On the weak simultaneous resolution of a negligible truncation of the Newton bondary

Mutuo Oka

Department of Mathematics Faculty of Sciences Tokyo Institut of Technology Oh-Okayama, Meguro-ku, Tokyo 152

§1. Introduction

Let $f(z_1,\ldots,z_n,t)$ be an analytic function defined in a open set U x D where U is a neighbourhood of $0 \in \mathbb{C}^n$ and D is a open disk in C containing the unit interval I and let $V = \{(z,t) \in U \times D : f(z,t) = 0\}$ and let $\pi : V \to D$ be the projection. We also use the notation $f_t(z) = f(z,t)$. We assume that for each $t \in D$, $V_t = \pi^{-1}(t) = f_t^{-1}(0)$ has an isolated singularities at the origin and that the Milnor number $\mu(f_t)$ is constant $(=\mu(f_0))$. The question which we are interested in this paper is the following.

Are V_t (t \in D) toplogically equivalent to V_0 ?

The assertion is true for n ≠ 3 by Lê and Ramanujam [8]. Thus the question is open only for n = 3. If $\mu^*(f_t)$ (t ∈ D) are constant, the assertion is true by Teissier [6]. In particular, if the Newton boundary $\Gamma(f_t)$ is non-degenerate

in the sense of Kouchnirenko [1] and if $\Gamma(f_t) = \Gamma(f_0)$, the assertion is true by [6]. See also [3].

 $\Psi \ : \ \widetilde{V} \to \ V \ \ is \ called \ a \ \underline{weak} \ \underline{simultaneous} \ \ \underline{resolution} \ \ of$ $\pi \ : \ V \to \ D \ \ if \ \ the \ following \ \ conditions \ \ are \ \ satisfied.$

- (i) Ψ is a proper modification.
- (ii) $\pi \cdot \Psi$: $\widetilde{V} \rightarrow D$ is a flat map.
- (iii) Ψ : $\tilde{V}_t \rightarrow V_t$ is a resolution of V_t .
- (iv) Let $E = \Psi^{-1}(\vec{0} \times D)$. Then $\pi \cdot \Psi : E \to D$ is simple.

See Teissier [7] and Laufer [2] for further detail.

In our case, the existence of a weak resolution is equivalent to the topological stability of $\{V_t\}$ by Theorem 6.4 of [2].

Briançon and Speder gave the following example of μ constant family which is not a μ^* -constant family.

$$(1.1) z_1^5 + tz_1z_3^6 + z_2z_3^7 + z_2^{15} = 0.$$

This has a weak simultaneous resolution by [5, 10]. The purpose of this paper is to generalize this in the following case.

Let $f_1(z) = \sum_{\nu} b_{\nu} z^{\nu}$ be an analytic function defined in a neighbourhood of the origin. We assume that f_1 has a non-degenerate Newton boundary which is convenient and let A be a vertex of $\Gamma(f_1)$. Let $f_t(z) = f_1(z) - (1-t) b_A z^A$. We say that $f_t(z)$ a negligible truncation. if the following conditions are satisfied.

(i) There exists an open disk D in $\, c \,$ containing the unit

interval [0,1] such that $f_t(z)$ has a non-degenerate Newton boundary $\Gamma(f_+)$ for each $t\in D$.

(ii) f_0 is convenient and $\Gamma_-(f_1)$ is a proper subset of $\Gamma_-(f_0)$.

(iii)
$$\nu(\Gamma_{-}(f_1) = \nu(\Gamma_{-}(f_0).$$

Here $\nu(W)$ is the Newton number of the polyhedron W. See §2.

The example of Biançon-Speder does not satisfies the convenience condition in (ii). But this can be modified by adding y^N for a sufficiently large N for which the isomorphism class of \mathbf{f}_{t} does not change.

Let $f_{\mathsf{t}}(\mathbf{z})$ be a negligible truncation and let π : V \rightarrow D be as above. Then the following is the result.

Theorem (1.2) π : $V \rightarrow D$ has a weak simultaneous resolution.

In general, the family of a negligible truncation is not μ^* -constant.

