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On sufficient conditions for the lLeopoldt conjecture

th T #  (Hiroshi Yamasita)

Introductions,

l.et p be a prime number. l.et % be an algebaic number
fields of finite degree over the rational number field Q.
Let S5 be a non-empty finite set of prime divisors of &, and

ltet . = w U _, where U is the unit group of the
? PES P

completion of k¥ at p. l.et £ be the global unit group of &k
and + : F — Uea be the canononical injection. We denote hy

F. the topological closure of 1i(F) in Ug. Let 2 be the

set of all prime divisors of & dividing bp. Let + be the

=

7-free rank of & and rp be the Zp—free rank of Ep- Then

it is equivatent to » = [ that the lLeopoldt conjecture holds
for (¥, p ). Put 5, = 8( k , p) = » - e Then 8, 20
and it is the defect value for the lLeopoldt conjecture. We
study the conditions for Sp = (0 in this paper. Now we ex-
plain notation which uses in this paper and state main results
of this paper. Let £, be a primitive p-th root of unity and

let K = k(gp). We denote by $ the set of all prime divi-
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sors of XK which divide the prime divisors of & contained
in S. l.et C be the divisor class grdup of K and DQ be

its subgroup generated by all divisor classes containing the

prime divisors in 3. Put C. =~C/Dg'Cp. Put G = Gal (K/k).
et o : G — Z; he a homomorphism to the multiplicative
group of the ring of p-adic integers 19 defined by ;; = gg(t)

for anv t € 4. Put €, = ( ETEG m(r)t‘l) / 1G], which is an
idempotent element of group ring Zp[G] associated with o.

Since CS is a Zp[G]—module, we set CS,m = sm(CS). For an
abelian group A, we denote by tD(A) the maximal p-group con-
tained in the maximal torsion subgroup of A, We prove in
Theorem 1 that 6p = (0 is equivalent to existence of a finite
set S of prime divisors of & satisfying the following three
conditions. (1) § o P. (2) Co o = {1}, (3) p-rank(t _(E.))

S,®
= p—rank(tp(F)). Put ep = #{p | P € § and §p € kp}. We
estimate 5p in Theorem 2 and see that 5p < p—rank(cp,m) + ep
- p—rank(tp(E)) holds. We prove in Proposition 1 that the
condition (3) holds if ep
(2) also holds for P, the Leopoldet conjecture is true. This

= p—rank(tp(E)). 1f the condition

was known in Gras (2] , Giilard [1]'and Sands [(8). Miki (6]
showed: that the following two conditions (4) and (5) are
equivalent. (4) the Galois group of the maximal p-ramified
p-abelian extension of &k 1is torsion free and the Leopoldt
conjecture holds for ( k , p ). (5 the condition (2) holds

for P and e, = p~rank(tp(5)) holds. We assume in Theorem 4

P
that % 1is totally imaginary if p = 2 and prove that the

Galois group over k of the maximal p-extension of k which
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is unramified outside $§ 1is a pro-p-free group if and only if

the condition (2) holds for § and e = p—rank(tp(f)).

1. the ncessary and sufficient conditiuon of

s (k : p»>) =10,

et N be the set of the natural numbers. Let 4, 7 be
elements of N. l.et A be an abelian group. Put AL =
r
A/A° for i € N. For i =2 7, we denote by ¢, ; @ homomor-

£ 7
phism from A, to A, defined by o, j(a~Ap ) = a-AP for a €

A. Then A, @ ) is a projective system of abelian

£, F
groups. We denote by A its projective limit, which is a

Z_-module. Put r(a) = dimQ A 7 Qp), where we denote by
: D g e

Qp the field of p-adic numbers. We observe that r = r(F)

S) to T

and Ty = r(ED). We abbreviate r(F

Theorem 1. 8( k : p) =0 4is equivalent to existence
of the finite zef S of prime divisors of k satisfying the
Ffollowing three conditions. (1) s o . (2) CS,w =~ {1}.
(3) p*rank(tp(ﬁg)) = p—rank(tp(ﬁ)).

