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On p-adic Galois representations
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§1. Introduction

Let R = Fpﬂtﬂ and K = Fp((t)). Let E be an elliptic curve
over R whose Hasse invariant is a uniformizer of R. Then the
special fiber EO = E® Fp is supersingular and the generic fiber

R

E ® K is ordinary.
R

Let K denote the algebraic closure of K. As E ® K is
ordinary, p-power torsion of E(K) is isomorphic to the group
Qp/Zp. Considering the Galois action on p-power torsion of E(K),
we get a Galois representation g : Gal(Ksep/K) - Z;. In fhis
report, we shall investigate the continuous homomorphism
p K* - Z; which 1is associated with g via reciprocity map of
local class field theory. %or simplicity, we suppose that p =2 5.

By the method of Lubin-Tate [7], we first show the following

Proposition 1. Let the situation be as above. Then there
exists a canonical local Fp—algebra automorphism u of R which
preserves the continuous homomorphism p, i.e. p(f(u(t))) = p(£f(t))

for any f € K>,

Let pO denote the restriction of p to R*. By the above
proposition, Ker pO contains the groub { 2%%%%11 | £ e K> }. Our
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main result is

Theorem. The kernel of the homomorphism po : R - Z; is the

closure of the group { ffutt | £ € K™ };

We shall give a sketch of the proof of these results. For fhe
full proof, cf. [2]. (In [2], we deal with formal groups over R
which are "generic". It is easily checked that the formal group of

E is generic). -

We here explain the motivation of this report. Let k = Fp(l)

with p # 2, where 1 1is an indeterminate. Let El/k be an
eiliptic curve defined by the equation y2 = x(x - 1)(x - 1). As
El/k is ordinary, p-power torsion of El(E) is isomorphic to
Qp/Zp. By considering the Galois action on p-power torsion of

EA(E), we obtain a Galois representation

r : Gal(kS®P/k) - z;.
For any plaee w of k, denote by ro the restriction of r to
the decomposition group at w.

If the reduction of El at w is not supersingular, we can
completely determine the representation T In the case that E/1
has ordinary reduction at w, the representation r, is unramified
and the value of the Frobenius element is the reciprocal of the unit
root of the zeta function of the special fiber at w ( Theorem 4.2.2
of [6] ). In the case that E; has bad reduction at w ( i.e. w =
(2), (A - 1), or (1_1) ), the situation is as follows ( cf. Lemma
4. 2.1 of [6] ) : At the place w = (1), E, has split or non-split
multiplicative reduction according as p = 1 (mod. 4) or p =3
(mod. 4). Thus r. is trivial if p =1 (mod. 4) and is quadratic
unramified if p = 3 (mod. 4). At the place w = (1-1), E, has
split multiplicative reduction, so the representation r is

W
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trivial. At the place w = (2 7), El has additive reduction. By

an easy calculation, we see that El has split multiplicative
reduction over Ep(((—l-l)})) and that r. is a quadratic
character corresponding to the extension Fp(((—x-l)%))/Fp((l_l)).
As for the case that El has supersingular reduction at w,
although some important results are obtained ( e.g. Gross [3], Igusa
[5] ), the situation does not seem so clear. Our point of view is
to consider the continuous homomorphism Py ¢ ks - Z; ( kw denotes
the completion of k at w ) which is associated wi%h r, via
reciprocity map of local class field‘theory. If El has
supersingular reduction at the place w of degree 1, our results
apply to the homomorphism P, ( cf. Igusa [4] ). The author hopes
that this report might shed some light on the global representation

r Gal(ksep/k) - Z;.
§2. Some invariance of p

In this section, we do not impose any condition on a prime p
and shall prove Proposition 1 in a little generalized form. For the
connection with the formulation given in the previous section, we
refer to the beginning of §3.

We shall use the terminologies and results of formal groups
(cf. Frdhlich [1]). For any elliptic curve A, we denote by A its
formal group. ‘

To obtain local Fp—algebra automorphiéms of R which preserve
p, we introduce the functor M whose affine algebra is
non-canonically isomorphic to R. Let % denote the category of
complete noetherian local Fp—algebras with residue field Fp. Let

S be any object of %. The pair (G, t) consisting of a formal

A

group G over S and an isomorphism ¢ : G® F_ x E

will be
s P 0



called a rigidified lifting of Eo to S. Define the equivalence

relation ~ of rigidified 1liftings of E0 to S by setting
(G, ¢t) ~ (G', ¢') if and only if there exists an S-isomorphism

¢ : GxG' such that =-c’o50, where £ denotes the special

-~

fiber of €. We define the formal moduli functor M of Eo as a

covariant functor that associates to any object S of % the set

of ~-equivalence classes of rigidified 1liftings of E to S.

0
Lubin and Tate [7] has shown that the functor M is
pro-representable and that the affine algebra P of M is

non-canonically isomorphic to R = Fpﬂtﬂ. In other words, they

constrdcted a formal group F/P such that F ® Fp = EO with the

following property: For any rigidified lifting (G, ¢) of E to

0
S, there corresponds a unique local Fp—algebra homomorphism

v : P> S which makes (G, ¢) and (3P?VS, identity) are
w—isomorphic ( We denote by yP?vS the formal group obtained from
¥ by making a scalar extension v ). By the assumption that ‘the

Hasse invariant of E 1s a uniformizer of R, the element

(E, identity) corresponds to an isomorphism 1 : P s R ( cf.