§2. Positivity of the Newton numbers

Let W be a polyhedron in $\mathbf{R}^n_+ = \{ (\mathbf{x}_i) \in \mathbf{R}^n ; \mathbf{x}_i \ge 0 \}$. Recall that the Newton number $\nu(W)$ is defined by

$$\sum_{I} (-1)^{n-|I|} |I|! |I|-dim.volume (WI)$$

where the sum is taken for every subset I of $\{1, \ldots, n\}$ and $W_I = \{(x_i) ; x_i = 0 \text{ for } i \notin I \}$. The corresponding term for $I = \emptyset$, is $(-1)^n$ or 0 according to $\vec{0} \in W$ or not. Let

 $\mathbf{W} = \mathbf{W}_1 \cup \mathbf{W}_2$ be a polyhedral decomposition of \mathbf{W} . Then we have

(2.1)
$$v(W) = v(W_1) + v(W_2) - v(W_1 \cap W_2).$$

Now we consider the case that n = 3 and W is a three dimensional simplex with integral vertices A, B, C and D. Let A = $(a_1, a_2, a_3), \ldots$, D = (d_1, d_2, d_3) . We assume that $0 \notin W$. Let h be the number of I's such that |I| = 2 and dim $W^I = 2$. Let 0 the number of i's such that dim $W^{\{i\}} = 1$.

Lemma 2.2. Assume that $\vec{0}$ is not in W. Then $\nu(W) \ge 0$. The equality holds if and only if one of the following conditions are satisfied (up to a permutation of the coordinates).

(i) h = 2, $\ell = 1$. We assume that A, C be in $\mathbb{R}^{\{3\}}$, B be in $\mathbb{R}^{\{1,3\}}$ and D be in $\mathbb{R}^{\{2,3\}}$. Then either $b_1 = 1$ or $d_2 = 1$.

(ii) h = 1 and $\ell = 0$. Assume that A, B and C be in $\mathbb{R}^{\{1,3\}}$.

Then $d_2 = 1$.

<u>Proof.</u> If h = 0, it is obvious that $\nu(W) > 0$. Assume that h = 1 and A, B and C be in $\mathbb{R}^{\{1,3\}}$. Then we have

$$\nu(W) \ge s d_2 - s = s (d_2 - 1) \ge 0$$

where s = 2 volume W^{1,3}. The first equality holds if and only if $\ell = 0$. Thus $\nu(W) = 0$ if and only if $d_2 = 1$ and $\ell = 0$. Assume that h = 2 and $b_2 = d_1 = 0$ and $a_i = c_i = 0$ for i = 1, 2 and that $c_3 > a_3$. Then we have

 $\nu(W) = (c_3-a_3)(d_2b_1-b_1-d_2+1) = (c_3-a_3)(d_2-1)(b_1-1).$

Thus $\nu(W)=0$ if and only if b_1 or d_2 is 1. The case h=3 is eliminated by the assumption on W. This completes the proof.

Remark 2.3. The analogous assertion in Lemma 2.2 is not true for the higher dimensions. For example, let n=4 and let W be the simplex spun by A=(1+t,0,0,0), B=(1,0,0,0), C=(1,2,3,0), D=(1,3,2,0) and E=(1,1,1,1). Then $\nu(W)$ is -t.

§3. Negligible truncations

Let $f_1(z_1,z_2,z_3)=\sum\limits_{\nu}b_{\nu}z^{\nu}$ be an analytic function defined in a neighbourhood of the origin and assume that $f_1(z)$ has a non-degenerate Newton boundary $\Gamma(f_1)$. We also assume that f_1 is convenient in the sense of Kouchnirenko [1] where $\mu(f_1)$ is the Milnor number of f_1 at $\hat{0}$. Namely $\Gamma(f_1)^{\{i\}}$ is non-empty for each i. Let $\Gamma_-(f_1)$ be the cone of $\Gamma(f_1)$ with the origin. Recall that $\nu(\Gamma_-(f_1))=\mu(f_1)$ by Kouchnirenko [1]. Let $\lambda=(a_1,a_2,a_3)$ be a vertex of $\Gamma(f)$ and let $f_1(z)=f(z)-(1-t)$ by z^{λ} be a negligible truncation. Let λ be the closure of $\Gamma(f_1)-\Gamma(f_1)$ and let λ be the cone of λ with λ . Then it is easy to see that $\Gamma_-(f_1)=\Gamma_-(f_1)$ and $\Gamma_-(f_1)=\Gamma_-(f_$

Then by the equality $\nu(\hat{\mathbf{W}}) = 0$ and (2.1) and Lemma 2.2, we conclude that W is a simplex spun by three integral vertices B, C, D and $\hat{\mathbf{W}}$ satisfies one of the conditions in Lemma 2.2. We say that $f_{\mathbf{t}}(\mathbf{z})$ a negligible truncation of type (i) or of (ii) when $\hat{\mathbf{W}}$ is of type (i) or of (iii) of Lemma 2.2 respectively. Before we proceed to prove Theorem 1.2, we give some examples.

Example 3.1 (E₇,type (i)) Let $f_t(x,y,z) = x^2 + y^3 + yz^3 + tz^5 + z^k$ for k > 5. Then f_t is a μ^* -constant family.