To prove this theorem, we need some lemmas.

Lemma 1. Tp = Tg if P c S.



Ug — U be the canonical projection.

Proof. Let. 7 P

lLet 5’

are not contained in F. The kernel of n is Ugs . Let

resp. V. be any open subgroup of Up resp. US" We have

3

fg since V1~V2 is an open subgroup of US.

EeVyVy = Eg'Vyr
Hence m(E)-Vq = H(ES)~V1.

in U, of n(F) is equal to that of n(Eg). Since Eo is

compact, n(ES) is also compact. Thus we have Ep = n(ES).

X mo_
Put V(p) = tp(kp) for p € S. Put  p" = max{ |[v(p)| | p €

st L. Then we have
Dn pn
(‘”‘%" n EQ) ) (FS) "/(ES) = T’p (Usv N ES)-

'Hence we have an exact sequence

. 7T n
1 — £, (g N Eg) — ES/Eg _n EP/Eg 1,

n n
where n is a homomorphism defined by nn(e~E§ ) = n(a)~£§

for g € F.. We take the projective limit of this exact se-

quence. Then we see 7, = ro by the definition. Q. E. D.

Put. A(Z) = (En (Es)p)/Ep.

<

l.emma 2. Suppouse § D P, Thaen we have
A o - (2)
5, = p—rnnk(tp(ﬁg)) p rank(tp(E)} t p-rank (Ag2).
Proof. et X be a set of representatives of all left
coset in £ with respect to EY, Then X is a finite set.

1Y
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be the subset of S consisting of all elements which

1

Therefore the topological closure
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Put F = U s-Eg. Then F is compact because it is a finite
g€X

union of compact sets s-Eg. Hence we have F = ES because

Ec > F o E. let £ : E/EP —5 EQ/Ep be a homomorphism de-

fined by £Ff(g-E) = s-Fg for & € X. Then fFf 1is surjective

and ker(f) = { e-E” | ¢ € 9} = (£ n EE)/EP. Therefore we
s s

have F/(E n EE) =~ ‘S/Eg' Since E/EP is an elementary
p-abelian group, we have E/EP ~ E/(F n Ef) EDAéZ). Hence
E/RY ~ Eq,/E*g@AéZ). Since r = p-rank(E/EP) - p—r‘ank(tp(E))
o Py

and Te = P rank(Ep/Ep) P rank(tp(f$)), We have

ap =7r - rg = p~rank(tp(58)) - p—rank(tp(E)) + p-rank(Aéz)).

Q. E. D.
. S
We define Uk(p) by
U?(p) = { o€ %8 | There exists an ideal a of & such

that aof = (o), and « € (k;)p for any p.},

where we denote by kp the completion of k& at p. We de-
note by $ the set { B | B is a prime divisor of K which
divides a prime divisor of k contained in S.}. Let Ui(p)
be a set of elements of Kk~ such that there exists an ideal

of Kk satisfying o7 = (a), and o € (K;)p for any B € S5,

where we denote by KEB the completion of K at B.

Lemma 3. US(p) = Ny, (W5(R)) - (KO P/ (K9P,

where we denote by NK/k the norm map from K to k.
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Proof. let o € Ui(p) and % be an ideal of K such that

9’ = (). We denote by J the semi-local product W K;.

P
Blp
Since Ny, (NP = Ny, (@) and N, () € Ny, (U5) e (kD)7

Ty S . S (K:k)
we have NK/k(UK(p)) c Uk(p). Since (Uk(p)) c
Nﬁ/k(ﬂi(p)) c Ui(p) and (p,[K:k]) =1, we have U?(p)-(Kx)p

= W WS ()P et g K/ ()P — /(K9P be a
homomorphism defined by Jle- (P = a- (KP for o € k~.

