Let X = QW D) be the quadratic field with discriminant

D = Dy . Wedenote by Cp = C(D) and hy = h(D) the ideal

class group of K and its class number respectively. We also

denote by € > 1 the fundamental unit of K when D > 0
and by w(D) the number of roots of unity contained in K. Put
&, = e2 mi/n for a positive integer n.
Assume D = —pq; where p and q are prime numbers such
that p = 3 (mod 4) and q = 1 (mod 4), so that 2 | h(D)

and the 2-part (i.e. the 2-Sylow subgroup) of CK is cyclic.

Then we have

4 | h(-pg) <==> (:g—) =1 (Rédei-Reichardt),

8 | h(-pg) <==> (:g”)4 1 (Bucher, Kaplan).
Hence we have
4 “ h(—-pq) <==> (:_EIL)A = _1 and

2 I hp) <= (G = -1 == (), =t

where * depends on the defnition of the biquadratic residue

symbol (—7;—)4 .
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One might ask the naive question: Is it possible to‘have
2y _ ;h(-pa)/2
Gy = 1

by a suitable definition}of (—-i—)4 ?

In fact we have

THEOREM 1. Let p and q be primes such that p = 3

(mod 4) and q = 1 (mod 4). Then we have

e U
(1-1) 2,

= (_Iq)h*(—p})h(—pq)/z‘ (mod q),

m

[5%1_]! (mod q)

where (B, = (-0 (moa @), 1,

h*(-p) = h(-p) if p > 3 and h*(-3) = 3.
Since qu = -1 (mod q), we see that theorem 1 determines

the congruence class h(-pq) modulo 8. Congrence relation (1-1)

can be rewritten into

[}

(1-1") (:%_)4 gqh*(_P)h(Q)h(_pQ)/z (mod q)

by Chowla's formula

= -h€q)
1-2 I = ¢ mod q),
(1-2) q q (mod q)
where we understand that Eq = %- (mod q) if eq = ELiEFECZ£: .
Now we further assume (:g—) = 1, hence 4 | h(-pq) and

q splitsin A = QU : (0 = G, Pu gD

(a), o = Z?iil—:jl— &€ 0 the integer ring of A (x, y &

A b

Z). 0 is uniquely determined by the condition
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@3 = 1 (mod 4 0,) (cf. [2 D).

Then we have

8 | h(-pg) <==> (—z—) =1 and
16 | h(-pq) <==> (-ii—)4 =1 (c£.[ 2 1, th. 5.6).
Hence
X
8 |l h(-p)) <=> (), = -1  eand
Gl hp) <= (), =t

Again we can ask whether (—%—)4 determines the class h(-pq)

modulo 16. Numerical experiments lead us to the following

CONJECTURE. Let p and q be primes such that p = 3
(mod 4), q = 1 (mod 4) and (:ﬁ—) = 1. Then it holds
(1-3) (_§_94 = (_Iq>h(—PQ)/4 (mod q)

or equivalently

_3! Xy = h(q)h(-pq)/4
(1-3") £, = e (mod q).
We havé
THEOREM 2. If h(-p) = 1 and p # 3 then above con-

jecture is true.

1. Proof of theorem 1.

It is easy to see (1-1) when (:g—) = 1. So we assume
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= -1 1in this section. From Dirichlet's class number for-

mu la we have

s, = I'logQ1 - cpqa) = 0,

s,= I <—§¥>1og<1~— Cog) = ~4mi h(=p)/w(-p),
Sq = L (oleg(l - T %) = -4 h(@)log €,
S_pq= L (e - & B = T h(-p),

where the summations are taken on a's such that 0 < a < pq

and (a, pq) = 1. Add Sl’ S—p’ Sq and S—pq’ and we have
(1-4) 4 I" log(l - cpqa) = -4Ti h(-p)/w(-p) - 4 h(q)log 4
- Ti h(-pq),

the summation being taken on a's such that 0 < a < pgq and
(—%—) = (—%—) = 1. Taking expnentials,

" a _ s h*(-p)+h(-pq)/2 -h(q)
(1-5) " (1 - cpq ) = (1) € ,

the product being taken on the same range of a's as in L ".

Let Q be a prime ideal in Q( Cpq) such that Q | q and i =

—Iq (mod Q). Since Cq = 1 (mod Q), it follows from (1-2) that

I

~h*(-p)+1-h(-pq)/2 = @I (1 - ¢ )
q p

0<y<p, (D=1

= (@D (n0d ).

This imples the theorem.



