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§1. Introduction

Let £(z,, ...,z ,t) be an analytic function defined in a
open set U x D where U is a neighbourhood of Dec” and D
is a open disk in C containing the unit interval I and let
V={<(z,t) e UxD: f(z,t) =01} and let n : V > D be the
projection, We also use the notation ft(z) = f(z,t), We
‘assume that for each t € D, V, = x '(t) = £;1(0) has an iso-
lated singularities at the origin and that the Milnor number
u(ft) is constant (= #(fo)). The question which we are

interested in this paper is the following,.

Are Vt (t € D) toplogically eqguivalent to VD?

The assertion is true for n # 3 by Llé and Ramanujam [81].

3. 1f u¥es

Thus the question is open only for n = t) (t € D)
are constant, the assertion is true by Teissier ([61]. In
particular, if the Newton boundary F(ft) is non-degenerate
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in the sense of Kouchnirenko [1] and if F(ft),= F(fo), the

assertion is true by [61, See also [31].

v : ¥ > Vv is called a weak simultaneous resolution of

# : V> D if the following conditions are satisfied.

(i) ¥ is a proper modification,

(ii) =¥ : ¥ > D is a flat map.

(iii> ¥ : V., » V, is a resolution of V..

(iv) Let E = ¥ 1¢8 x D). Then n+¥ : E > D is simple,

See Teissier [7] and Laufer [2] for further detail.

In our case, the existence of a weak resolution is
equivalent to the topological stability of {Vt) by Theorem
6.4 of " [2],

Briangon and Speder gave the following example of u-

constant family which is not a u*—constant family.

(1.1 z? + tzizg + zzzg + 2%5 = 0.

This has a weak simultaneous resolution by {5, 101, The

purpose of this paper is to generalize thig in the following

case.

Let fl(z) =S bu z” be an analytic function defined in

v

a neighbourhood of the origin,. We assume that ,f1 has a

non-degenerate Newton boundary which is convenient and let A

be a vertex of F(fl). Let £, (2z) = fi(z) - (1-t) bA zA. We

t
say that ft(z) a neqgligible trﬁncation. if the following

conditions are satisfied.

(i) There exists an open disk D in € containing the unit

-
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interval [0,1] such that.ft(z) has a non-degenerate Newton

boundary I'(f, ) for each t e D.

t
(ii) f0 is convenient and F_(fl) is a proper subset of

F_(f,).

0
(1i1) v(F_(£,) = v(T_(£5).

Here v(W) is the Newton number of the polyhedron W. See §2.

The example of Biangon-Speder does not satisfies the
convenience condition in (ii), But this can be modified by
adding yN for a sufficiently large N for which the isomor-

phism class of ft does not change,

Let ft(z) be a negligible truncation and let xn : V> D

be as above. Then the following is the result,

Theorem (1.2) n : V > D has a weak sgimultaneous reso-

“lution.

In general, the family of a negligible truncation is
not #*—constant.
§2. Positivity of the Newton numbers

Let W be a polyhedron in Rf = { (x)) e rR" - xi 20 ).

Recall that the Newton number v(W) is defined by

s (-0 1t j11-dim.volume (WD)
I

where the sum is taken for every subset I of {1,..., n} and

WI = { (xi) S 0 for 1 &€ I }, The corresponding term

for I = ¢, is (-1)" or 0 according to 8 e w or not. Let
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W= W1 U W, be a polyhedral decomposition of W. Then we

have

(2.1) v(W) = v(w}) + VCWZ) - v(WiﬂWZ).