let ¥ be the algebraic closure of k, and let n,  be the
group of ‘all p-th roots of unity in K. Since we have the
isomorphisms #' (B/k,p ) = &/ (k)P and #L(E/K,u) = K/ (K9P,
we see that the injection of the cohomology groups /nj '
Hl(?yk,up) —_ Hl(f/k,pp) induces 4. Hence ker(j) =
Hl(X/k,pp) by the exact sequence of tﬁe restriction and the
injection of the first cohomology groups. Since [(K:k) is
prime to p, we have ker{(j) = {1}. Thus Ui(p)/(kx)p is

isomorphic to Ui(p)-(Kx)p/(Kx)p by 4. Therefore we have

U R)/ VP U (0)) - (K P/ (K9P
Q. E. D.

Put L = K{(Jox | a € U?(p)). Then [ is the maximal ele-
mentary p-abelian extension of K such that any prime divisor
contained in S is completely decomﬁosed and Gal (L/K) is iso-
morphic to CS by class field theory. Thus we identify CS

with Gal {L/K).
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. P ~ S . X\ D Ky D
lLemma 4. Hom (C . m,up) o NK/k(UK(‘O)) (K7) 5/ (K7,

vy
where we denote by B the group of ail p—th roots of unity

contninad in K.

Proof. Denote by o the left coset a'(Kx)p for o €

IS

e (o). Let o € Cg. Set <&, w>= /&L Then it de-

fines a non-degenerate pairing on (U?(p)/(ﬁx)p) X Ce. Let o
€ 0. Then < ola) , olz) > =< o, = >m(°). Hence we have

<« , nm(m) ™= ¢ NF(&) , ¥ >, where we denote by N, the

‘norm map of a G-module, and m = [(K:k). Let # = {o € Ui(p)l
NG(a) € (Kx)p b Then we see that H/(KX)p is the annihilator

of Cq o Therefore we have
A

Hom (Co yomp) = My (U2 () - (K P/ (K5) P,

i

U

X o)

() /8- (K9P A’G(Ui’:(p)) (KPP,
Q. E. D

since Hom(CS m}

3

Corollary.  Ug(p)/(K)? ~cg .

Proof of Theorem 1. By Corollary to Lemma 4, we see that

Ug(p) = (k)P is equivalent to Oe o = {1}. Assume that S

satisfies the condition (1), (2) and (3) of Theorem 1. Since
Ui(p) = (¥)F, we have Aéz) = {1} by the proof of Collorary
to l.emma 7. Hence &, = pwrank(tp(ﬁq)) - p-rank(tp(E)).

Therefore 5@ = ( by the condition (3). Conversely we assume
that Sr = (. let S be a finite set. of prime divisors of &
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containing p&. Since (Eq) o fD(F), we have p—rank(tp(ES))

#
L
- p—rank(tp(ﬁ}) > 0. Hence we have p'rank(tp(Eg))

p~rank(t9(ﬁ)) = (0 by Lemma 2. The condition (3) holds for any.

£ containing P, We take a sufficiently large set S so that
Co = {11}, Then the condition (2) holds. Q. E. D.
2. Some sufficient conditions for the conditions of

Theorem 1,

Put e, = ${p | Ppe P and ¢_ € k_ }.

Proposition 1. p—rank(tp(Fp)} = p~rank(tD(E)} iF

, “p
p—rank(tp(ﬁ)) or if gp ¢ kp Ffor any p € P.

Proof. Since e, = p—rank(tp(EP)) > p—rank(tp(E)), we
have p—rank(tp(ﬁp)) = p-rank(tp(E)) it ep = p-rank(tp(E)).
We see that e, = p—rank(tD(E)) holds if ¢_ € k¥ and |P] =1

o
or if & _ & k for any p € P.

k2 p
Q. E. D
Pfoposifion 2. Suppose that t, ¢ kp for any p € P and
that the p-class field tower of K +dig Ffinite. Then the
Leopoldt conjecture holds for ((k , p ).
Proof_‘ let XK = KO = Kl = KZ g Kn = Kn+l be the
p-class field tower of K. Then Kﬁ/k is a Galois extension.

