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Binary Quadratic Forms, Dihedral Fields

and Decomposition Laws

Franz Halter-Koch

The connections between rational decomposition laws for
dihedral fields and the representations of primes by binary
quadratic forms have been considered by many authors. Whereas
the subject has been treated in a systematically and satisfac-
tory way from the field theoretic point of view (see e. g.
{241, (91, [18], [6]1, [7]) no équally satisfactory treatment
of the subject from the point of view of quadratic forms seems

to be available in the literature.

Recently I have given a systematic theory of spinor genus
.characters of binary quadratic forms in the sense of [ 5] using
dihedral fields [13]; the results obtained there cover all (or
at least almost all) known special representation theorems for
binary quadratic forms and rational biquadratic reciprocity
laws published recently (e. g. [21, (3], [51, [161, [17], [191],
[20], [22]1, [28], [91, [6]) as well as the classical results of
Rédei [24] and Scholz [26].

This paper parallels [13] in a very strict sense. Though
the Main Theorems are stated in a slightly more general form
than there, they are proved in the same manner, and thus a I
shall not repeat here the lengthy calculations which are ne-
cessary for the proofs of the Theorems in § 2; I also refer to
[13] for examples. Instead of this I shall derive the connec-
tions of my spinor genus symbol with the symbols of Rédei [24]
and Furuta [7] in § 3.. '
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§ 1 Notations and Representation Theorems.

The notations introduced in this chapter will be used in

the whole paper without further reference.

Let. A € Z be a discriminant of integral non-degene-
rated binary quadratic forms, so A = 0 or 1 mod 4 and
A = Aof2 with a fundamental discriminant Ao # 0,1 . Let
C(A) be the composition class group of integral primitive (in
case A < 0 positive definite) binary quadratic forms of dis-
criminant A , and let kA = Q(/Z) be the associated quadratic
number field, whose discriminant is Ao . I use the symbol
[a,b,c] to denote the class of the form aX2 + bXY + cY2 €
€ Z [X,Y] in C(A) ; thus [a,b,c] € C(A) iff a,b,c € Z ,
(a,b,c) =1, A=Db%-4ac and a> 0 if A< 0

There is a canonical isomorphism

Az C(A) F 1(A)
of (C(A) with the ring class group modulo f 1in the narrow
sense of kA : for A = [a,b,c] with a > 0 , A(A) - is the
class containing the ideal generated by a and %(b—/ﬁ) (see
[1; Kap. II, § 7] in connection with [14; § 10]).

If A € C(A) represents primitively some «k € Z , I write

A+ K ; then, for kx> 0, A > k 1iff X(A) contains an in-

tegral ideal a with N{(a) = K .
Let
C(A)' = Hom(C(A),{z1})

be the group of genus characters of C(A) . To 1 # ¢ € C(A)!

there belongs a unique field

- — ="y D
K¢ Q(/e¢f/e¢) *’kA
with fundamental discriminants e¢, é¢ such that ¢°k_1 is
the ideal character attatched to K¢/kA' I set
-~ 2
e e, = A of
o ¢ o ¢

with f¢ € N, which is the finite part of the conductor of

K¢/kA i obviously, f¢|f and ¢ factors in the form

d: C(A) 3 C(Aofz) + {+1} where v 1is the canonical epimor-

¢
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phism. If Q € C(A) and p is a prime with p ¢ f¢ and
Q > p , then

K¢/k

g .
for prime ideals p of kA dividing p , and thus, if

p+ A, p splits completely in K¢ iff ¢(Q) = 1 . More
generally, if a € A(Q) is an integral ideal prime to 2A

A

$(Q) = | )

and a = N(a) , then

K,/k e
p0) = (28 = (D = (D

(with ordinary Jacobi symbols).

The significance of genus characters for the représénta-
tion problem becomes clear from the following theorem, which
in principle is well known, but for which I will include a

proof for lack of a suitable reference.

