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Existence of an unramified cyclic extension

and congruence conditions

Makoto Ishida (7Z 'z )

(Tokyo Metropolitan University)

Let KX be an algebraic number field of odd prime degree %.

Then the following two facts are known.

1) The prime ¢ is totally ramified in K if énd only if
there exists a primitive eiement m of X (K= Q@(m)) having
the minimal polynomial f£(X) of Eisensfein type’with res?ect

to ¢, i.e.

£(X) = x* + a X1y ax¥2 4 ...+ a ez[X],
1 2 L
where a; = a, Z ... = aQE 0 (mod 1)
and a, Z 0 (mod 22).

Let k+ be the unique (real) subfield, of degree &, of
the 22—th cyclotomic field.

2) 1In the case 1), L = x*k is an unramified (cyclic)
extension over K if and only if we have

- _ - 2
a; + ag 2a, ... 2 a, ;= 0 (mod 7).
We exclude the special case K = k+. So, in the following,

we may suppose K # kT and [L : K] = 2. Of course, we may
also suppose that K 1is real.

Now our problem in the case 2) is as follows :

Is there an unramified cyclic extension M, of degree 12

’

- + .
over K, containing L = k K ? More precisely, are there any
higher congruence conditions on the coefficients s Ay een
ap of £(X), which ensure the existence of such an extension M

of K ?



I. Under the congruence conditions in 1) and 2), our

first conclusion is :

L

Iif a, F 24 (mod 23) for any d €%, then there is no

. E \ . 2 . .
unramified cyclic extension, of degree &°, over K, containing

L = kK.
In fact, let £ be the prime ideal in K dividing 2
and we have (r) = ££ with (Z,) = 1. The ideal class group

CK of K  has the subgroup

6= {caamw| sl =1 ana 8Pz 1 (moa 2?) f

of index &, which corresponds to the abelian extension L in

the sense of class field theory. Then it is proved

L

a, # 24" (mod 23) for any d€%

= cl(fi)'l = Cl(£) ¢ G,

— Cg = Lce1(ty> G, .

Then the assertion easily follows.

Therefore, in consideration of our problem, we may suppose

% (mod 23) with some d &£%. Then,

n

that we have a 2d

L

replacing 7 by cm with c¢ &€& such that cd 1 (mod 22),

we may assume-that we have

a, =) (mod 23).
II. From now on, we treat the cubic case i.e. £ = 3.
Notations :

r = a primitive 3rd root of unity,

a primitive 9-th root of unity,
k =0Q(r) = QW=3), K' =KkK, L' =KL,
X' (YD),

/' = the prime ideal in K', dividing 3,

so L' = kk'k = K(n) = K'(n)
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so (3) = £,6’ f}zn T and (1-7) = {'3.

1°. Bas preliminaries, we have the following two assertions.

(a) Algebraic aspect. By Kummer theory, for any o €K'
ka#O), M' =L (3V ) = K CYTa) is a cyclic extension, of
degree 9, over K'. (Conversely, every cyclic extension, of degree
9, over K', containing L', is obtained in this way.) More-
over if we have
(*) ao = Y with ye¢ K',

(J denotes the complex conjugation)
then M' 1is an abelian extension, of degree 18, over K and the
fixed subfield M by J is a cyclic ektension, of degree 9,
over K, containing L = k+K.

(b) Arithmetic aspect. As L' is unramifiéd over K', the
unramifiedness of M over K is equivalent to that of M' over
L'. Then, by the ramification theory in Kummex extensions, it is
also equivalent, under the condition (a,¢') = 1, to the two
facts

(1) the principal ideal (a) is the cube of an ideal in L'.

(2) no 1is congruent to the cube of an integer in L' modulo

X:,9

Of course, we can easily modify these assertions for the

for any prime divisors ' of /' in L'.

case of arbitrary odd prime 2R.
2°. Now we assume that the following congruence conditions

are satisfied :

aj = 3 (mod 33) (as remarked in I)
ie. a;=3b (beg, b=1 (mod 3%y,
- _ _ 3
a; = a; = 3b (mod 37),
a, =0 (mod 33).



We put w = b(l-z)/m and € = l-w, which are integers in
K' such that f'” w and {' X €.

Then, under the above conditions, it is proved that we
have

()3 - 3

m

0 (moa 2'%°).
So we have
¢z = the cube of an integer in K'' (mod ﬁ'lo),
which implies that /' is completely decomposed in L' =
K'(ahf) : f = {3}2}'2%', Moreover, for each prime ideal 4{1',
we see that
(7 - ney (7 = ner) (¥ - ner®) =0 moa £ '17).
Investigating the exponent of Afi" in each factor of the left-
hand side, we haye
ne;j = eJ (mod',(i'g) withe some j = j).
Hence our second conclusion follows :
We have

ne(eJ)2 = the cube of an integer in L'

(mod ,[i'g) (i=1,2,3)

and

3

J,2,J
).

