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CONSTRUCTIONS FOR CYCLIC STEINER 2-DESIGNS
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ABSTRACT

This paper surveys direct and recursive constructions for cyclic Steiner 2-
designs. A new method is presented for cyclic designs with blocks having a
prime number of elements. Several new constructions are given for designs with
block size 4 which are based on perfect systems of difference sets and additive
sequences of permutations.

1. Introduction

A balanced incomplete block design (briefly BIBD) with parameters (v ,k,A) is a pair (V ,B)

where V is a v-set and B is a collection of k-subsets of V (called blocks) such that every 2-
subset of V is contained in exactly A blocks. A Steiner 2-design is a (v ,k,A) BIBD with A = 1.

- An automorphism of a BIBD (V,B) is a bijection ¢: V — V such that the induced mapping
®: B — B is also a bijection. The set of all such mappings forms a group under composition
called the automorphism group of the design.

A (v .,k ,A) BIBD is cyclic if it has an automorphism consisting of a single cycle of length v.
Cyclic (v,k,A) BIBD’s will be denoted by C (v ,k,A). A (v,k,A) difference family (briefly DF) is
a collection of k-subsets D1, ...,D, of the integers Z, modulo v such that for each nonzero
x € Z, the congruence d; —d; = x(mod v) has exactly A solution pairs (d;,d;) with d;,dj € Dy,
for some I. A (v,k,\) DFis called simple if A = 1. Itis easily verified that a necessary condition
for the existence of a (v,k,A) DF is A(v — 1) =0 mod k(k — 1). In particular, if a simple DF
exists then v =1 mod k(k — 1). A (v,k,A) DF generates a cyclic BIBD C (v,k,\) with V =Z, ,
and B ={6'D; | 0<i <v,1<I<t},wherec:V -V, o(x)=x+1modv and n =A(v — 1)/
(k(k —1)). Thet blocks D 1> - - - , Dy are called starter or base blocks of the design (V,B) (they
are representatives of the orbits of B under ). An orbit analysis of a cyclic Steiner 2-design
C (v k) yields the following necessary existence condition:

v =1,k mod k(k —1). (1)
The case v =k(k — 1)t + 1 corresponds to a simple DF. If v =k(k — 1)t +k then there are
t +1 starter blocks Dg,D4,...,D;, where Dg= {O,m,2m, N (= l)m}, m=(k-Dt+1
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generates am-orbitand Dy, . .., D, generate ¢t v-orbits under ©. It is clear, that the differences
inDy, . ..,D, cover the elements Z,\D o exactly once.

Two difference families D={D,,...,D,;} and D’= (D{,...,D,} are said to be
equivalent if for some integers r,sy, ..., s

{D{,....D;}={rDy+sy,...,rD; +s) modv. @)

If D is equivalent with itself, then the corresponding r is called a multzplzer of Dandt:x - rx,
x € Z, is an automorphism of the cyclic demgn

Cyclic designs have a nice structure and interesting algebraic properties. Their concise
representation makes them attractive in applications and for testing purposes. Cyclic BIBD’s
and difference systems have been studied by many authors [3], [7], [10], [13]. Results concern-
ing cyclic Steiner 2-designs are surveyed in [5] which also contains a fairly extensive bibliogra-
phy.

The present paper addresses the problem of existence of cyclic Steiner 2-designs C (v ,k,1).
In the next two sections we discuss direct and recursive constructions for general block sizes k.
In addition to known techniques, several new constructions are presented for k =4 and 5. We
conclude with a list of open problems. The paper significantly extends the existence results given
in [5] for cyclic Steiner 2-designs with block sizes k > 3.

2. Direct Constructions

The majority of direct methods for constructing cyclic designs are based on finite fields. In
this section we survey those constructions which apply to Steiner 2-designs and apply them to
generate some new designs with blocks of prime size.

We begin with two general constructions pf Wilson for (v,k,1) differepce families [13].

Theorem 1 Letp =k(k — 1)t + 1 be a prime and o a primitive root of Z,. Let H™ bc the mul-
tiplicative subgroup of Z,\{0} generated by o and let 0 = ™.