Proposition 1 of [2]).

Let ¢ be an automorphism of _ﬁo over. Fp. Then ¢
naturally acts on the functor M as follows
(G, ¢t) » (G, @°t).
Denote by & the automorphism of M defined above. Then we easily
have
1) gy = gy @, € Aut,prEo

i) ¢

identity & ¢ € Z;.
-
Let ¢ be the local Fp—algebra automorphism of P which

induces the automorphism ¢ on M. As the ring End]F Eo is
p
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generated over Zp by the Frobenius endomorphism F, the group

Aut Eo is commutative. Thus we have -

FF
P
. . _» . _e

Py =y e =@y

For any ¢ € AutlF EO, we denote by VW/P the formal group obtained
p

-
from F/P by making a scalar extension ¢ .

Lemma 1 (Lubin-Tate [7]). There exists a P-isomorphism
p 1 F - 7¢ such that ¢? ] Fp = @.
. -
Proof. By the definition of ¢ , the pairs (¥, @) and

(?w, identity) are ~-equivalent. Thus there exists an isomorphism

w?: F - 5¢ such that ¢ = (identity of EO)°( ¢T ® Ep). Q.E.D.

For ¢ e AutF Eo, define a local Fp-algebra automorphism u¢
p

. _
of R by setting u¢ = Ao o1 1. Denote by E¢/R the elliptic
curve obtained from E/R by making a scalar extension uw. By

~ N ~

Lemma 1 we get an R-isomorphism ¢ : E - E¢ such that ¢ ® Fp = @.

Thus the following proposition is almost obvious.

-

Proposition 1. For any ¢ € AUtIF EO and f € K*, we have

p(f-(uq,(t))) = p(f(t)).

Proof. Denote by pw : K - Z; the continuous homomorphism

attached to E¢' Then we have pw(f(uw(t))) = p{(f(t)). On the

other hand, since E and E¢ are isomorphic over R, we easily

conclude that p = pw. Thus p(f(uw(t))) = p(f(t)). Q.E.D.



§3. Main result

In this section, we assume that p # 2, 3. Then the Frobenius

endomorphism F of Eo satisfies the relation FZ +p =20 in

- - x
Er\d]F Eo and the group AUtFpEO/Zp is a free Zp—module generated

by 1 -F. For ¢ =1 - F, we shall abbreviate uw by u.
Let U1 denote the group of principal units 1 + tR  of R.
To prove our theorem, we shall introduce a ZpHTB—module structure

on Ul. Denote ue-..-u pn-times ) by u[n]. For any nonnegative

integer v, define Rv = R/tv+1R and Ev =E® Rv' Via the

R

canonical projection, we regard EndR Ev as a subring of 0 =
v

EndlF EO. The next lemma enables us to reduce the study of an
p

automorphism u of R to that of endomorphism of En'

Lemma 2. Let n and v be nonnegative integers. Then the
following conditions are equivalent.
i)»u[n](t) = t (mod. tV+1)

- n
i) EndeEv D,ZP + p oO.

Cf. Lemma 1 of [2].

Let in = ordR(u[n](t) - t), where ord denotes the

R
normalized additive valuation of R. By using Lemma 2, we can

determine io and il'

Lemma 3. 1) io = 2 and i1 =2p + 2.

i) 1 = (2p + 2)pn"1 for any n 2 1.
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Cf. Proposition 3, Lemma 2 and Proposition 4 of [2].

We regard U1 as a Zp[T]—module by setting (Tf)(t) = flu(t))

f£(t)
n [n]
for £ e Ul. Since ((T+1)p -1)f(t) = £LE?T¥§211’ we have

n i
((T+1)p -1)U1 c1+ t P R.

By i) of Lemma 3 and the fact that U1 is complete, U1 becomes a

n
module over lim Z [T]/((T+1)® -1) = Z[(TN. Let 4 = Z[TI. By i)

of Lemma 3, we can determine the A-module structure of Ul.

1

Proposition 2. U is a free 4-module of rank 2 generated by

1

any elements a and B of U such that ordR(a - 1) =1 and

ordR(ﬂ - 1) =1+ p.
Cf. Proposition 5 of [2].

From this, we can now prove our theorem. Denote by V . the
closure of the group { ff?tt | £ e K> }. By Igusa [5], we have
pO(Rx) = Z;, so Ker po c U1 and po(Ul) =1 + pr. Since 1 + pr

is a free Zp—module of rank 1, it suffices to show that the

Zp—module U1/V is also free of rank 1.
As f € K* 1is written in the form f = axt"xh ( a € E;, n ez,

h € U1 }, we have

(P2 1 e er ) o { ()7 et s emn et ).

Thus we get

1
?)) | zez, nevu }.
Take any element of U1 such that ordR(ﬂ - 1) =1 + p.
As ordR(E%EI - 1) =1 by i) of Lemma 3, U1 is a free A-module
generated by a = u(t) and p. Then V = Zpa + TU1>= Aa + A(TB),

_7...



hence we have U1/V = AB/A(TB) 5 A/T4A = Zp. Q.E.D.
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