On a characterization of algebraic number fields by their Galois groups of p-closed Galois extensions

Yutaka SUEYOSHI (末吉 豊)

Department of Mathematics, Kyushu University

In this note, we give a characterization of finite algebraic number fields by the Galois groups of their p-closed Galois extensions. This characterization is a refinement of a theorem of K. Uchida [11]. For details, see [9].

We use the following notations throughout this note.

Notations. Let K be a field of characteristic 0 and let p be a prime number. For a normal extension L/K, G(L/K) denotes its Galois group. In this note, a "p-extension" always means a normal p-extension. A "solvable" extension is a normal extension whose Galois group is a projective limit of finite solvable groups.

 \overline{K} : the algebraic closure of K,

 \tilde{K} : the solvable closure of K (i.e. the maximal solvable extension over K),

K(p): the maximal p-extension over K,

 $G_{\nu} = G(\overline{K}/K)$: the absolute Galois group of K,

 $\hat{G}_{K} = G(\hat{K}/K), G_{K}(p) = G(K(p)/K),$

 ζ_p : a primitive p-th root of unity in \overline{K} ,

 P_0 : the set of all prime numbers.

§1. Introduction.

Let k_1 and k_2 be finite algebraic number fields. In 1969, J. Neukirch characterized finite <u>normal</u> algebraic number fields by their absolute Galois groups.

THEOREM A (Neukirch [5]). If k_1/Φ is normal and $G_{k_1} \simeq G_{k_2}$, then $k_1 = k_2$.

And he conjectured [5]:

If
$$G_{k_1} \simeq G_{k_2}$$
, then $k_1 \simeq k_2$.

Furthermore, he proved a refinement of Theorem A.

THEOREM A' (Neukirch [6]). If k_1/Q is normal and $\tilde{G}_{k_1} \simeq \tilde{G}_{k_2}$, then $k_1 = k_2$.

Neukirch's conjecture was proved by Uchida [10], [11], in a generalized form.

THEOREM B (Uchida [11]). Let Ω_1/k_1 and Ω_2/k_2 be

solvably closed (i.e. Ω_1 and Ω_2 have no proper abelian extension) Galois extensions. If there exists a topological isomorphism $\sigma\colon \ G(\Omega_1/k_1)\ \stackrel{\sim}{\to}\ G(\Omega_2/k_2)$, then there exists a unique isomorphism of fields $g\colon \ \Omega_1\ \stackrel{\sim}{\to}\ \Omega_2$ such that $\sigma(h)=ghg^{-1}$ for all $h\ \epsilon\ G(\Omega_1/k_1)$. In particular, $g\big|_{k_1}$ gives an isomorphism of fields k_1 and k_2 .

In this note, we consider the following problem.

<u>PROBLEM</u>. In Theorem B, can we replace Ω_1/k_1 and Ω_2/k_2 with some <u>smaller</u> extensions?

We give an answer to this problem by using p-closed extensions.

To prove Theorems A and A', Neukirch used a characterization of algebraic number fields with henselian valuations [5], [6]. So, first, we generalize his characterization in §2, and next, we apply it to finite algebraic number fields in §3.

§2. p-closed extensions and Ω -henselian fields.

Let Ω be a field of characteristic 0, p be a prime number and P be a subset of P $_{0}$.

<u>DEFINITION</u>. We call Ω $\stackrel{\sim}{p}$ -closed if and only if Ω is

p-closed (i.e. Ω has no proper p-extension) and Ω contains ζ_p . We call Ω \widetilde{P} -closed if and only if Ω is \widetilde{P} -closed for all $p \in P$.

 $\underline{\text{REMARK}}$ 1. Ω is solvably closed if and only if Ω is $\mathring{P}_{0}\text{-closed.}$

REMARK 2. Let K be a field of characteristic 0 and let P be a subset of P0. We put $K(\tilde{P}) = \overset{\infty}{U} K_i$, where i=0

 $\begin{cases} K_0 = \frac{1}{p\epsilon P} K(\zeta_p): & \text{the composite field of } K(\zeta_p), p \epsilon P, \\ K_{i+1} = \frac{1}{p\epsilon P} K_i(p): & \text{the composite field of } K_i(p), p \epsilon P, \\ & (i = 0, 1, 2, \cdots). \end{cases}$

Then, $K(\widetilde{P})$ is the minimal \widetilde{P} -closed Galois extension over K. If k is a finite algebraic number field and $P \subsetneq P_0$, then $k(\widetilde{P}) \nsubseteq \widetilde{k}$.