Now we congider the case that n = 3 and W is a three

dimensional simplex with integral vertices A, B, C and D,

Let A = (al,az,a3),..., D = (dl,d2,d3). We. assume that

-0 ¢ Ww. Let h be the number of I‘s such that |[I| = 2 and
dim w! = 2. Let ¢ the number of i's such that
dim wit? = ¢,

Lemma 2.2. Assume that O not in W. Then v(W) 2 0,

is
The equality holds if and only if one of the following con-

ditiong are satigfied (up to a permutation of the coordi-

nates).
(i) h = 2, ¢ =1, We assume that A, C€C ke in R{3}, B be in
pil.33 {2,3}. =1

Then either b1 =1 or d

2

and D be in R
and 0. Assume that A, B and C be in R{1.3%]

~
)
[
~
=2
1}
—
a3}
3
=>
{]

Proof. If h = 0, it is obvious that v(W) > 0. Assume

that h = 1 and A, B and C be in R'1+3Y  Then we have

(W) 2 s d2 - s =8 (d2 -1>2 0

{1,3}

where s = 2 volﬁme W The first equality holds if and

only if & =0, Thus v(W) = 0 if and only if d2 = 1 and

@ = 0, Assume that h = 2 and b2 = d

for i = 1,2 and that cy > aj. Then we have

1= ¢ and a; = ¢; = 0
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v{W) = (03—a3)(d2b1—b1—d2+1) = (c3—a3)(d2-1)(b1—1).

Thus v(W) = 0 if and only if b1 or d2 is 1., The case h = 3
ie eliminated by the assumption on W. This completes the

proof.

Remark 2.3. The analogous assertion in Lemma 2.2 is not
true for the higher dimensions., For example, let n = 4 and
let W be the simplex spun by A = (1+t,0,0,0>, B = (1,0,0,0),
c = ¢(1,2,3,0), D=1(1,3,2,0) and E = (1,1,1,1), Then v(W)

is -t.

§3. Negligible truncations

Let f1(21,22,23) = § bvzv be an analytic function

defined in a neighbourhood of the origin and assume that
f1(z) has a non-degenerate Newton boundary F(fl). We also
assume that f1 is convenient in the sense of Kouch-

nirenko [1] where p(fi) is the Milnor number of f1 at 3.

Namely F(fl){i} is non-empty for each i. Let I'_(f,) be the
cone of F(fi) with the origin, Recall that
v(F_(fi)) = #(fl) by Kouchnirenko [1], Let A = (al,az,a3)

be a vertex of T(f) and let ft(z) = f(z) —7(1—t) bA zA be a
negligible truncation., Let W be the closure of F(fo)—r(fl)
land blet % Dbe the cone of W with A. Then it is easy to see
that T_ (£ 0 =T_ (£, ) U . Thus the assumption that
v(F_(fl)) = u(r_(fo)) and (2.1) implies w(®W) = 0. We can

triangulate W in a finite two-simplices so that any vertex

on a coordinate ax is contained in a unique two-simplex,
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Then by the equality yf) = O and (2.1) and Lemma 2.2, we
conclude that W is a simplex spun by three integral vertices
B, C, D and W gatisfies one of the conditiong in Lemma 2.2.
We say that ft(z) a negligible truncation of type (i) or
of (ii) when ¥ is of type (i) or of (ii) of Lemma 2.2
regpectively. Before we proceed to prove Theorem 1,2, we

give some examples,

Example 3.1 (E7,type (i)) Let ft(x,y,z) =
x2 + y3 + y 23 + tz5 + zk Afor k > 5. Then ft ig a ﬂ*‘
constant family. /
More generally, assume that ft(z) be a negligible trunca-

tion of type (i), Then one can show that ft(z) is a g*—

constant family.

Example 3.2 ( Type (ii), Briangon—Speder) Let

5 6 7 k 15

ft(x,y,z) =z +ty z+y x+y +x (k 2 8)

This is not a u*—constant family.

