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On a Variational Inequality to some

Nonlinear Evolution Equations

mrEk. H. i =2 (Yukiyoshi Ebihara)

§1. Introduction

In this paper we are concerned with a variational inequa-
lity in the frame work of escalated energy space to some
classes of nonlinear evolution equations. Especially, as typi-
cal examples, we consider the problems for semilinear parabolic
equations and porus media type equations. In the below, we
propose initial-value problems and construct functions called
modified (m)-solutions which satisfy the problem in a certain
sense, eventually we prove these functions satisfy the varia-
tional problem defined in this paper. This study is the

continuation of the works [1-4].

§2., Evolution equations in a Hilbert space.

Let us consider evolution equations in a real separable
Hilbert space H to cover general classes of nonlinear partial
differential equations to which we can apply the analysis in
this paper. For this purpose, we treat

du(t)

rve + a(t)N(u(t)) + b(t)u(t) = £(t), 0 < t < T

(%),
u(0) = u, € H
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where u(t) : (0,T]-> H 4is unknown, a(t), b(t), N(u), £(t) are

functions satisfying conditions stated below. Let A be a

densely defined positive operator in H which has cpmapct

inverse A~!. Then we put {¢j} as .a complete system in H

which are eigen functions of A_l. Let V be a set of all

finite linear combinations of {¢j} and put V. (k=1,2,---) as
k

a closure of V Dby the topology of inner product (A -,-*)

(B" s y). = (*,°°) and norm (-,*), = We now make some

H k
definitions.

Definition 1. A function u(t) : [0,T]- H is said to be

an (m)-solution of (%),

& (1) u(t)ec!(0,T; V) ALT(0,T; V)

(2) u(t) satisfies
g%(u(t),¢) + a(t) (N(u(t)),¢) + b(t) (u(t),¢) = (£(t),9)

0 <t<T, ¢€EV

Definition 2. A function wv(t) : [0,T] -H 1is said to be

a modified (m)-solution of (%), controlled by K(t) (e c[o,T],
positive in [0,T])
& (1) v(t)ec(o,T; V) (2) v(0) = u_(|u |* <K(0))
m 0 0'm
(3) |ve) [Z<k(t), te[o,T] (4) if ‘[t ,1,]1Cl0,T],

T then

s.t. |v(t) ]; < K(t), T )

<t

A

1
'é%(u(t),¢) + a(t) (N(u(t)),9) + b(t) (ult),¢) = (£(t),9)

T, Stt,, ¢ EV.

-2~
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Definition 3.

D (K(t)) = {v(t) €Cc(0,T; V); |v(e)|} < K(t), 0 <t T}
Definition 4.

mt = {6(&) : [0,o) >~ [0,») ; non-decreasing continuous}
We propose our problem :
Problem. Find u(t) EDm(K(t)) which satisfies

!

(u' () + a(e)N(u(t)) + b(t)u(t)-£(t), w(t)-u(t)), 2 0
(%) 0 <Vt‘<T, vw(t) €D, (K(t))
u(0) =u, (luy |} < ®(0))

Here we put assumptions for af(t), b(t), N(u), and £f(t).

(H.1.1) a(t) €c'[0,T], a(t) >0, b(t) €c’[0,T].

0 . Net .
(H.1.2) f(t) €Cc” (0,T; Vﬁ+l) c (0,T; Vm)

(.2.0) N : V> AV, Ta>0; NOwW = 3N, A € R

1.2.1) o, eM’ ; (NGw) w2 -, (lw] ), wev
3 + 2

(H.2.2) "0, €M ; (N(w),w) . > =0, (Jw| )|w[’ , , we€V
3 + 2

(H.2.3) TeyeM ; (NG w2 =0 (wl D lwl o, wev
3

(H.2.4) o, €M ; INw | <o (lw]_ ), wev
3 + .

