On ℓ^3 -divisibility of class numbers of ℓ -cyclic extensions

by Hirotada NAITO 内藤浩忠 The Faculty of Education Kagawa University Takamatsu, JAPAN

§ 1. Introduction.

In this talk, we consider a problem of the divisibility of class numbers of algebraic number fields of finite degree. Many people have studied the following problem:

Are there infinitely many algebraic number fields k satisfying some prescribed conditions whose class numbers are divisible by a given integer n?

Kuroda[7] studied the case that fields k are imaginary quadratic fields in which a finite number of prescribed primes are ramified.

 $\label{thm:case that fields k are real} $$ \begin{tabular}{ll} \textbf{Quadratic fields.} \end{tabular} $$ \begin{tabular}{ll} \textbf{Quadr$

Uchida[10] studied the case that fields k are cyclic extensions over the rational number fields Q of degree 3.

Azuhata and Ichimura[1] studied the case that fields $\,$ k have $\,$ real places and $\,$ regionary places (r_2 \geq 1). Nakano[9] generalized the above result to the case

including $r_2=0$.

Further references are found in Diaz y Diaz[3].

For a special class of quadratic number fields we know the following theorem.

THEOREM (Kaplan[6] and Yamamoto[12]) Let $p\equiv 3\pmod 4$ be the fixed prime. Let $q\equiv 1\pmod 4$ be the prime. Then the following properties are equivalent:

- (i) The class number of $Q(\sqrt{-pq})$ is divisible by 8.
- (ii) The prime q is completely decomposed in K $_8/\mathrm{Q}$, where K $_8=\mathrm{Q}(\sqrt{-1},\sqrt[l]{\mathrm{p}})$.

By Tchebotarev's density theorem we see that the density of the set consisting of the primes q with the above property (ii) is 1/8. Therefore we may say that the density of $Q(\sqrt{-pq})$ whose class numbers are divisible by 8 is 1/8 for the fixed prime p. Cohn[2] called such a field K_8 the governing field and studied some types of quadratic fields.

In this talk, we investigate the ℓ^3 -divisibility of the cyclic extensions of degree ℓ , where ℓ is an odd prime number. Let p be the fixed prime such that $p\equiv l \pmod{\ell}$ or $p=\ell$. Let $q\equiv l \pmod{\ell}$ be a prime. We denote by L_p the cyclic extension over the rational number field p of degree p where only the prime p is ramified. We denote by p if p is cyclic extensions over p of degree p where only both of the primes p and p are

ramified. The class number of L_p is prime to ℓ and the index of the group of circular units of L_p in the unit group E of L_p is also prime to ℓ . Let ξ_1 and ξ_2 be circular units of L_p such that the images of the subgroups $\langle \xi_1 \rangle$ and $\langle \xi_1, \xi_2 \rangle$ in E/E^{ℓ} are invariant under the action of the Galois group of L_p/Q . We put $\mathcal{L}_p^2 = L_p(\xi_\ell, \sqrt[\ell]{\xi_1})$ and $\mathcal{L}_p^3 = L_p(\xi_\ell, \sqrt[\ell]{\xi_1}, \sqrt[\ell]{\xi_2})$, where ξ_ℓ is a primitive ℓ -th root of unity. Then we get:

THEOREM. For r=2 or 3, the following properties are equivalent:

- (i) The class number of L_i is divisible by ℓ^r for some $1 \le i \le \ell 1$.
- (ii) The class number of $\,L_{\dot{1}}\,$ is divisible by $\,\ell^{\,r}\,$ for any $\,1\,{\leq}\,i\,{\leq}\,\ell{-}1\,.$
 - (iii) The prime q is completely decomposed in $\mathcal{L}^{\mathbf{r}}_{\mathsf{o}}/\mathtt{Q}.$

REMARK 1. For r=2, this is a result of Inaba[4], c.f. also Gras[5]. In these papers it is shown that the property (i) is equivalent to the property $\left(\frac{q}{p}\right)_{\ell} = \left(\frac{p}{q}\right)_{\ell} = 1$, where $\left(\frac{*}{*}\right)_{\ell}$ is the ℓ -th power residue symbol. We get $\mathcal{L}_p^2 = L_p(\zeta_\ell, \sqrt[\ell]{p})$ because of $\xi_1 = p\alpha^\ell$ for some $\alpha \in L_p$. Thus we see that (i) and (ii) are equivalent.