More generally, assume that $f_t(z)$ be a negligible truncation of type (i). Then one can show that $f_t(z)$ is a μ^* -constant family.

Example 3.2 (Type (ii), Briançon-Speder) Let

$$f_{+}(x,y,z) = z^{5} + t y^{6} z + y^{7} x + y^{k} + x^{15} \quad (k \ge 8)$$

This is not a μ^* -constant family.

Example 3.3.(Type (ii)) Let

$$f_t(x,y,z) = x^8 + y^0 + z^0 + t x^5 z^2 + x^3 y z^3$$

where $\ell \ge 16$. Then μ^* is not constant. In fact, $\mu(f_t) = 2 \ell^2 + 18 \ell + 7$ and the Milnor numbers of the generic hyperplane sections of f_1 and f_0 are $2 \ell + 23$ and $2 \ell + 24$ respectively. These examples show that negligible truncations of type (ii) are not generally μ^* -constant.

§4. Resolution by Toroidal embedding

In this section, we recall the resolution of V_1 = f_1^{-1} (0) briefly. The dual vector space of \mathbf{R}^3 can be identified canonically with itself. To distinguish vectors in \mathbf{R}^3 and in the dual space, we write dual vectors by column vectors. Let N^+ be the subset of the dual vectors which are non-negative. Let P be a vector in N^+ . We denote by $\Delta(P)$ the face of $\Gamma_{+}(f_{1})$ where P takes its minimal value d(P) as a function on $\Gamma_+(f)$. Here $\Gamma_+(f_1)$ is the upper half space in $(\mathbf{R}^+)^3$ with boundary $\Gamma(\mathbf{f}_1)$. We introduce an equivalence relation \sim in N⁺ by P \sim Q if and only if Δ (P) = Δ (Q). This gives a conical subdivision of N^+ which we call the dual Newton diagram and denote it by $\Gamma^*(f_1)$. We can subdivide $\Gamma^*(f_1)$ into a cone over a simplicial complex Σ^* such that each three simplex $\sigma = (P_1, P_2, P_3)$ of Σ^* is a unimodular matrix. We call Σ^{*} a <u>unimodular simplicial subdivision</u> of $\Gamma^*(f_1)$. See Varchenko [9] and Oka [4] for detail. Let be a unimodular simplicial subdivision. For each three simplex $\sigma = (P_{1}, P_{2}, P_{3}) = (p_{ij})$ of Σ^{*} , we associate a tree space c_{σ}^3 with coordinates $y_{\sigma} = (y_{\sigma 1}, y_{\sigma 2}, y_{\sigma 3})$ and the birational morphism $\pi_{\sigma}: \mathbf{c}_{\sigma}^3 \to \mathbf{c}^3$ which is defined $z_i = y_{\sigma 1}^{p_{i1}} y_{\sigma 2}^{p_{i2}} y_{\sigma 3}^{p_{i3}}$ (i = 1, 2, 3). Then we glue c_{σ}^3 's in a canonical way to get a smooth complex manifold X and proper birational morphism $\hat{\pi}: X \to \mathbf{c}^3$. Let \tilde{V}_1 be the proper transform of V_1 and let π : $\widetilde{V}_1 \rightarrow V_1$. Then π : $\widetilde{V}_1 \rightarrow V_1$ is a resolution of the singularity 0 of v_1 . In c_{σ}^3 , \tilde{v}_1 is defined by $f_{1.\sigma}(y_{\sigma}) = 0$ where

$$f_{1,\sigma}(\mathbf{y}_{\sigma}) = f_{1}(\pi_{\sigma}(\mathbf{y}_{\sigma})) / \prod_{i=1}^{3} y_{\sigma i}^{d(P_{i})}.$$

For each vertex P such that $\dim \Delta(P) \ge 1$, there is a corresponding exceptional divisor E(P). Suppose that P = P₁. Then E(P) is defined in \mathbf{c}_{σ}^3 by

$$h_{\sigma}(\mathbf{y}_{\sigma}) = f_{1,\Lambda(P)}(\mathbf{y}_{\sigma}) / \prod_{i=1}^{3} y_{\sigma i}^{d(P_i)}$$

For a further detail, we refer Oka [4].