(i) If k=2m +1is odd and {®w-1,w2-1,...,w™—-1} is a system of representatives for the
cosets o/H™, i=0,1,...,m—1, then the blocks D;,; = {a™ oo™, ., w?™am],
i=01,...,t—1forma(p,k,1) DF.

(i) If k =2m is even and {1,0-1,...,@™ ! — 1} is a system of representatives for the cosets

oHm, i =0,1,...,m —1, then the blocks D;y; = {0,0™, wa™,..., @ 2m),
i=0,1,...,t—1forma(p,k,l)DFinZ,.

Theorem 2 Let p =k(k — 1)z + 1 be a prime and « a primitive root of Z,. If there exists a set
B ={by,...,bx} ©Z, suchthat {b; -b; | 1<i <j <k} is a system of representatives for the
cosets i H™ i =0,1,...,m — 1, where m =k(k — 1)/2 and H™ is the subgroup of Z,\{0} gen-
erated by o, then D; ) =02 B,i =0,1,...,t —lisa(p ,k,1)DFinZ,.
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Our next result concemns the case v =k mod k (k-1).

Theorem 3 Letk =2m + 1 and p =2mt + 1, n 2 2 be two odd primes and let o be a primitive
root of Z,. Define m — 1 numbers r; by the equations o’ =afi —1,i =1,...,m — 1. If there
exists a B € Z; such that the 2m elements 1, (% — 1)B™, i =1,...,m — 1 are all distinct in
Zy, then the blocks

Do={00,01,...,00m} 3
D1 = {Og,0fy,0ufis, . ., 0 2mitth}, §=0,1,...,¢~1 ©)

form a (kp ,k,1) DF in Zj,,.

Proof We note, that since in the family of blocks B={B,...,B,}, Bis; = {0,&,...,
o2mt—t+i ] each nonzero difference appears exactly k —2m + 1 times, B forms a (p ,k,k) DF in
Z,. To complete the proof, it suffices to show that for any fixed difference in B the correspond-
ing subscript differences cover every non-zero element of Z; exactly once. Since for each i,
(0f —1) o™ =1 this is equivalent to the assumption that +1, +(B% — )™, i =1, . com =1
are distinct in Z;. Finally, since k and p are distinct primes the design is cyclic in Z,. O

We will apply Theorem 3 to blocksize k =7. Then m =3 and p is a prime of the form
p =6t +1,¢ 22. If ais a primitive root of Z,, then ¥ =—1 and since

(of + Do =02t —1= (o + 1)(af - 1)

we have of — 1 =02, Let r be the solution of o = a2 — 1. We require that for some B e Z,
the 6 numbers

P2, HB - 1), TPATP* -1 4)

cover the non-zero elements of Z;. Since ¥ cannot be congruent to 1 modulo 7, we see that
t=1or2mod3. If t =1 mod 3, then (4) are distinct if either =2 and r =0 mod 3, or B=4
and r =2 mod 3. If ¢+ =2 mod 3, then we need either B=2andr =1 mod 3,orf=4and r =0
mod 3. Combining all these conditions we obtain the following result.

Corollary 4 Let p =6z + 1 be a prime, ¢ 22, £ 20 mod 3, and let o be a primitive root in Z,.
Then the blocks (3) form a (7p,7,1) DF for some B € Z; if and only if ¢+ £7 mod 3, where r
satisfies o = a2 — 1.

We note, that for some values of ¢+ we obtain two non-isomorphic cyclic designs. If t =4
mod 6, then (4) are distinct also if either P=3 and r =2 mod 3, or B=5 and r =0 mod 3. If
t =2 mod 6, then (4) are distinct also if either =3 andr =0Omod 3,or =5 and r =1 mod 3.