REMARK 2. If the class number of L_i is divisible by 3^3 , the ideal class group of L_i has an element of order 3^2 for $\ell=3$.

§ 2. The Proof.

We denote by $(Z/mZ)^{\bigoplus s}$ the direct sum of s cyclic groups of order m. We see by class field theory that the property (iii) in Theorem 4 is equivalent to the following

(iii)' L_{D} has a $(Z/LZ)^{\bigoplus r}$ -extension with conductor q.

At first we explain the case of r=2. Let H_c be the unramified $(Z/\ell Z)^{\oplus 2}$ -extension over L_i such that H_c/Q is a Galois extension. Then H_c/L_j (j‡i) is an unramified $(Z/\ell Z)^{\oplus 2}$ -extension. Moreover H_c/L_p is a $(Z/\ell Z)^{\oplus 2}$ -extension with conductor q.

Next we explain the case of r=3. We see by Proposition VI.6. in Gras[4] that the properties (i) and (ii) are equivalent.

We assume (ii). Let H_1/L_1 be the unramified extension whose Galois group is isomorphic to $(\mathbb{Z}/L\mathbb{Z})^{\oplus 3}$ for $L \geq 5$ or to $(\mathbb{Z}/3^2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z})$ for L = 3 such that H_1/\mathbb{Q} is a Galois extension. Let H be the compositum of H_1 ($1 \leq i \leq l-1$). We see by the computation of the Galois group H/L_p that H contains the $(\mathbb{Z}/L\mathbb{Z})^{\oplus 3}$ -extension H_p/L_p with conductor q. Thus we get (iii).

We assume (iii). Let H_p/L_p be the $(Z/LZ)^{\oplus 3}$ -extension with conductor q. Let H_c/L_p be the $(Z/LZ)^{\oplus 2}$ -extension in H_p such that H_c is a Galois extension over Q. Let P be the prime ideal of L_p lying

over p. The prime ideal P is completely decomposed in H_c/L_p , because P is invariant under the action of the Galois group of L_p/Q . Let P_i be the prime ideal of L_i lying over p. We see that P_i is completely decomposed in H_c/L_i . We see that H_c/L_i is an unramified $(Z/LZ)^{\oplus 2}$ -extension. As P_i is an element of genus group of L_i , we see by class field theory that L_i has an unramified abelian extension of degree L^3 . Thus we get (i).

REFERENCES.

- [1] T. Azuhata and H. Ichimura: On the divisibility problem of the class numbers of algebraic number fields, J. Fac. Sci. Univ. Tokyo 30 (1984), 579-585.
- [2] H. Cohn: Introduction to the construction of class fields, Cambridge Univ. Press, 1985.
- [3] F. Diaz y Diaz : Sur le 3-rang des corps quadratique,
 Publ. Math. d'Orsay, NO78-11 (1978).
- [4] G. Gras: Sur les l-classes d'idéaux dans les extensions cycliques relatives de degre premier l,
 Ann. Inst. Fourier, Grenoble 23.3(1973),1-48,
 23.4(1973),1-44.
- [5] E. Inaba: Uber die Struktur der L-Klassengruppe zyklischer Zahlkorper vom Primzahlgrad 1,
 J. Fac.Sci. Univ. Tokyo 4 (1940), 61-115.

- [6] P. Kaplan: Divisibilité par 8 du nomble des classes des corps quadratiques dont le 2-groupe des classes est cycliques, et reciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596-608.
- [7] S.-N. Kuroda: On the class number of imaginary quadratic number fields, Proc. Japan Acad. 40 (1964), 365-367.
- [8] H. Naito: Some results on class numbers and unramified extensions of algebraic number fields, the 19th Taniguchi Symposium (1986).
- [9] S. Nakano: On ideal class group of algebraic number fields, J. Reine Angew. Math. 358 (1985), 61-75.
- [10] K. Uchida: Class numbers of cubic cyclic fields,
 J. Math. Soc. Japan 26 (1974), 447-453.
- [11] Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.
- [12] Y. Yamamoto: Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic, Osaka J. Math. 21 (1984), 1-22.