2. Proof of theorem 2.

In case 8 | h(-pg) theorem 2 being reduced‘to the known
results, we may assume 4 l| h(-pq). There exists unique unramified
cyclic extension KA/K of degree 4. K4 is normal over Q and
Gal(KA/Q) is isomorphic to Dé’ the dihedfél group of order 8.

We have the following diagram of subfields:

,.—~—~::57”%4 - e
A, ?é Tz - QV/~p, Y4, A, = A(%), cond(A,/A) -7
~ e i
A K = Qv-pq) A) = A(VT), cond(A}/A) = 7
. | _,
° 4 =

We see that KA/A has conductorv (q) = %é}. vLet Xgr Xy Xy
and X3 be the Hecke charactor modulo (q) of A corresponding

to abelian extensions A, A2, Aé and K4 over A, respectivly:

SCEEENE ORI S IR RS I (‘fﬁ)’

and  Xg(Y) = (—%—)(%) - D
Define S(Xi) (i=0,1, 2, 3) by
(-1 sx) = I o leglF zl? (v e 0/,
where F is the Siegel function,
(Y, 2) = expl miy (2=D)] k :zi); A,
and 1z - 1—i§ZEE:

From Krocker's limit formula for imaginary quadratic fields, we
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have
S(Xo) = 0’
- 2
S(xy) = -2(1 =x;(@)) hAzlogIUl :
where hA is the class number of A2 and U is a fundamental
2
unit of A, such that |U| >1 and 0, =< -1, U >,
)
._2 A —_
S(Xz) = _2(1 _Xz(a)) hAé 10g|Ul .= S(Xl)’ since Aé = A2,
and S(XS) = -2 h(q) h(-pq) log Eq.
Since' Xl(a) = Xz(a) = (—%—) = -1, we have
(2-2) S(Xg) + S(xp) - S(xy) - S(x3)
A 2
= 4 T log|F(2- z)]® = 2 h(Q)h(-pa)log € .
xe0,/(q) q q
Xl(x)=_1yX2(A)=l
Hence we get
PROPOSITION 1. i [F(-—ﬁ‘—, 212 - gqh(q)h(-pq)/z_

Xl(k)=‘1’X2(A)=l
On the other hand, it follows from Ramachandra [ 1 ] that

PROPOSITION 2. Assume A &€ 0, = [1, =z

A A& 2 OA, and

0]9

A& q OA. Then it holds that

F(-—)\— )3q

2 2% = RCTg 000 i(zg)

for a rational function R & Q[X, Y] not depending on A, where

7(w, L) is the Weber's T-function.
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Let
2 3 2
E: Y© = 4 X7 - 12J(J-1728) X -~ 8J(J-1728)
. . 3/2 4
be the elliptic curve defined by (X, Y) = ( t(w,L), c §3 (w,L)),
: 7 .5
where L = [1, zO] =7+ Z zy, € = -2 3 gZ(ZO)gB(ZO>/A(ZO)
and J = 1728 j(zO). (Note T(w, L) = ¢ &?(w, L), ) E is

defined over A and End(E) is _isomorphic to OA; For an ideal {l
in A we denote by E( () the group of (] -torsion points of E.
Since E has good ordianly reduction molulo (Z_, we have the fol-

lowing diagram

E(4) + E(g) + E(J)

E(4q) =
red. mod Cl, Nl ’véinj. l N iinj.
E(4q) = E(4) + O + (7).
Hence we have
PROPOSITION 3. Let A= q+ 4a0 + 4ba and A' =

qQ + 4a0 (a, b€ Z). If a # O (mod q), then A and X' satisfy

the assumptions in proposition 2 and we have

P, 2> = R, 2% (mod O,

where Q is a prime ideal in A(E(4q)) such that Q l LZ .
By the transformation formulas of Siegel function we have

PROPOSITION 4.

1

g-1
TR, ol = 0 1 P22, (07D (oq gy,
Xl(>\)=_1y X2(>\)=1

where P is a 3q-th root of 1.
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By the product formula of Siegel function and the transforma-

tion formula of nN-function we get

PROPOSITION 5. Let %; = (@) = I[q, zy= r] (r& Z) be
the Z-basis of LYZ . Then
-l 4a0 ar  Zgm T 2 —
Now we get
e h(q)h(-pq)/4 _ 1 IF(_A—’ z) | (Prop. 1)
q \ q 0
= p (‘%—)4 (mod Q) (Prop. 4 and Prop. 5).
Since €q4 = (—%—)44 = 1 (mod Q). we have p = 1. This
implies Theorem 2.
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