Now, let K be an algebraic number field (not necessarily finite over $\mathbb Q$) and $v \mid \ell$ be a valuation of K induced from a fixed embedding K $\hookrightarrow \overline{\mathbb Q}_{\ell}$, where ℓ is either a prime number or ∞ and $\mathbb Q_{\infty}$ denotes $\mathbb R$. We put $K_{V} = K \cdot \mathbb Q_{\ell}$. Let Ω / K be an algebraic extension.

<u>DEFINITION</u>. We call K Ω -henselian with respect to v if and only if there exists only one extension \mathring{v} of v to Ω

(i.e. for any extension $\Omega \hookrightarrow \overline{\mathbb{Q}}_{\ell}$ of the embedding $K \hookrightarrow \overline{\mathbb{Q}}_{\ell}$, we have $\Omega \cap K_{V} = K$). If K is $\overline{\mathbb{Q}}$ -henselian with respect to V, then K is simply called <u>henselian</u> with respect to V.

In the case of p-closed Galois extensions, we can characterize algebraic number fields which are Ω -henselian with respect to non-archimedean valuations, by their Galois groups.

THEOREM 1. Let p be a prime number and let Ω/K be a \tilde{p} -closed (i.e. Ω is \tilde{p} -closed) Galois extension of algebraic number fields. Then the following two conditions are equivalent.

- (i) There exists a non-archimedian valuation v|p of K such that K is Ω -henselian with respect to v and $[K_v: Q_D] < \infty$.
- (ii) There exist a finite extension K'/\mathbb{Q}_p and a p-closed Galois extension Ω'/K' such that $G(\Omega/K) \simeq G(\Omega'/K')$.

Furthermore, v (in (i)) obtained from the condition (ii) is unique and $[K_{\mbox{$V$}} : \mbox{$\mathbb{Q}_p$}] = [K' : \mbox{$\mathbb{Q}_p$}]$ holds.

 $\underline{\text{REMARK}}$ 3. In the following three cases, Theorem 1 has been proved.

Case 1. $\Omega = \overline{\mathbb{Q}}$ and $\Omega' = \overline{\mathbb{Q}}_p$: by Neukirch [5]. Case 2. $\Omega = \tilde{K}$ and $\Omega' = \overset{\sim}{K'}$ (= $\overline{\mathbb{Q}}_p$): by Neukirch [6].

Case 3. $\zeta_p \in K$ and $\Omega = K(p)$ (hence $\zeta_p \in K'$ and $\Omega' = K'(p)$): by Y. Hironaka-Kobayashi [3].

REMARK 4. Case 1 (in Remark 3) of Theorem 1 is a p-adic analogue of a theorem of E. Artin [1]:

If K ($\neq \overline{\mathbb{Q}}$) is an algebraic number field and $[\overline{\mathbb{Q}}:K]$ is finite, then K is henselian with respect to a unique archimedian valuation of K and $\overline{\mathbb{Q}} = K(\sqrt{-1})$, $[\overline{\mathbb{Q}}:K] = 2$. We can generalize Artin's theorem as follows:

Let p be a prime number and Ω/K ($\Omega \neq K$) be a p-closed finite p-extension of algebraic number fields. Then p = 2 and K is Ω -henselian with respect to a unique archimedean valuation of K, and $\Omega = K(\sqrt{-1})$, $[\Omega:K] = 2$.

§3. A characterization of finite algebraic number fields.

For a finite algebraic number field k and a prime number p, we put $S_p(k) = \{ \mbox{\it p} \mid a \mbox{ prime ideal of } k \mbox{ above (p)} \}$. For $\mbox{\it p} \in S_p(k)$, we use the following notations.

 $k_{\boldsymbol{\xi}}$: the completion of k with respect to $\boldsymbol{\xi}$,

e(g/p): the ramification index of $\,k_{\,g}/\Omega_{\rm p}^{}$,

f(f/p): the relative degree of k_f/\mathbb{Q}_p .

Then, from Theorem 1, we obtain the following

COROLLARY. Let p be a prime number, k_1 and k_2 be finite algebraic number fields, and Ω_1/k_1 and Ω_2/k_2 be \tilde{p} -closed Galois extensions. If $G(\Omega_1/k_1) \simeq G(\Omega_2/k_2)$, then there exists a bijection $\phi_p \colon S_p(k_1) \to S_p(k_2)$ such that $[k_g \colon \mathbb{Q}_p] = [k_{\phi_p}(g) \colon \mathbb{Q}_p]$ for all $g \in S_p(k_1)$.

 \underline{PROOF} . Using Theorem 1, we can define ϕ_p by the 1-1 correspondence of the decomposition subgroups of the prime ideals above (p) of k_1 and k_2 .