§5. Proof of Theorem 1.2

Let
$$f_1(z) = \sum_{\nu} b_{\nu} z^{\nu}$$
 and let $f(z,t) =$

 $f_1(z) - (1-t) b_A z^A$ be a negligible truncation as in Theorem 1.2 of §1. Let $V = \{(z,t) \in \mathbf{C}^3 \times \mathbf{D} : f_t(z) = 0 \}$. Let Σ^* be a unimodular simplicial subdivision. We apply the mapping $\pi: X \to \mathbf{C}^3$ simultaneously to f_t to resolve the singularities of V. Namely let $\widehat{\Pi}: X \times \mathbf{D} \to \mathbf{C}^3 \times \mathbf{D}$ be the projection defined by $\widehat{\Pi}(\mathbf{y},t) = (\widehat{\pi}(\mathbf{y}),t)$ and let \widetilde{V} be the proper transform of V. Let $\omega: V \to D$ be the projection into D. We denote the restriction of $\widehat{\Pi}$ to \widehat{V} by Π . Let \widehat{V}_t be $\Pi^{-1}(\omega^{-1}(t))$. We are going to show that $\Pi: \widehat{V} \to V$ is a simultaneous resolution of V if we choose a suitable unimodular simplicial subdivision Σ^* .

Let $\widehat{\mathbf{W}}$ and A, B, C and D be as in $\S 3$. We first prove Theorem 1.2 assuming $\widehat{\mathbf{W}}$ is of type (ii) of Lemma 2.2. The case of (i) can be proved in a similar way. Let $A = (a_1, 0, a_3)$, $B = (b_1, 0, b_3)$, $C = (c_1, 0, c_3)$ and

D = $(d_1,1,d_3)$. Let Δ_1 and Δ_2 be the faces of $\Gamma(f_1)$ which are spun by A, B, D and A, C, D respectively. Let $P = {}^t(p_1,p_2,p_3)$ and $Q = {}^t(q_1,q_2,q_3)$ be the respective weight vector of Δ_1 and Δ_2 . By the definition, $\Delta(P) = \Delta_1$ and $\Delta(Q) = \Delta_2$. (Strictly speaking, Δ_1 may be a subset of $\Delta(P)$ and Δ_2 may be a subset of $\Delta(Q)$.) P and Q must satisfy the following equalities and inequalities.

(5.1)
$$p_{1}a_{1} + p_{3}a_{3} = p_{1}b_{1} + p_{3}b_{3} = p_{1}d_{1} + p_{2} + p_{3}d_{3}$$

$$< p_{1}c_{1} + p_{3}c_{3}$$

(5.2)
$$q_1 a_1 + q_3 a_3 = q_1 c_1 + q_3 c_3 = q_1 d_1 + q_2 + q_3 d_3$$

 $< q_1 b_1 + q_3 b_3.$

From (5.1) and (5.2), we have

(5.3)
$$p_2 = p_1(a_1 - d_1) + p_3(a_3 - d_3)$$
 and

$$(5.4) q_2 = q_1(a_1 - d_1) + q_3(a_3 - d_3).$$

As P and Q are primitive vectors, (5.3) and (5.4) implies

(5.6)
$$G.C.D.(p_1,p_3) = G.C.D.(q_1,q_3) = 1$$

We may assume that $b_1 > a_1 > c_1$, or equivalently $b_3 < a_3 < c_3$. From (5.1), (5.2) and (5.6), we have

$$(5.7)$$
 $(b_1 - a_1) = rp_3$, $(a_3 - b_3) = rp_1$

$$(5.8)$$
 $(a_1 - c_1) = sq_3$, $(c_3 - a_3) = sq_1$

for some positive integers r and s. Thus by the inequality

of (5.1), we have

$$(5.9)$$
 $q_1p_3 - q_3p_1 > 0.$

Let $R = {}^t(0,1,0)$. Then the interior T of the triangle T(P,Q), R) is an equivalence class in $\Gamma^*(f_1)$. Namely for a dual vector S, $\Delta(S) = \{A\}$ if and only if $S \in T$. By (5.6), we have det $(P,R) = \det(Q,R) = 1$. (For the definition $\det(P,Q)$, see Oka [4].) Thus we do not need any other vertex on the line segment \overline{PR} and \overline{QR} . On the other hand, using (5.3) and (5.4), we easily see that