Example 3.3.(Type (ii)) Let

ft(x,y,z) = x8 + yQ v 28 vt g0 2% s x3‘y 23

where { 2 16, Then #* is not constant. In fact,
uCEL ) = 2 02 + 18 0 + 7 and the Milnor numbers of the gen-
eric hyperplane sections of f1 and fO are 2 8§ + 23 and
2 4 + 24 respectively. These examples.show that negligible

truncations of type (ii) are not generally u*—constant.
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§4. Resolution by Toroidal embedding

In this section, we recall the resolution of V1 =
f;l (0) briefly. The dual vector space of R3_can be identi-
fied canonically with itself., To distinguish vectors in R3
and in the dual space, we write dual‘vectors by column vec-
tors. Let N’ be the subset of the dual vectoré which are
non-negative, Let P be a vector in N+, We denote by A(P)
the face of F+(f1) where P takes its minimal value d(P) as a

function on r,(f£). Here F+(f1) is the upper half space in
(R+)3 with boundary F(fl). We introduce an equivalence
relation ~ in N* by P ~ Q if and only if A(P) = ACQ). This
gives a conical subdivision of N which we call the dual

Newton diagram and denote it by F*(fi), We can subdivide

*
F*(fl) into a cone over a simplicial complex ¥ such that
each three simplex ¢ = (Pi'P2'P3) of 2* is a unimodular

, * , . . L
matrix.. We <call ¥ a unimodular simplicial subdivision of

F*(fl). See Varchenko [9] and Oka [4] for detail., Let 2*

be a unimodular simplicial subdivision., For each three

simplex o = (P1 P2,P3) = (p,.) of 2*, we associate a tree

ij v
3 , , ,
space C_ with coordinates Yo = (Yg51:Y52.Y453 and the bira-
tional morphism L Cg 5 ¢3 which is defined by

P p. P
_ i1 i2 i3 . 3, .
Z, T Y51 Yg2 Y43 (i =1, 2, 3)., Then we glue CG s in a
canonical way to get a smooth Complex manifold X and proper

birational morphism A& : X » C3. Let Vl be the proper

transform of V, and let n : Vl > Vy Then n : Vl >V, is a
v

resolution of the singularity  of Vo In Cg, 1 is defined

by fi,o(yo) = 0 where
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3 APy
£) oY) = £4ng (¥ / igl Voi

For each wvertex P such that dim A(P) 2 1 there 1is a

r

corresponding exceptional divisor E(P). Suppose that P = Pl‘

Then E(P) is defined in cg by

3
hocyo) N fl,A(P)(Yo) / 'Ei Yoi

For a further detail, we refer Oka [41].

§5. Proof of Theorem 1.2

Let fl(Z) =5 bu z" and let f(z,t) =
v )

fI(Z) - (1-t) bA_zA be a negligible truncation as in Theorem
1.2 of §1. Let V = ((z,8) € C x D : £(2) = 0 ). Let I be
& unimodular simplicial subdivision. We apply the mapping
X2 C3 simultaneously to ft to resolve the singularities
of V., Namely let f1 : X x D » cd x D be the projection
defined by fi(y,t) = (R(y),t) and let V be the proper
transform of V. Let w : V » D be the projection into D. We

denote the restriction of ff to V by . Let V., be 17 ™

1

t
(t))., We are going to show that T : V 5 Vv is a sgimultane-

ous resolution of V if we choose a suitable unimodular sim-

plicial subdivision 2*.

Let W and A, B, C and D be as in §3. We first prove
Theorem 1.2 assuming W is of type (ii) of Lemma 2.2. The

case of (i) can be proved in a ‘similar way. Let

[
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D = (d1,1,d3). Let A, and 4, be the faces of r¢£,) which
are spun by A, B, D and. A,b C,” D respectively. Let
P = t(pl,p?_,‘pa) and Q = t(ql,qz;qa) be the respective weight
vector of A1 and A2' By the definition, A(P) = A1 and
ACQ) = AZ' (Strictiy speaking, A. may be a subset of ACP)

1

and A2 may bhe a subset of A(Q).) P and Q must satisfy the

following equalities and inequalities,
(5.1> pjay + pzag = pyby + pyby = pydy + py + pydy

< p'lc'l + p3c3

(5.2) q1a1 + q363 = q101 + Q3C3 q1d1 + q2 + q3d3
< qyby + agbs.