Let A = (r; f_1 , ..., f_r) be a tuple of natural numbers such that $f_1 \le \cdots \le f_r$. For such A and a finite algebraic number field k, we put

$$P_{A}(k) = \left\{ p \in P_{0} \middle| \begin{array}{c} (p) = \mathcal{F}_{1}^{e(\mathcal{F}_{1}/p)} & e(\mathcal{F}_{r}/p) \\ f(\mathcal{F}_{i}/p) = f_{i} & (1 \leq i \leq r). \end{array} \right\}$$

For $P \subset P_0$, we put

$$\delta \text{ (P)} = \lim_{s \to 1+0} \left(\sum_{p \in P} \frac{1}{p^s} \right) / \log \frac{1}{s-1} \text{ (if it exists), } 0 \le \delta \text{ (P)} \le 1$$

($\delta(P)$ is called the <u>Dirichlet density</u> of P).

For two subsets P_1 , $P_2 \subset P_0$, we write

$$P_1 = P_2$$
 if and only if $\#((P_1 \cup P_2) - (P_1 \cap P_2) < \infty$, $P_1 = P_2$ if and only if $\delta((P_1 \cup P_2) - (P_1 \cap P_2) = 0$.

 $\underline{\text{DEFINITION}}$. Let k_1 and k_2 be finite algebraic number

fields. Then k_1 and k_2 are called <u>arithmetically equivalent</u> over $\mathbb Q$ if and only if $P_A(k_1) = P_A(k_2)$ for all $A = (r; f_1, \cdots, f_r)$ (This is equivalent to $P_A(k_1) = P_A(k_2)$ for all $A = (r; f_1, \cdots, f_r)$. For arithmetically equivalent fields, see e.g. [2], [4], [7]).

THEOREM 2. Let P be a subset of P_0 such that $\delta(P)=1$. Let k_1 and k_2 be finite algebraic number fields and let Ω_1/k_1 and Ω_2/k_2 be \widetilde{P} -closed Galois extensions. If there exists a topological isomorphism $\sigma\colon G(\Omega_1/k_1)\stackrel{*}{\to} G(\Omega_2/k_2)$, then there exists a unique isomorphism of fields $g\colon \Omega_1\stackrel{*}{\to}\Omega_2$ such that $\sigma(h)=ghg^{-1}$ for all $h\in G(\Omega_1/k_1)$. In particular, $g\big|_{k_1}$ gives an isomorphism of fields k_1 and k_2 .

<u>PROOF.</u> From Corollary, it follows easily that k_1 and k_2 are arithmetically equivalent over Φ . Let k_1' be an intermediate field of Ω_1/k_1 such that k_1'/k_1 is finite, and let k_2' be the corresponding subfield of Ω_2 by σ , then k_1' and k_2' are also arithmetically equivalent over Φ . Using this, we can prove Theorem 2 by slightly modifying the proof of Theorem B.

REMARK 5. In Theorem 2, the conclusion $k_1 = k_2$ (over \mathbb{Q}) cannot be strengthened to $k_1 = k_2$ over $k_1 \cap k_2$.

Example. Put $k_1 = \mathbb{Q}(\sqrt[4]{2})$ and $k_2 = \mathbb{Q}(\sqrt[4]{2} \cdot \sqrt{-1})$. Then, $k_1 \cap k_2 = \mathbb{Q}(\sqrt[4]{2})$. Since $k_1 \cong k_2$ (over \mathbb{Q}), $G_{k_1} \cong G_{k_2}$. But, for any isomorphism $g: k_1 \stackrel{\sim}{\to} k_2$, we have

 $g(\sqrt{2}) = -\sqrt{2}$. Hence, g cannot be an isomorphism over $k_1 \cap k_2$.

§4. An outline of the proof of Theorem 1.

Using Krasner's lemma, we can prove the following two lemmas.

LEMMA 1. Let p be a prime number, Ω be a \tilde{p} -closed algebraic number field and v be a non-archimedean valuation of Ω . Then Ω_{v} is also \tilde{p} -closed.

LEMMA 2. Let p be a prime number and Ω/K be a \tilde{p} -closed Galois extension of algebraic number fields. If $p \mid [\Omega:K]$, then K is Ω -henselian with respect to at most one non-archimedean valuation.

We use the following propositions from Galois cohomology (See [5], [6], [8]).

 $\underline{PROPOSITION}$ 1. Let ℓ , p be prime numbers and K/Φ_{ℓ} be an algebraic extension.

(1) If
$$p^{\infty}/[K:\mathbb{Q}_{\ell}]$$
 and $\zeta_p \notin K$, then
$$G_K(p) \text{ is a free pro-p-group of rank } \begin{cases} 1 & (\ell \neq p), \\ [K:\mathbb{Q}_p] + 1 & (\ell = p) \end{cases}$$
 (Here, if $[K:\mathbb{Q}_p] = \infty$, then $[K:\mathbb{Q}_p] + 1$ means \mathbb{R}_0 .),

and
$$cd_p(G_K(p)) = 1$$
.