Theorem 1 (Representation Theorem by Means o4 Genus Cha-
rnactens). Suppose «k € Z , (x,2A) =1 and that there is a
class Q € C(A) with Q > k . Then, forn A € C(A) , the §ollo-
wing assertions are equdivalent:

i) Thene 48 a class A' € A-C(8)2  (in the genus of A )
such that A' » x .
é e

e
i) 6@ = (D) = (D gorakk e ca) ; here (=D

e
L5 the usual Jacobd symbol 4§ « > 0 , and (Tg) = sgn(e¢)-

Proof. Suppose first that A' = AB2 with B € (C(A) and

A' >« . If k> 0 there is an integral ideal a € A(A')

K. /k e é
with N(a) = k , and then ¢(A') = ¢(a) = (—%—A) = (—KQ) = (—f)-

Now assume K < 0 ;7 then A > 0 , and there is a unique class



J € C(A) such that J =+ -1 ; for this I have ¢(J) = sgn(e¢) =
= sgn(é¢) , and from JA' »> |k| I derive as before ¢(JA') =
e e e &
= =2y - (0 - . o= (=9 = (=2
= (!Kl) = (IKI) and thus ¢(A) = ¢(J) ¢ (JA") () (=) -

Let now ii) be satisfied and suppose Q -+ Kk for some
Q€ C(A) ; if Q £ A-C(A)% then ¢(Q) # ¢(A) for some .
€ C(A)' , but by the part just proved I have ¢(Q) = (:g)

©

(é?) , a contradiction, g. e. d.
Now I am going to introduce so-called spinor genus charac-

ters which will enable me to go one step behind Theorem 1. To

do this, let X(A) be the group of all ¢ € C(4)' which are

2  for some character X: C(A) ~ €% ; X(4)

is a subgroup of C(4)' whose rank is the number of invariants
of C(A) divisible by 4. As ¢°X_1 is the ideal character be-
longing to K¢/kA I obtain the following field-theoretical cha-

of the form ¢ = ¥

racterization of genus characters ¢ in X(A) :

Lemma. A genus charactenr 1 # ¢ € C(A)" belongs to X(4)
44 Ky can be imbedded 4in a dihedrnal field Ly o4 degree 8
over @ , cyclic oven kA , Auch that the conductorn of L¢/kA
devides feo

For 1 # ¢ € X(A) the dihedral field Lq> is not unique;
but for Lq> as in the Lemma the finite part of the conductor
of L¢/kA is generated by a unique positive rational integer
f; [10; Satz 7]. I choose L, such that fg is minimal and
fix it in the sequel. Let xg: 1(A) ~ €* be the ideal charac-
ter attatched to L¢/kA ; then Xg = x$°X vis a character of
C(4) which factors in the form yx4: C(4) ¥ C(8,£3%) ~€* and
satisfies xi = ¢ . The integer f; can also be characterized
to be the least positive integer f1 for which there is a N
character y: C(A) - €* which factors in the form x: C(4) ~
3 C(Aoff ) > ¢* and satisfies x2 = ¢ .

If 1 # ¢ € X(A) , Q€ C(A) , and if a € A(Q) 1is an

<



156

integral ideal prime to f; then

L, /k
(@ = (24

X¢

To become independent of the choice of L¢ let P (A) be
the set of all rational primes p + 2A which are represented
by a class in the principal genus of C(C(4) , 1i. e. for which
there is a class Q € C(A) such that Q2 - p . Obviously
P (4) consists of all primes p which split completely in the
genus field of the ring class field modulo £ of k, in the
narrow sense [11] (which is the compositum of all fields K¢
for 1 # ¢ € C(4)' ). Let TR(L) Dbe the set of all square free
positive rational integers composed only of primes p € P(4) .