Since KW/K is a p-extnsion and £/ 1is a cyclic extension
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whose extension degree is prime to p, there exists <t € Gal (K/k)

whose order is just (K:kJ. Let # be the fixed field of =
in Kn. Since [Kn:M] = [K:k) and K. > M(gp), we have
[Kn:M(gp)] | (K:k]J. On the other hand, since M(;p) > K, we
have [KW:M(gp)] | [Kn:K]. Since [K:k) is prime to [Kn:K],
we have [Kn:M(gp)] = 1. Hence Kn = M(gp). Let Py be the
set of all prime divisors of # dividing p. Then we see that
the condition (2) of Theorem 1 holds for ( ¥ , Py ). Let B €
Py and M$ be the completion of ¥ at‘ B. Let p be a
prime divisor of %k divided by . Since §p ¢ kp and

Mﬁ/kp is a p-extension, we have §p ¢ Mﬁ. By Proposition 1,
we have that the condition (3) holds for (¥4 , P ). There-
fore the Leopoldt conjecture holds for #. Hence it also

holds for k. Q. E. D.
Propositin 3. Lat ko be an algebraic number Ffield such

that [k : Q) is Ffinite. Suppose that ko is a cyclic
extension of k of degree p. Let SO be the finite set of
prime divizsors of ko such that the condition (2) of Theorem 1
holds for ko + Sg ). Let S be the set of all prime
divisors of k which divide prime divisors contained in SO.
Put XO = ko(gp). Let R be the set of primes divisors p of
ko satisfying the following two conditions. (1Y) p s
contained in SO or an extension of p to K {ig ramified at
K/KO. (2) p i3 completely decomposed at 'KO.

Then the condition (2) of Theorem 1 for ( ko \ SO ) implies

that for (k , S ) if R = ¢.
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Put X _ = sm(X) for a Zp[GJ—modu]e X. To prove this

m .

proposition, we need the following two lemmas.

l.emma 5. Let O N > M P » 0 be an exact seg-
uenne of Zp[G]fmoduzes. Then we have the‘emact sequence

0 Nm Mm > Pm > 0.

Proof. We regard. N as a submodule of M. We have
an exact sequence 0 — ¥ N Mm > Mm — Pm 0. Let ¥
be an element of # such that em(y) € N. Then em(y) =
Bm-sm(y) € N, since ‘g -g = g.. Hence N n My c N, Since
NcMNnM , we have N = N N M _. Q. E. D.

(6] w [43] :

l.et . be the class field of K whose Galois group over K

is isbmorphic to Cg by class field theory. We denote by L*

the maximal abelian extension of & contained in

be the idéle group of K = k(gb) and Ug be its

L. Let JK

unit group.

Put v, = UK- m Kg, where we denote by S +the set of all

peS
prime divisors of K dividing prime divisors contained in SO'
~ . B, X =
Then we have Cg = JK/WK (JX) K™ Put KO ko(gp).
Lemma 6. Let o be a generator of GaL(K/KO). Then we
have

o-1 . X . (JBy ) k%



Proof. We identify Gal(L/K) +to Cq. Let # be the

fixed field of 271 in L. Gal (M/Ky) 1is an abelian group

S
since K/Kﬂ is a cyclic extension. Hence L™ o #. Put #
= Ga](ﬂ/L*). Then H > (Cg)or_1 because o¢ acts trivially
on Gal(ﬁ*/K). Hence 1% < u. Thus we have L* = ¥ and

Ga](i*/K) o CQ/(Cq)oﬁl. On the other hand, we have

*® ) X Byy L X .
Gal (i /K) = NK/KO(JK}-KO/NK/KO(WK-(JK)) AO by translation
theorem of class field theory, because Gal (L/K) =
o X
CIK/WK' (c]K) ’R. - Q. E- D.
Proof of Proposition 3. We denote by p resp. B a prime

divisor of KO resp. K. We denote by KO p resp. K% the

completion of Kﬂ resp. K at p resp. B. Let Up resp. Ug

be its unit group. Let Po be a prime divisor of ko. We
define V and W by
Po Po
x x .
vV = W K s W = nm K if pH € Sn,
PO plpy O F PO mlp, ¥ 0 0
0 0
1% = W u_ , W = 0 UEB if P ¢ SO.