(5.10)
$$\det(P,Q) = \det(P,Q,R) = q_1 p_3 - q_3 p_1$$

This implies the following. Let T_1,\ldots,T_k be the canonical primitive sequence of \overline{PQ} in the sense of [4]. Then two-simplices (T_i,T_{i+1},R) $(i=0,\ldots,k$) are already unimodular. Thus we do not need any new vertices in T to subdivide $\Gamma^*(f_1)$. This is the key to the proof. We take a unimodular simplicial subdivision Σ^* which is, restricted on two-simplex T(P,Q,R), the one described above. Now we consider $\Pi: \widetilde{V} \to V$ which is associated to Σ^* . It is easy to see that $\widetilde{V} - \widetilde{V}_0$ and \widetilde{V}_t $(t \neq 0)$ are non-singular. Let $\sigma = (P_1,P_2,P_3)$. Then in the coordinate chart $C_\sigma^3 \times D$, \widetilde{V} is defined by

$$f_{\sigma}(\mathbf{y}_{\sigma},t) = f(\pi_{\sigma}(\mathbf{y}_{\sigma}),t) / \prod_{i=1}^{3} y_{\sigma i}^{d(P_{i})} = 0.$$

and $E(P_1)$ is defined by

$$h_{\sigma}(\mathbf{y}_{\sigma},t) = f_{\Delta(P_{1})}(\pi_{\sigma}(\mathbf{y}_{\sigma}),t) / \prod_{i=1}^{3} \mathbf{y}_{\sigma i}^{d(P_{i})} = 0.$$

This is a polynomial of $y_{\sigma 2}$, $y_{\sigma 3}$ and t and

$$f_{\sigma}(y_{\sigma},t) \equiv h_{\sigma}(y_{\sigma},t) \mod (y_{\sigma 1}).$$

Let $\xi(\sigma) = \bigcap_{i=1}^{3} \Delta(P_i)$. Then the constant term of $h_{\sigma}(y_{\sigma},t)$ with respect to y_{σ} is $b_{\xi(\sigma)}$ if $\xi(\sigma) \neq A$. Thus in this case, \widetilde{V} and \widetilde{V}_0 is non-singular and $\Pi: E \rightarrow D$ is simple in this chart where $E = \Pi^{-1}(\overrightarrow{0} \times D)$. Assume that $\sigma = (T_i, T_{i+1}, R)$ $(T_0 = P \text{ and } T_{k+1} = Q)$. (This is the most essential chart to be studied carefully.) Then $E(T_i)$ is defined by

$$h_{\sigma}(y_{\sigma 2}, y_{\sigma 3}, t) = b_{A} t + b_{D} y_{\sigma 3} = 0.$$
 (0 < i < k-1)
= $b_{A}t + b_{D}y_{\sigma 3} + b_{B}y_{\sigma 2}^{r} = 0$ (i = 0)

This is easy to see by a direct calculation using (5.3),..., (5.9) and by the fact that

$$T_1 = (Q + \alpha P) / (q_1 p_3 - q_3 p_1)$$

for a (unique) integer α such that $0<\alpha<\det(P,Q)$. See Oka [4]. Thus $E(T_i)$ is non-singular in any case by the existence of the linear term $b_D y_{\sigma 3}$. By the same reason, \widetilde{V}_0 and V are non-singular and $\Pi: E \to D$ is simple over D. The smoothness of E(Q) is proved in a similar way.

Now we consider the case of a negligible truncation of type (i). Then by the same notation as above, we have to replace $A=(0,0,a_3)$, $B=(b_1,0,b_3)$, $C=(0,0,c_3)$ and $D=(0,1,d_3)$. Also the weight vector Q is simply t(1,0,0). The rest of the argument is completely parallel

to the above argument. This completes the proof of Theorem 1.2.

References

- [1] A.G. Kouchnirenko, Polyèdres de Newton et Nombres de Milnor, Inventiones Math., 32 (1976), 1-32.
- [2] H.B. Laufer, Weak simultaneous resolution for deformations of Gorenstein surface singularities, Proceedings of Symposia in Pure Math., 40 part 2 (1983), 1-29.
- [3] M. Oka, On the topology of the Newton boundary III, J. Math. Soc. Japan, 34 (1982), 541-549.
- [4] M. Oka, On the Resolution of Hypersurface Singularity ties, to appear in Proceeding of US-Japan Singularity Seminar, 1984.
- [5] H. Pinkham, Deformations of normal surface singularities with \mathbf{C}^* action, Math. Ann., 232 (1978), 65-84.
- [6] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Asterisque, 7-8 (1973), 285-362.
- [7] B. Teissier, Resolution simultanée I,II, Séminaire sur les Singularités des Surfaces, 777, Springer-Verlag, Berlin-Heiderberg-New York, 1980, 71-146.

- [8] Lê Dung Trang and C.P. Ramanujam, The Invariance of Milnor's Number Implies the Invariance of the Topological Type, Amer. J. Math., 98 (1976), 67-78.
- [9] A.N. Varchenko, Zeta-Function of Monodromy and Newton's Diagram, Inventiones Math., 37 (1976), 253-262.
- [10] J. Wahl, Equisingular deformations of normal surface singularities, Ann. of Math., 104 (2) (1976), 325-356.