For p € P(A) , ¢ € X(A) define

1, if ¢ =1 or p splits completely in L¢ ,
O¢ (P) -

-1 otherwise, ‘
and extend o¢ to R(A) by multiplicativity, i. e. for
a = p1-...-pn € R(A) set

0¢(a) = O¢(p1)'...-0¢(pn)

Now suppose a € RR(A) and 1 # ¢ € X(A) ; then there is
an integral ideal A in K, with N(A) = a , and by defini-

¢
tion, for any such A ,
L. /K
- (90, .
O-(b (a) - ( A ) ’

if a is any integral ideal of kA with N{(a) = a , then it
is of the form a = N (A) for an integral ideal A of
K¢/kA ,

K¢ , and thus also
L. /k
0, (a) = (<2 .

‘Furthermore, as a € R(A) there is a class Q € (C(A)

with Q2 + a (there is such one for each prime factor of a )

and so there is an integral ideal a € A(Q%) with N(a) = a ,
Lo/ X 2 2
whence ( 3 )y = X¢(Q ) = X¢(Q) = ¢(Q) , so

5_
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o,(a) = ¢(Q) ,

¢
which proves the independence of ¢

Ly

{a) from the choice of

¢

Characters of degree 4 of C(C(A) are called spinorn genus
charactens in accordance with [5], and because of the formula

0¢(a) = X¢(Q2) proved above I call o, 6 (a) the spinor genus

¢

symbol. Now I can prove:

Theorem 2 (Representation Theorem by Means of Spinorn Genus
Symbols). Let A = Ai € C(A)2 be a class in the principal ge-
nus of C(A) and a € R(A) . Then the following assertions

are equivalent:

i) Therne 4is a class A' € A-C(Af4 ("in the spinohr genus
o4 A ") such that A' » a .

ii) o¢(a) = ¢(AO) fon all ¢ € %X(A) .

Proof. Suppose first A' = AB4 + a with some B € C(A) ;
then A' = (AOBZ)2 , and as already shown above, o¢(a) =

= ¢(AOBZ) = ¢(A)) for all ¢ € X(4)

Now suppose A' - a with A' = Aéz

ec?, a gac?t;
then A‘A"1 = B2 for some B € C(A)\C(A)2 such that 4 di-
vides the order of B in C(C(A) . So there is a character

x: C(A) >~ € of degree 4 with x(B) = /=T ; if I set X2 = ¢,

then ¢ € X(A) and, by the above, o¢(a)§= ¢(Aé) . Therefore
1 1 1

= ! = ta” = 2 'a = N =
¢(n.) ¢(nl) and 1 ¢(A'A ) x“(alA_") x(A'A )
= X(Bz) = -1 , a contradiction, gq. e. d.
Corollary 1. Let A = Ag € C(A)2- be a class in the prin-
cdpal genus o4 C(A) , K € N, (k,20) =1 and a € R(A)

such that A - «2a . Then

o, (a)

¢
fon all ¢ € ¥(A)

e e
(D oa) = Do)
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Proof. Choose Q = Qi € C(A)2 with Q » a such that~
a 0. >« ; then, for all ¢ € X(0) , o) = B = D,
‘ _ _ -1, )
and as o¢(a) = ¢(Qo) = ¢(AOQO ) ¢(Ao) the assertion follows,

g. e. d.

Corollary 2. Let I € C(A) be the principal class,
a€ R(A) and b € N with (b,24) = 1 and I - b%a . Then

e
o (@) = () = ()

¢
fon all ¢ € X(b) .

Proof. Obvious from Corollary 1.

As the principal form I € C(A) is well known, Corollary
2 gives a first method to calculate the spinor genus symbol,
similarly to the calculations of prime decomposition symbols
in [7]1, [6] and [9].

In order to make Theorem 2 and its Corollary:1 applicable
for concrete representation problems for binary quadratic forms
one has to solve the following two problems:

A) Decide whether or not a given genus character
o € C(A)' belongs to X(A) .

B) Calculate (a) as explicitely as possible.