Po plpy PO

For each p, we choose a prime divisor B of K dividing p
and denote by Zp the decomposition group of P in Gal(K/KO).
If B is ramified at K/KO, then Zp is also the inertia

group of B. Hence we have by class field theory
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(2.1) v /Ny,
Po K/K 0 pleg

0

for any prime divisor Po of kq- We consider the Zp[G]—
module structure of this group. We see Zp ~ {1} if p is
decomposed at K/KO or if Po is not contained in SO and p
is not ramified at K/KO. Now we consider the group of (2.1)
for Po whose extension B tQ K 1is not decomposed if Po €

SO or which is ramified at K/k if Po ¢ SO. Let p he a

fixed prime divisor of KO dividing Po- We denote by Gp
- - 0

be the decomposition group of p in Gal(KO/kO). Let G =

~

Vo1 976Gy be the decomposition of G to left cosets. We
; L 0
assume 0y € GPO. Let Ty be a generator of Zp. Then T,
= dj-t1~o;1 is a generator of Z o * We use the additive
3 ; p?
notation for Zp in the followings. Then
i Zp ~ (nl-rl, Mot Tos "0ty nt‘tt)l n, € /v
plpo
for & = 1,-++,%t}.
let o n 7 — (Z/pZ)(G/G.] be a I1_[Gl-isomorphism
plp P P P
0 .
defined by @((ny Ty, r,n,oty)) = 2 izl mo Gy Then we

have

(2.2) (1 zZ), > ((2/p7) (G/G),.

plrg
This module is {0} if Gp + {1}, and is isomorphic to Z/pZ
i G =~ . : . , . Z
it G, {1} By (2.1) and (2.2), we have (VPO/NK/XO(WPO))m
2~ {1} if and only if Po isbnot completely decomposed at
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Ko/ko. Hence we have (VPO/NK/KO(WPO))m 2’{1} for any Po
because & = ¢. Put Vv = T V and W, = W W_ , where
: Ko p, O K Py YO
0 0 ;
~Pg runs through the set of all prime divisors of ko. Then
we have
(2.3) (VMg (0)), = {1},
0 4]
We define ZD[G]—moduleS N, M, P, Z, Y by
= . Py, pX TPy X
N o= \!’K NK/K (JK) KO /NK/K (WK (JK)') KO,
0 0 0
- . D X . D Lo X
Moo=V (J% ) Ko /NK/K (Wer (%)) L
0 0 0
P=v, (2 YkX v, N, (JD) KX,
KO KO 0 KO K/KO K 0
— X . p X
Y Nk (Jg) Ko /NK/KO (W (T) ) Koy
- g . P X
Z = JKO/NK/KO(WK (JK)) KO.
Then we have exact sequences of Zp(Gj~modules
(2.4 1 > N M p > 1,
(2.5) 1 % 7 — Z/H — 1,
N X
(2.6) 1 > Y > 7 > JKO/NK/KO(JK) Ko — 1.

Since N is a homomorphic image of VK/KO/NK/KO(JK)'KS as

Zp[G]—module, we see N {1} by Lemma 5 and (2.3). Let £

X _ . . .
JKO/NK/KO(JK)'KO'—ﬁg P be a Zp[G] homomorphism defined by

. XY = &P . Dy, pX : _
Ffla NK/KO(JK) KO) a VKO NK/KO(JK) KO. Then £ 1is a sur
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jection. Since JKO/NK/KO(JK)'KO is a trivial G-module, we
have (JKO/NX/KO(JK)-KS)w ~ {1}. Hence image(f)m =P, = {1}
by lLemma 5. Then we have M= {1} by Lemma 5 and (2.4).