From (5,1) and (5.2), we have

(5.3 P, pi(a1 - dl) + p3(a3 - d3) and
(5.4) d, = ql(a1 - di) + q3(a3 - d3).
As P and Q are primitive vectors, (5.,3) and (5.4) implies

(5.6) G.C.D.(py,py) = G.C.D.(qy,qy) =1

We may assume that b1 > a, > Cyq, or equivalently

b3 < aq < Cq. From (5,1), (5,2) and (5.6), we have

(5.7) (b1 - al) rp,, f(aj - b3) = rpy

(5.8) (a1 - cl)

sqj , (c3 = a3) = sqq

for some positive integers r and s. Thus by the inequality



of (5.1), we have

(5.9 q'1p3 - Q3p1 > 0.

Let R = t(0,1,0)». Then the interior T of the triangle T(P,
Q. R) is an equivalence class in F*(fl), Namely for a dual
vector S, A(S) = {A} if and only if S € T, By (5.6), we
have det (P, R) = det (@, R) = 1, (For the definition
det(P,Q), see Oka [4]. ) Thus we do not ﬁeed any other
vertex on the line segment PR and QR. On the other hand,

using (5,3) and (5.4), we easily see that
(5.10) det(P,Q) = det(P,Q,R) = a, Py - a5 by.

This implies the following. Let Tl""' Tk be the canonical

primitive sequence of PQ in the sense of [4]. Then two-

R) (1

simplices (Ti,T 0,..., k ) are already unimodu-

i+1-
lar. Thus we do not need any new vertices in T to subdivide
F*(fi). This is the key to the proof. We take a unimodular
simplicial subdivision 2* which is, restricted on two-

simplex T(P,Q,R), the one described above. Now we consider

~

T : V> Vwyhich is associated to E*. It is easy to see that
v - V0 and Vt (t#0) are non-singular. Let ¢ = (Pl'P2'P3)‘

Then in the coordinate chart cj x D, V is defined by

3 d(p,)
fo(ya,t) = £l (y, 0,0 /‘ig1 Yoi = q,
and E(Pi) is defined by
3 d(Pi)
h,(y, ,t) = fA(Pi)(no(yG),t) / ig1 Yoy = = 0.

_ 40 -
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This is a polynomial of Yo, Y53 and t and

i

fo(yc,t) ho(yo't) modulo (yol)‘

it
2w

Let £(o) : A(Pi). Then the constant term of ho(yo,t)

1
with respect to Y, is bf(o) if £€C(o0) # A, Thus in this case,

i

V¥ and VO ig non-singular and I ¢ E > D is simple in this

chart where E = T 1(D x D). Assume that ¢ = (T, T, , R

(T0 = P and Tk+1 Q). (Thig is the most essential chart +to

be studied carefully.,) Then E(Ti) is defined by

]

hy(Yy9,¥53,t) = by t + by y 4 =0, (0 <i <k-1)

r _ A
bAt + bDyc3 + bpyso =0 (i =0)

This is easy to see by a direct calculation using (5.3),...

’

(5.9) and by the fact that

T1 = (Q + aP) / (q1p3 - q3p1)

for a (uniqué) integer a such that 0 < a < det(P,Q). See
Oka [413. Thus E(Ti) is non-singular in any case by the
existence of the linear term bDy03’ By the same réason, VO
and V are non-singular and I : E > D is simple over D. The

smoothness of E(Q) is proved in a similar way.

Now we consider the case of a negligible truncation of

type (i), Then by the same notation as above, we have to

replace A = (D,O,aa), B = (b1'0'b3)' C = (0,0,c3) and
D = (0,1,d3). Also the weight vector Q is simply
t

(1,0,0). The rest of the argument is completely pérallel

- 11 -
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to the above argument. This completes the proof of Theorem
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