%

It is possible to define higher spinor genus characters

of order 2t

for t 2 3 and to use them to prove a Represen-
tation Theorem analoguos to Theorem 2; but then the problems
corresponding to A) and B) above have no known explicit solu-

tions.

§ 2 Criteria fori ¢ € X(A) and computation of O¢(a) .

In this section I state three Theorems which solve Problems
A and B stated at the end of § 1. For proofs I refer to [13];
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though the Theorems stated there concern only O¢(p) for
p € IP(A) , they are valid for 0¢(a) for arbitrary a € R(A)

as one may easy see by multiplicativity. I shall use Jacobi's

symbol (%) and Hilbert's symbol (éég) as in [15] and the qua-

dratic symbol (%) as defined in [4; "Exercises"].
2

I keep all notations of § 1; especially A = Aof is al-

ways a discriminant (not a square), ky = Q(VA) , for ¢ € C(A)"

- 2 _ -
e e, ="Af7, = e i *
+&0 oy K¢ (Ve ,/e¢) , and if ¢ € X(A) , L¢ , f¢
and o¢ are defined as there.
Theorem A) For a genus character 1 # ¢ € C(A)' the follo-

wing assentions are equdvalent:
I. ¢ € X(4)
II. There 44 an o € Q(/Eg) which satisfies the following
three conditions: _
1. a 44 Antegral and not divisible by a rational prime.

= & n2 X,
2. NQ</€§)/Q(u) = e¢ h for some h € Q° ;

3. The nelative disceniminant d 04§ Q(/&)/Q(/E&) satis-
fLes N(ﬁ)-e¢[A

III. The folLowing two conditions are satispied:

e¢,é
1. ("‘5‘¢> =1 for all p € Pulx} ;

2'.f¢-z | £ , whene
=1, if 2 ¢ f¢ and not (e(b,é(b) = (4,5) on
(5,4) mod 8 ;
z, = 2 otherwise.
14 these conditions are fullfilled then f:; = £,2,

4

Ky

In the field theoretic setting, Theorem A) can be viewed
as an imbedding theorem for biquadratic fields into dihedral
fields of degree 8 with restricted ramification. As such one
it strengthens the known theorems on this subject (see [25],

[24; § 1.3] and [23; Théoréme 121).
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Theorem B) Suppose 1 # ¢ € X(A) , a € R(A) , and Let
a € Q(/E&) satisfy the conditions 1., 2. and 3. 04 Theorem A),
II. _ v
' i) 14 a = N(a) for an 4integral ideal a of Q(/E&)
then

oy(a) = (3

ii) 14, fon some rationals chodice 04 /E; modulo a ,
a = bmoda with b€ Z , then

_ b
0¢(a) = )
iii) I4 a € Q(/5$) L4 Antegral such that &52 =
= o /8 1 g, h € , d
TrQ(/E&)/Q(a)*-h /5; with some & € Q(/e¢) and Q, an
if a = N(F) with an integral ideal & of Q(/g;) , then
- (&
o¢(a) (5)
iv) T4 a4 44 as 4n iii), and Lf, 4forn some rational chodce
04 /§; modufo a , & = bmod a with bezZ , then
0¢(a) = ()

Theorem B') Suppose 1 # ¢ € X(A) , a € IR(A) and Let e
nesp. € be the square free kernels o4 ey nesp. é¢ ; Let e*

be the product of the odd primes dividing & . Suppose

WN/e ¢ (/7,)

with M, Ne€e Z , M> 0, (MN) =1, we {1,2}) , M+N = w mod 2
and w =1 44 e % 1 mod 8 , such that

M2--eN2 = w2H2a

with H € N, (H,2A) =1 . Then
o¢(a) = o&(a)'cé(a)

’n"=

with an "odd" pant o&(a) and an "even" panrt 0$%a) , Which can
be calculated as folLlLows: o
i) Let a* be an 4integral ideal of Q(/Eg) with