(e(eN)?) (e(e”)?)T = (ee”
(That is, o = é:(eJ)2 satisfies the conditions (*) in (a) and
(2) in (b).)

3%, Consequently, by considering the extension M' =

L'(3¢ ne(eJ)z) of K, our third conclusion is

If the principal ideal (s(eJ)z) is the cube of an ideal

in L', then there exists an unramified cyclic extension M, of

s +
degree 9, over K, containing L = k K.

Here we note that, for an integer 6 in K' such that
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§=e=1-w (mod f'g),
we have the similar conclusion for the extension L'(3 né(dJ)z).
4 . As for the assumption in the third conclusion, we can
show that € is a unit in K' if and only if
NK,/k(e) = #]1 or +Z or icz,
and so if and only if (NK./k(E) =7 i.e.)
ay =3b, a; =-3b, a, = 3(b>-1)
(b =1 (mod 3%))
(and in this case, our extension M exists).
In this special case, the minimal polynomial of 7-b is
given by X3 - 3X + b3 and the discriminant is.equal to

-27(b6—4). We note that the norm N (¢) of the unit € is.

K'/K

of course a unit of K and we have —(NK,/K(E))—l = bm + 1.

Hence we have the following assertion :

Let K = Q(B) be a cubic number field, wherée the minimal
polynomial of B 1is

x> - 3% + b> € 2[x]
with b =1 (mod 3%).

Then 1l+b(B+b) = l+b2+bB is a unit of K. Moreover, K has
an unramified cYclic extension of degree 9 (so the ideal class
group of K contains a cyclic subgroup of order 9).

It is also shown that there are infinitely many cubic number
fields K = Q(B), which are obtained in the above way.
5°. Under the congruence conditions on ays a8y, @5 as in 20,
we investigate the w-adic expansions of several integers in K!'
and L', where w = b(l-g)/m (ﬁwlm). Let O

and O be

K' L'
the rings of integers in K' and L' respectively. Since we

have



(3) — Zlgé in R! and [u = [10[21[31 in L',
we can take { 0,1,-1 f as a representative system of the residue
fields OK'/[" and OL.A[i'.

Then, after cumbersome calculations, we. have

-3 = w6 ,
T = wz + ws - w6 -w! - w8 - wg (mod ﬂ'lo) :
z =1~ w3 -w + w

especially we have
= (1-uw - wz)3 (mod [flo)
(see 2°).
We fix one of Z&' s : e.g. ' = ;' Then, by a suitable

choice of n (a primitive 9-th root of unity), we have

n=1l1l-uw- mz - w3 + 0! (mod.['g).
As wJ = w(l+g) = - w - w4 + w7 + w8 (mod z'g), we see
n(l-w) =1 + w + w4 - w7 - w8
= 1-0Y (mod‘C)g).
Consequently, putting € = l-w, we have
ne = v (mod Z'g)
ice. ne(eN? =z (93 (mod ¢'°).
For another ,Ci' (i=2,3), we have '[i' =7'" with some T €
Gal(L'/K') and, as nT = an,
ne(eh)? = (%) 37

(€7 (1-w-0®)™)?  mea <17
These are the congruences obtained in 2°.
Finally, we add some remd@rks in local aspect. We are

interested in seeking all o €0y, such that
no = aJB3 (mod L‘g) with BEOK,,

because this congruence implies
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na(aJ)2 = (aJB)3 (mod ['9)

and  (2(eN)?) (0D = (aa)3,

that is, a(ch)2 satisfies the conditions (*) in (a) and (2)

in (b).
If na = aJ83 (mod L'g), then we have
a/e = (a/e)783 (mod £'°).
It is proved that, for any Yé;OK, (y=1 (mod /')), we have
Y = yJB3 i.e. o = ey (mod ['9)
if and only if
vy = mod 21,
where A,m€ 0y, (A, usl (mod £')) such that A = 27 (moa s'°).
Hence, for atEOK. (a1 (mod £')) such that
o = gy i.e. = exu3 (mod £‘9),

if the principal ideal (a(aJ)Z) is the cube of an ideal in L',
then the extension M' = L'(3 na(aJ)z) has the subfield N,
which is an unramified cyclic extension, of degree 9, over K,
containing L = x*k.

We note that, as € = 1l-w and Y1 (mod ﬁfz), we have

o Z ey =1 -w (mod £'2).

Among 37 classes of OK./gfg, containing an integer = l-w
{mod z'z), there are exactly 35 classes, containing some - €Y

as above.