Hence we have 7 = (Z/M)m by Lemma 5 and (2.5). Since it is

equivalent to (JKO/VKO~(J§0)-KS)Q ~ {1} that the conondition

(2) of Theorem 1 holds for ( ko » Sp ), we have (Z/M) =~ {1}
by the assumption of Proposition. Hence we see Zm =~ {1}.
Therefore v, = {1} by (2.6). Since Y =~ Cq/(CS)Gﬁl by

Lemma 6, we have (Cg/cg~l)m ~ {1}. Since Gal(K/kO) is an

abelian group, we have o+t = t-o for any <t € G. Hence o-€,
_ ) . o-1 _ o-1 :
= g,'0. Thus (C5 )CO = (CS,w) . Therefore we have
. o-1 o-1 ~ o-1
CS,m/(ﬁS,m) ~ {1} because (CS/CS )m ~ GS,m/(CS,m) .
This implies CS,m ~ {;}. _ Q. E. D.
3. Some theorems concerned with 5p( k : p>.

<

We define groups VS’ W and Aél) by

_ o
Ve = { v € Ug | u¥ € ES .

[ »P =11},

b
}
i

{ v € US

28D - Ea WBE 0 (5D,

| (1)
vLemma 8. 1 — WS/wS N tp(ES) — Vo/ W — AT — 1.
Proof. Let u € Vg. Then there exists & € ES such that
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o _ o LDy -
uT o= 8. Since E (FS) Eg, we have g € E and 51 € E¢

D

such that & = 8-61 Then we see g € E N (Ug). Let £

Ve — Aél) be a homomorphsm defined by #7(u) = g-(F n (Eg)).
Then ker (f) = WerEe. Let & € En (Ug). Then there exists
v € /. such that u” = .  We have 7£(u) = g-(E n (ED)).

Hence f is surjective. Since We Eo/Eq = WS/WS N tp(ns),

we have an exact sequence

, (1)
1 — Wg/Wg Nt (Eg) — Vo/Eq — Ag™/ — O.

let 7 be a finite setlof prime divisors of k. We perm-
it in the case f = ¢, Let A be the maximal subgroup of the
ideal class group of k whose exponent is divided by p. We
define Ug(p) for T = ¢ by Uz(p) = { x € k | There exists an
ideal a of k such that of = (a).}. We define a subgroup

A;O) of A by

A;O) = {ce€e Al ¢ contains an ideal a of &k such that
af = (a) for some o € Ug(p).}.

Lemma 9. UL (0)/(E n (W (o)) ()P Af07,

Proof. lLet o € Ug(p). Then there exists an ideal a of
k such that af = (o). Let ¢ be the divisor class contain-
ing a. This divisor class is contained in AéO} We define

a homomorphism £ : Ui(p) —_— Aéo) by Fflo) = c. Then £f is
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Aéo). Since ker(f) =
(x) = (8F).},

surjective by the definition of

{ @« € UL (p) | There exists 8 € k such that
(B (K)P) nup(®) = (E nup(e))- ()P,

we have Lker (f) =

Therefore we see image (f) =~ Ug(p)/(g N Ui(p))-(kx)p.
Q. E. D.

Corollary. Suppogse S {18 a nmon—empty Ffinite sel of prime

divisors of k. Then we have

R )/ (9P = a0 @ Al @ a2

Proof. Since E n Uﬁ(p) = Fn Ug, we have a chain of

abelian groups Ui(p)/(kx)p > (En Ug(p))~(kx)p/(kx)p o)

The sequence of the quotient groups of

(E n E2) - (&%) / (x)P.
this chain is isomorphic to Aéoz Aélz Aézz Since the expo-

nent of uf(p)/(kx)p divides p, it is isomorphic to

20 @ alD @ a2

Put @ = {p| pesS and &_ € k_}. We see that e

equal to p—rank(wg).