N(d*) = e* ; then

oga) = (g%
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ii) Suppose (e,e*) = 1 ; then forn fixed rational choices
o4 ve and va modulo e* 1 have
, _ (M:NVe,  ,w, _  M+twH/a, 2w
O¢(a) = (-—5;——) (e*) = (——E;r—~) (e*) .
iii) For the determination o4 c&%a) 1 distingudsch 9 ca-
Aesd:
1. e 2 & = 1 mod 4 0$%a) =1 .
M+N-1
2. e=1mod 4, &=3mod4: ofa) = (-1) 2,
3. e =1 mod 4, €& = 2 mod 4
M+N-1 €-2
oa) = (—33—)'(-1) 2 2 whene t € W A5 such
¢ M+Nt ?
that t = 851 mod 8
4. e =3 mod 4, €& = 1 mod 8 o&%a) =1 .
_ ~ - n — N
. = mod 4 , e = 5 mod 8 O¢(a) = (-1)" .
= mod 4, & = 2 mod 8 Putting s = (%) 1 have
1 ~
=(e+te-1)
e 8 2s . .
(-1) '(ﬁ?ﬁ) , 44 M Z 0 mod 2 ,
O"(a) -
¢ 2s o, _
ax 44§ M = 1 mod 3 .
7. e 22 mod 4, & = 1 mod 4 Géﬁa) =1 .
' T M+N-1
.e=z2mod 4, &=3modd: ofa) = (1) 2.
= & = 2 mod 4 I§ e =2c mod 8 , € € {+1} ,
(%%) , 4§ N = 0 mod 4 ,
0¢(a) = 5 ‘
(g—M—) R /(,6 N = 2 mod 4 .
§ 3 Comparasion with the symbols of Rédei and Furuta

As already

symbol o0, (a)

¢

mentioned in the introduction,

the spinor genus

is closely connected with the symbols defined by
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Rédei [24] and Furuta [7]; this section is devoted to a detailed
analysis of this connection. The three symbols have different
domains of definition neither of which contains the other. The
spinor genus symbol and Rédei's symbol coincide on their common
domain of definition; the spinor genus symbol and Furuta's sym-
bol coincide on a suitable subdomain. of their common domain of

definition to be specified.

a) Rédei's symbol

Rédei's symbol {a1,a2,a3} is defined for a,,a,,a, € Z
which satisfy the following five conditions:

1. a, and a, are fundamental discriminants, not both
negative and not both even.

2. aj is positive and square-free; set aj =»a§a§ where

a
aj is the product of all p!a3 with T;) = -1 .

]
3. For all p|a1a2a3 I have

a.
(7%) =1, if 3 € {1,2} and p-}aj. Ly,

23
(?) =1, if p+2a3 .
4. (—a1a2) = 1 for all p](a a,) .
P 1772
-a.a:
5. ( ; 3) =1 for 3j € {1,2} and all odd p{(aj,aé)

If 1. to 5. are fullfilled then

a a
2 2
{a - PaPR-1 } = (—..)'("—‘)
1772773 a3 33

where u2 € Q(/E}) is such that NQ(/EH)/Q(Q2) = h2a2 for some

h € @ and the relative discriminant @& of Q(/Eé)/@(/ﬁ})

) =1 means a = 1 mod 8

I

N

s/
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satisfies N(@) = [a2| , and ag is an integral ideal of
2 —_ 1
0(va;) with N(aj) = aj .
From this description I obtain:

Proposition 1. For 1 # ¢ € C(A)' Zthe following assentions

are equivalent:
i) Réded's symbol {e¢,é yal As defdined forn some a € N;
ii) ¢ € X(4a) , 2-ff¢ , and (e¢,é¢) Z (4,5) mod 8 ,
(e¢,é¢) Z (5,4) mod 8 .
14 these conditions are fullfilled, then, gon a € R(A) ,
(a) = {e