#.3.1) Top e’ 5 (Dnte), Sum), 2 -0, (lum ) L]
3 +

(#.3.2)  Tog €M’ [(@ND), Sue) ] 2o, (u) |, 1S 18]
u(t) €C’(0,T; Vpyo) NC(0,T; V)

(H.4) N(wy,) -~ N(w) in H if W, oW in v, (k> =)

-3-
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Then we have
Theorem 1. Under the above assumptions and uOEEVm+3 ’

)
luolm < K (positive constant), there exists a function u(t)€

c(0,T; V) NC*(0,T; V )NL7(0,T; Vp,,) N D (K) satisfying
(¥x) . Moreover if we assume
3 +
(H.3.3) @7, @8 eEM ; (N(u)-N(v), u—v)m

v

_{¢7(|u\m) + ®e(lvlm)}|u—v1; ‘

then the uniqueness holds.
Let vy(t) ec'[0,T] with vy(0) =1 and vy(t) > 0 in

[0,T]. For a(t), b(t), a and £f(t) appeared above, we put

lad o~ o-1 o~ _ ! P = ___f(t)
a(t) = a(t) (v(e)) " 7, b(t) = (W (B)/y () + b(t)), £(1)= 75
' — G(r) = ()
and put K(t) = TE ¢ then we know that ‘u(t) v (6) where

u(t) 1s the solution of (*) satisfies
(@' (t) + a(t) (N(T(t)) + 5<t)a(t> - £(t), %-a(t)im 20
(%) 0<%t <r, YW(t)e D (K(t))
u(0) = u,.
Therefore, as a special case we have:

Theorem 2. Under the same assumptions as in Theorem 1,

there exists a solution u(t) for the problem

(u' () + N(u(t)), w(t) - u(t))y 2 0
(%) 0 <'t<r, "w(t) € D_(K(t))
w(0) =u, (Ju,|? < K(0).
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Example. We can apply the result to the case H = L2(Q)
(2 is a bounded smooth domain in R"), A = -p with D(a) =

H' () NnH?(Q) for the following problem :

u(0) = u,

{ u'(t) = A(S(x)u?P*ly, o0 <t<rT
where p 1is a positive integer and S(x) 1s a nonnegative
smooth function which and the derivatives vanish on the boun-
dary depending on the power p and dimension so that the
function N{u) = -A(S(x)u?P*l) satisfies the assumptions (H.2)

~(H.4) and (H.3.3). Though we leave the proofs to the readers,

we can refer the ideas in [3].

Note. For the semilinear case

1 u(0) = u,

where a(x) 1is a smooth function with analogous properties as

the above S(x), the discussion is more simple.

§3. Outline of the proof of Theorem 1.

We employ Galerkin approximate procedure with penalty

scheme. Let us consider

' € -
( (ugj-+a(t)N(u€j)-+b(t)u€j-+ K—|u€.|2 Uy ;) (£(t), ¢)
J'm
(*)€j 0 <t <T, ¢E[¢1I d)zl ct (b]]
J
ugj(O) = Yoy ¢ Z c, 6, > u strongly in V__..
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Then from the assumption ]uolm < K, we have a local smooth

solution uej(t)’ and in order we can prove

<K (telo,T]), Clu,,T) < =,

lul l, 2 clug,m) <=

and moreover

]2 = C(uOIT) < @,
m

K-|u_.
€3

' ' 2
lugs (£) = ugy () [ £ Cluy, ™) [t -t, |

for 0 £t,, t, £T. From these estimates we have a function

u(t) €C(0,T; V1) NL7(0,T; vy, ,) NDy(K)

u'(t)ec(o,T; V)
and X(t) €L°(0,T), X(t) 2 0 satisfying
(u' (£) + a(t)N(u) + (b(t) + X(t)u, ¢) = (£(t),9)
0<t<T , ¢€V
u(0) = u,.
Here we note that x(t) =0 if
lu(e) |2 < & (CE. [4]).
Thus, we can assert that
(u' (t) + a(t)N(uw) + b(t)u - £, w-u), = X(t) (u, u-w),

for w €D (K) .

Consequently,

2
X () (Jul = lulywly)
0

(' (t) +a(t)N@) + b(t)u - £, wu)_

v v
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This shows u(t) satisfies the variational problem (x*).

Note. We can show that the function u(t) 1is a modified
(m) -solution of (%), controlled by K(t) = K.
Note. For the unigueness guestion, we can aaswer by putt-

ing U(t) as an another solution of (*) with the same proper-
ties, and setting
[ U(s), 0<s <t cu(s), 0<s=<t
w, (s) = w, (s)

u(s), t<s <T, 1U(s), t<s<T

and substituting them in the equalities.
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