(2) If $p^{\infty}/[K:\mathbb{Q}_{\ell}]$ and $\zeta_p \in K$, then $\begin{cases} \text{generator-rank } (G_K(p)) = \begin{cases} 2 & (\ell \neq p), \\ [K:\mathbb{Q}_p] + 2 & (\ell = p) \end{cases} \\ \text{(Here, if } [K:\mathbb{Q}_p] = \infty, \text{ then } [K:\mathbb{Q}_p] + 2 \text{ means } \mathbb{R}_0.), \\ \text{relation-rank } (G_K(p)) = 1, \end{cases}$

and $cd_p(G_K(p)) = 2$.

(3) If $p^{\infty}|[K:\mathbb{Q}_{\ell}]$, then $G_K(p)$ is a free pro-p-group and $\mathrm{cd}_{p}(G_K(p)) \leq 1$.

PROPOSITION 2. Let K be an algebraic number field, then the canonical homomorphism $B_K \xrightarrow{(Res_V)} \coprod_V B_K$ is injective. Here, B_K and B_K denote the Brauer groups of K and K_V , respectively, and V runs over all valuations of K.

An outline of the proof of Theorem 1. First, we assume (i). Let $\stackrel{\sim}{V}$ be the unique extension of V to Ω . We put $K' = K_V$ and $\Omega' = \Omega_V$. Then Ω' is $\stackrel{\sim}{p}$ -closed by Lemma 1, and $[K':\mathbb{Q}_p]$ is finite by the assumption. Since $\Omega \cap K_V = K$ by the assumption, we have $G(\Omega/K) \simeq G(\Omega'/K')$. Next, we assume (ii). Let $G(\Omega/L)$ be a p-Sylow subgroup of $G(\Omega/K)$ and $G(\Omega'/L')$ be the corresponding p-Sylow subgroup of $G(\Omega/K)$ and $G(\Omega'/K')$ by the isomorphism. Then $\Omega = L(p)$, $\zeta_p \in \Omega$, $\Omega' = L'(p)$, $\zeta_p \in L'$ and $p^{\infty}/[L':\mathbb{Q}_p]$. By Proposition 1, we have $Cd_p(G_L,(p)) = 2$, therefore $Cd_p(G_L(p)) = 2$

and $B_L(p) \neq 0$. Then, by Proposition 2, there exists a non-archimedean valuation w of L (say w|l) such that $B_{L_W}(p) \neq 0$

i.e. $p^{\infty}/[L_w: Q_{\ell}]$. Let \overline{w} be an extension of w to Ω and put $v = w|_{K}$, then we can prove the following:

 $\begin{cases} p = \ell \text{ (by Proposition 1),} \\ \overline{w} \text{ is the unique extension of } v \text{ to } \Omega, \\ v \text{ is unique (by Lemma 2),} \\ [K_{v}: \Phi_{p}] = [K': \Phi_{p}] < \infty \text{ (by Proposition 1).} \end{cases}$

This is an outline of the proof of Theorem 1.

References

- [1] E. Artin, Kennzeichnung des Körpers der reellen algebraischen Zahlen, Hamb. Abh., 3(1924), 319-323.
- [2] F. Gassmann, Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z., 25(1926), 665-675.
- [3] Y. Hironaka-Kobayashi, On the Galois groups of the maximal p-extensions of algebraic number fields, Natur. Sci. Rep. Ochanomizu Univ., 27(1976), 99-105.
- [4] N. Klingen, Zahlkörper mit gleicher Primzahlegung, J. Reine Angew. Math., 299/300(1978), 342-384.
- [5] J. Neukirch, Kennzeichnungen der p-adischen und der endlichen algebraischen Zahlkörper, Invent. Math., 6(1969), 296-314.
- [6] J. Neukirch, Kennzeichnung der endlich-algebraischen Zahl-

- körper durch die Galoisgruppe der maximal auflösbaren Erweiterungen, J. Reine Angew. Math., 238(1969), 135-147.
- [7] R. Perlis, On the equation $\zeta_K(s) = \zeta_K(s)$, J. Number Theory, 9(1977), 342-360.
- [8] J.-P. Serre, Cohomologie Galoisienne, Springer, Berlin-Heidelberg-New York, 1964.
- [9] Y. Sueyoshi, A characterization of number fields by p-closed extensions, in preparation.
- [10] K. Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan, 28(1976), 617-620.
- [11] K.Uchida, Isomorphisms of Galois groups of solvably closed Galois extensions, Tôhoku Math. J., 31(1979), 359-362.