Ty ¢,é¢,a}

Proof. If {e¢,é¢,a} is defined, then, by 1., 3. and 4.,

e

;€
¢ ¢) = 1 for all p € PU{=} and (e¢,é¢) Z (4,5) mod 8 ,
,8.) £ (5,4) mod 8 ; as e and é¢ are not both even, 1

¢ ¢
have 2+-f¢ . Theorem A now implies ¢ € X(A) (z¢ =1, and,

(

(e

obviously, f¢|f ) .
If the conditions ii) are fullfilled, then, by Theorem A,

e, ,e
(—%;—9)= 1 for all p € PU{x} ; thus e é are not both

o’ 7o
i
negative, (3;) = 1 for all odd p with p[é¢ » pPteo s
e -e. &
(E%) = 1 for all odd p with 'p}e¢ p p-[-écb and ( g ¢) =1

for all odd p[(e¢,é¢) ; but as 2-{-f¢,“e¢ and é¢ are not

¢,é¢) Z (4,5) mod 8 , (e¢,é¢) Z

£ (5,4) mod 8 , the above formulae are also valid for p =2 ;

both even, and as further (e
if now a € R(A) , then {e¢,é¢,a} is defined.
Suppose now a € R(A) and that {e¢,é¢,a} is defined.

To prove o¢(a) = {e¢,é¢,a} , let o € Q(/E%) be as in Theorem
A, and let 1 be the relative discriminant of Q(/a)/Q(/E;)

Then, for the discriminant D of @(Ya) I have |D| = N(ﬂ)-ei
5 BEL°
and also |D| = A e f* [10; Satz 24], so N(d) = =
o 9 ¢ e¢

/<
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PO T £f* = z £ = f by Theorem A). Therefore
e¢ (f¢) e¢ as b z¢ 0 0 (by eore )

{e¢,é¢,a} = (%) if a is an integral ideal of Q(/é&) with

N(a) = a , and this proves {e¢,é¢,a} = 0¢(a) by Theorem B),

i), Jg. e. d.

From Proposition 1 it follows, that o¢(a) may be defined

even if (e ,al 1is not (namely, when z¢ = 2 ); on the other

¢’ %o

hand there are many cases in which {e¢,é¢,a} is defined, but
a g R(A)

b) Furuta's symbol

The definition of Furuta's symbol uses the notation of
genus fields and central class fields as follows:

Let L be a finite abelian and M a finite normal alge-
braic number field such that L € M ; then L* denotes the maxi-

mal absolutely abelian number field containing L such that

L*/L is unramified outside infinity ("absolute genus field in
the narrow sense"); L& denotes the maximal absolutely abelian
subfield of M ("genus field of L/M "); LM denotes the maxi-
mal normal subfield of M containing L for which Gal(Lﬁ/L)
lies in the center of Gal(Lﬁ/Q) ("central class field of

L/M ").

Furuta's symbol [d1,d2,a] is defined for rational inte-
gers d,,d,,a such that L = Q(/a;,/a;) is a biquadratic field
and there is a full ray class field in the narrow sense R of
L such that the following conditions are satisfied:

1. R/® is normal;

* ¥ + £ { LS = .
2. LR - LR (if this is the case, then [LR. LR] 2 );

‘3. a 1is square free, positive, and all primes p|a split
*

R °
If 1., 2. and 3. are fullfilled then

' *
LR/LR

completely in L

[dy,dy,a] = (=5

with an integral ideal a of L; such that N(a) = a .

/3



Proposition 2. Suppose ¢ € X(A) and a € N

i) Let Furuta's symbol [e¢,é¢,a] be defined and assume
P =1 mod 8 4o all primes pla 44 ey = é¢ = 0 mod 8 and
Ao Z 1 mod 4 ; then a € R(A)

ii) Suppose a € R(A) ; then there L5 a undque LAntegen

; *
Fy wAzth F¢{f¢ such that [e

nod Fy fon all primes pla

iii) Let [e¢,é¢,a] be degined and suppose a € R(A) and
p =1 mod g 4or all pla where

~

fq> , if e¢ = S5 Z 0 mod 8 and AO = 0 mod 4 ,
% otherwise;

then \0¢(a) = [e¢,é¢,a] .