Theorem 2. We have for S o P,

5p = eg t p—rank(csiw) - p—rank(tb(ﬁ)) - p—rank(VS/ES)

- p—rank(AéO)).
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Proof. ‘By l.emma 2. we have

3.1) 5p = p—fank(tp(ES)) - p—rank(tp(g)) + pﬁrank(Aé2))_

By Lemma 8, we have
(3.2) p—rank(tp(ES)) = e; - p-rank (Wo/Eg) + p—r‘ank(Afgl)}
since p—rank(tp(ES)) = p—rank(wp n tp(ES)).

We substitute p—rank(tD(Eq)) in (3.1) by the right hand side
of (3.2). Then

(3.3) &_ = eg - p—rank(VS/ES) + p-rank(tp(E)) +

(p—rank(Aél)) + p—rank(AéZ))).

By Corollary to l.emma 9 and Corollary to Lemma 4,

(3.4) p—rank(Aél)) + p-rank(AéZ)) = p-rank (C ) - p—rank(AéO))

S,o

We substitute (p—rank(Aél)) + p—rank(Aéz))) in (3.3) by the
right hand side of (3.4). Then

6p = eg - p—rank(VS/ES) - p—rank(tp(E)) + p-rank(cs,m)
- p—rank(AéO)).
Q. E. D
Corollary. We have & < go—w,z.nic(qq m) toeg - p—rank(tD(E))

for P c S.

l.et % be the maximal p-extension of k& wunramified out-

S
side 5. Put Ge = Gal(kS/k) and Gz = GS/[GS’GS]’ where
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[Gg,Gq] is the comutator subgroup of GS' Put éq =
Hom (G5, Q/Z).  Let f, be an endomorphism of @/Z defined by
fp(m) = p-xz for =z € Q/7. We have an exact sequence

F
0 —> 7/p7 — Q/7 —2— /7 0.

Then we have the following cohomology long exact sequence

1 f(li 1 2 '
H* (G, Q/7) P E, (Gg, Q/7) — H(Gg,2/p7) —

(2)
f
H2 (G, /1) —EE, 526, 0/2),
where we denote by féli and fézi the induced homomorphism
of the cohomology groups by fp. Since GS acts trivially on
Q/7, we have Hl(GS,Q/Z) ~ éS' Then coker(féli) = @S/p'és

and ker(£\2)) = (¢ € H2(G5,Q/7) | pre = 0 ). Put H2(Gg,0/7),

. * * * .
= ker(f;2i) and‘ Gs,p = { x € GS | 22 =1 }. Then GS,p is
E S D _ _ *
equal to { z € Gg | =¥ =1 }. Put és,p = Hom(GS,p,Q/Z).
Then coker(féii) ~ és/p~ﬁg is equal to @S,p. Hence we have

a short exact sequence
(3.5) 0 — B — H2(Gg,2/00) — H? (G, Q/T)  — O .

Put g = p-rank (W1 (6.,2/02)), ©° = p-rank(#2(6..0/2)) and

s _ K
£ = p—rank(tp(hg))-

Theorem 3. Suppose that k 4is totally imaginary if p = 2.
Suppose P c S. Let r2 be the number of the complex places
of k. Then we have

»



(1)  p-rank (H2(Ge,2/02)) = g° - (r, + 1) = &_ + t°,
, S 2 r
(2)  p-rank (#2(Gg,Q/2) ) = 5.
Proof. lLet 81 be the union of S and the set of all
infinite prime divisors of k. We see kg = kg in case of
* 1
p = 2 because & is totally imaginary. If there exists an

intermidiate field &’ of ko /& of finite degree over k
“1

such that the infinite prime divisors are ramified, then we

see [%’:%] = 0 mod 2, where we denote by &' the Galois
closure of k', Since XK' < k. , such k’ dose not exist
w2 1
in case of p = 2. Thus kg = kS . Therefore we have, by
* 1

Corollary 1 to the main theorem of Neumann (7],

ELEO (—1)ip—rank(ﬁi(GS,Z/pz)) = - 7,

Hence p—rank(HZ(Gg,Z/pZ)) = p—rank(ﬁl(GS,Z/pZ)) - (r2 + 1),
Since the ZD—free rank of Gz equals ' + 1 + 5p by the

theory of Zp-extensions, we see
* Dy S
p-rank (Go/(Go) 7)) = (rp + 1 # Sp) + t7.