For k =7 solutions exist when ¢t = 2%, 5, 7, 13, 16*, 26*, 35, 37, 38%*, 40*, 46*, 47, etc.
The base blocks for £ =2* 5 and 7 are

) 1 44 3, 124 94 10, 0o 1 4, - 3 12 94 10,

0o 2, 8y 64 11, 51 74 0o 25 8¢ 63 1lls -5 . 73
0p 1; 264 25, 30, 5, 6 O 1; 37, 36, 42, 6, T4
0o 3, 167 134 28, 15; 184 0o 3, 254 22, 40, 184 21,
0o 9 17, 81 224 14, 23, 0o 94 32¢ 23, 344 117 20,
0g 271 204 24, 4, 114 T2 Og 27y 10 264 167 33; 17,
0p 19, 297 104 125 2y 214 0p 38, 304 35 5, 134 8

Op 28 4 19, 15 39; 24,
O 41; 12, 144 2 31 29

The solutions for ¢t =5 and 7 are first examples of BIBD’s with the parameters (217,7,1) and
(301,7,1), respectively. For k£ =11 solutions exist when ¢ = 33, 54*, 57, 91, 94*, etc. and for
k=13,t =13, 19,59, etc. (* indicates 2 solutions).

We conclude this section with a well-known result in finite geometries [6].

Theorem 5 Let g be a prime power. Then the lines in the projective geometry PG (n,q), n 22
form a cyclic design with parameters ((¢**1 - 1)/(q — 1), q + 1, 1).

3. Recursive Constructions

Given two difference families it is sometimes possible to combine them to construct a new
one. Several such constructions are known for general cyclic BIBD’s (4] [8] [14]. To apply
them, various conditions on the block sizes are usually required.

We begin with a construction by C.J. Colbourn and M.J. Colbourn [4].

Theorem 6 Let A% ={0,a’},...,a%_1},i=1,...,t be a (vk,1) DF in Z, and let B =
{0bJy,...,b0k_1}, j=1,...,s bea(w,k,1)DFinZ,.

i If v=k(k—-1)+1 and w is relatively prime to (k —1)!, then for i =1,...,z,
j=1,...,sandl =0,1,...,w -1

{O,a"l +Iv,a"2 +21v,...,aik_1 + (k-1)lv} '
[0,vbI, Wb, . .., vbiy1) )

isa(w,k,1)DFin Z,,,,.
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(ii)) Ifv =koa,w =kp and P is relatively prime to (k — 1)!, thenfori=1,...,¢,j=1,...,s
‘and! =0,1,...,w -1 ‘

{0,a'; +Iv,aiy +2lv, ..., a4 + (k=-1)lv}
{O’ijl ’aij: ey abjk—-l] (6)
{0,0B,2aB, .. ., (k—1)p}

is a (kaP,k,1) DFin Zyqp. Here o= (k — 1)t + 1, B=(k — 1)s + 1, and only full orbit base
blocks A%;, B¥; are considered.

We note that the construction can be used if either w or P are prime. Then the existence of
a (w,k,1) DF implies the existence of a (w” ,k,1) DF for every n > 1. Similarly, from a (k B,k,1)
DF we obtain a (k ”,k,1) DF. Also, if a (v ,k,1) DF exists with v = 1 mod k (k — 1) and prime &
then there exists a (vk ,k,1) DF.

In [8] M. Jimbo and S. Kuriki have introduced a more general construction for cyclic

BIBD’s which is based on orthogonal arrays. Applying it to Steiner 2-designs we obtain the fol-
lowing typical result. '

Theorem 7 Suppose there exists a C(v,k,1) and a C(w,k,1), where v =1 mod k(k — 1) and &
is an odd prime. Then there exists a C (vw ,k,1). If, in addition, w = 1 mod k (k — 1), then the
conclusion holds for k£ a prime power. '

So, for exainplé, if k is an odd prime not dividing v, then the existence of a C (v ,k,1)
implies the existence of both C (v* k,1) and C (kv" ,k,1) for any n > 1. '

The next construction employs cyclic pairwise balanced designs. A pairwise balanced
design (briefly PBD) is a pair (V,B) where V is a v-set and B is a collection of subsets of V
(blocks) such that every 2-subset of V is contained in exactly one block. A PBD will be denoted
by (v,K,1), where K ={ky, . ..,k,} is the set of block sizes.

Theorem 8 Suppose there exists a cyclic (v,K,1) PBD with K = {ky, ..., k,} and that for each
k; there exists a (k; ,k,1) Steiner 2-design. Then there exists a C (v ,k,1). 4 '

Proof Replace each base block in the PBD by the blocks of the corresponding Steiner 2-design
to obtain the base blocks of the final C (v,k,1). O

In the next section we shall give some other recursive constructions for cyclic designs with
blocks of size 4 and 5 which are based on the concepts of perfect systems of difference sets and
additive sequences of permutations.
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4. Special Constructions
The existence question for cyclic Steiner triple systems has been completely settled by Pel-
tesohn [10], who constructed C (v,3,1) forallv = 1,3 mod 6, v #9.