Proof. i) Let R be a ray class field over L = K =

S — ¢
= Q (Ve ,/é¢) defining the symbol [e¢,é¢,a] , i. e. R/Q is
normal, L§ i‘Lé , all primes p|a split completely in L;
¥ *
LR/LR

and [e¢,é¢,a] = 3 ) for an integral ideal a of LE with

N(a) = a . Let K¢‘ be the genus field of the ring class field

modulo f¢ over kA = Q(/Z;) . Then, by [11], ﬁ¢/L is unrami-
fied (so R¢'C LE ) unless ‘AO = 1 mod 4 and 23|f¢ in which
case §¢ CfL*'Q(B) Yy (so f¢ CTLE-Q(S) ) . Thus all primes p|la

split in f¢ , i. e. a € R(A)
ii), iii) Let S Dbe the ray class field {(in the narrow
= @(vE)) and L =K, = Q(/EE,/S‘)

A ¢ ¢

Then, as L¢/Q is dihedral and ~f$ is the conductor of L¢/kA ’

qu <Ll and L¢¢L; , SO Lg ,«C:Lé , and by [7; Prop. 2.1] the

symbol [e¢,é¢,a] is defined if every prime p|a splits com-

sense) modulo f; over k

pletely in L§ , and moreover, if this is the case, then

L!/L* L. /L
~ B s’7s, _ ) N
[e¢,e¢,a] = | 3 ) = ( 3 ) = 0¢(a)

(n)

Y is the field of n-th roots of unity.

(%
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(by the Translation Theorem of class field theory) if A resp.
A 1is an integral ideal of L* resp. L = K such that N(A) =

S ¢
= N(a) = a . But Lg = Kg = K*-Q(g) by [7; Theorem 4.3] and thus
every prime p[a splits completely in L* ; this proves iii).

S

To obtain ii), let R be an arbitray ray class field in

the narrow sense over L = K¢ = Q(/E%,/é%) for which R/Q is
normal and LE g Lé . By [7; Theorem 4.2], LE - L*-Q(F) for

some F € N ; by [21], L*/Q 1is elementary abelian and there-
fore contained in the genus field of the ring class field modulo
£, over k, = Q(/E;) [11] whence all p € PP(A) split comple-

A
tely in L* . Thus R can be used to define [e ,é¢,a] iff

¢
all primes pla satisfy p = 1 mod F ; if F¢ denotes the

minimal possible F , the assertion follows, g. e. d.

It seems to be difficult to determine the exact range of
coincidence of Furuta's symbol with the spinor genus symbol,

even if one restricts the considerations to strictly defined

symbols in the sense of [7; Def. 4.2]. But there are cases in

which both symbols are defined and take different values, i. e.:

A= -192 , e¢ = -8 , é¢ =24 , a = 73 , where O¢(a) = -1

and [-8,24,73] = +1 , as the representations 73-12 = 521-48-12,
73+13% = 1032+ 192.3%2 show (use [7; Theorem 5.1] and § 1, Corol-
lary 2).

In [8] the results of [12] concerning the gquadratic resp.
biquadratic characters of quadratic units are rephrased in termé
of Furuta's symbol; to do this it is necessary to restrict the
considerations in the case t = 2 to g = 1 mod 16 (in the ter-
minology of [8]) as done there. This restriction however comes
from the method and not from the problem and it can be dropped

e¢ = -et instead of the symbol [dt,-et,q] ; it is not difficult

to work out the details.

if one uses the spinor genus symbol o¢(q) for e¢ = dt ,
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