Since gS = p—rank(Hl(GS,Z/pZ)) = p~rank(Gg/(Gz)p), we have

p*rank(HZ(GS,Z/pZ)) = g5 - (ry + 1) =8+ ¢S,

Hence we have p—rank(#Z(Gg,Q/Z% ) = 6p by (3.5), because

P”ra"k(ﬁg o) = p~rank(G§,p) = p—rank(tD(Gz)).
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Q. E. D
Corollary. Suppose k is totally imaginary if p = 2.
Suppnse P c.S. Then G. 18 a pro—p—free group if and only
[l
if 8 =0 and t° = 0.

L

Proof. By Satz 4.12 of Koch (5], we have that Gg is the

pro-p-free group if and only if Hz(Gq,Z/pZ) = {0}. By (1) of

Theorem 3, we have that HZ(GQ,Z/pZ) = {0} 1is equivalent to

o

- D
6p = 7 = Q. Q. E. D.
L.emma 10. Suppose P c S. Let s he the number of
compler places of k. Then we have

¢° = eg - p-rank(t, (E)) + p-rank(Cg ) + ry + 1.

Proof. let 7 bhe the idéle group of %, and U be its

unit group. Put (s) = m Up, which is contained in .
PES

By §3 in Miki (6], we have an exact sequence
(3.6) 1 — U (p)/ ()P — U2 () / (k)P — v/u(s) -UP
— J/U(S) TPk — g g — 1.

Since Gi/(@é)p ~ J/U(S)-Jpokx by class field theory, we have

p-rank (J/1-JP k%) = ge - We compute gs by (3.6). We have

<

Uﬁ(p)/E'(kx)p ~ Aéo) by Lemma 9. Let hp be the p-rank of

the p-Sylow subgroup of the ideal class group of k. Then hp
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= p-rank (J/U-J° k™) by the definition of hp.‘ Since hp

is also equal to p—rank(AéO)), we have p—rank(J/U-Jp-kx)

p—rank(Aéo)). Hence
(3.7)  p-rank (J/U-J° k) - p-rank (U (p) / (k) P) =
p-rank (J/U-J° k) - (p-rank (US (p) /E- (k) P) +
p-rank (£+ (K) P/ (k) P) )
= p-rank (E- (K)P/ (x)P) = - p-rank (E/EP).

We have p-rank (U/U(S)-UP) = ec t (k:Q) because U/ U(S)-UP
is isomorphic to US/Ug . Therfore by (3.6), (3.7) and corol-

lary to l.emma 4, we have

% = p-rank (U5 () / (K¥)F) + (eg + (k:@)) - p-rank (E/EP)

il

p~rank(CS,m) + eq + Ty +1 - p—rank(tp(E)).

Q. E. D
Theorem 4. Put rs = p—rank(Hz(Gg, 2/07) . Suppose that
k is totalty imginary if p = 2. Suppose that P c S. Then
rs =0 if and only if p-rank(cs,m) =0 and ég =
p—rank(tn(ﬁ)).
Proof. By (1) of Theorem 3 and Lemma 10, we have o = 0

holds if and only if eq - p—rank(tp(E)) + p—rank(cs m) = Q.

Since eq - p—rank(tD(E)) > (0, we have rS = 0 if and only if

e ~ p—rank(tp(E)) = 0 and p-rank(C, m) = 0. Q. E. D.

s



Remark.

We see
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ec = p—rank(tp(ES)) > p—rank(tp(E)).

Hence the condition (3) of Theorem 1 holds if e. =

p—rank(tp(E)).
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