For block sizes k > 3 the existence problem for C (v ,k,1) remains unsolved. The state of
affairs is most promising for the cases k =4 and 5.

In order to present additional recursive constructions we require a few more definitions.

A collection of t k-subsets D; = {diy,di;,...,d%_1}, 0=diy <dij < -+ <d¥_q,
i=1,...,t is said to be a perfect difference family (PDF) in Z,, v =k(k —)t + 1, if the
tk (k — 1)/2 differences d‘ —dij, 0<j <1l <k cover the set {1,2,...,tk(k — 1)/2}). PDF’s are
equivalent to regular perfect systems of difference sets starting with 1, which have been studied

by many authors (see [1] for a recent survey). It has been shown [2] that PDF’s can exist only

when k is 3,4 or 5. For k =3 the existence of a PDF is related to Skolem’s partitioning problem
[1].

Let X1 be the m-vector (—r,—r+1,...,-1,0,1,..,r=1,r),m =2r + 1 and let X2, ..., X" be
permutations of X1. Then X1, ...,X" is an additive sequence of permutations (ASP) of order m
and length n if the vector sum of every subsequence of consecutive permutations is again a per-
mutation of X1. ASP’s play an important role in recursive constructions for PDF’s and vice

versa [1] [11] [12].

Block size 4

We begin with two direct constructions.

Theorem9 letp =12t +1,¢ 2 1 be a prime and let a be a primitive root of pr.
(i) ([3]1[13]) If p #x2+ 36y? for any integers x and y then
{0,002 oAt+2i 81421 i =0,1,...,¢ —1 (7
isa(,4,1)DFinZ,.
(i) ([5]) If o =3 mod 4 (and such an o always exists in Z,) th¢n

{0,004 o443 odi+6) | =0, ... ,3r ~ 1}
{0’a4j+1,a41+4j+1’a8r+4j+1} j= 0,...,t- 1} 8)
{0.p,2p,3p} ’

forma (4p,4,1) DF in Z4,.

The next two constructions will exhibit the relationship between PDF’s and ASP’s.

Theorem 10 ([3][13]) LetD; ={0,a;,b;,¢c;},i =1,...,t beaPDFin Zy, and let X1, X2, X3
be an ASP of order m =2r + 1, r 22 and length 3. Then
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(i) Fori=1,...,tandj=1,...,m the 6zm positive differences in the family
Ami-m+j = {O.ma; + o mb; +Bjme; +v;] 9)

cover the set {r+1,r+2,...,r+6tm). Here a,B and 7y are the m-vectors X1, x14+x2
X1+X2+ X3, respectively.

(i) Fori=1,...,t

Xil=(-c,a-c,~b,b-c,a~b,~a,ab-a <=b,b.c—a,c);
Xi2=(c-b,c,b-a,c-a,b—c,a—c,~b,ab—c.a-b —a); (10)
X3=®-a,-ba-c,a,cc-bb-—c~c~a,c—ab ,a-b);

the (12¢+1)-vectors X/ = (0,X/;,...,X4%), j =1,2,3 form an ASP of order 12t +1 and
length 3.

In order to utilize products of the form (9) for constructing new difference families we need
to find additional base blocks with differences covering the set {1,...,r} and possibly
{r+6m+1,...,6x} for somex > 1.

We list now the known recursive constructions for 1 < m <25,

Theorem 11 Let D(t)={D,, ... »D:} be a PDF and let A(mt) = {A,, . .. »Ope } be defined by
(9), wherem =2r + l and o = (=r,—r+1,---,-1,0,1,...,r=1,r). Then

1. Forr =2
B= (-20,2,1,1), v= (0,-2,1,-1,2)
D (5t+1) = A(5t) U {0,1,30¢+4,301+6}
is a PDF in Z gg; 413.
2. Forr =3
B=(-1,-2,-3,32,1,0), v= (-2,1,-3,0,3,-1,2)
D (7t+1) = A(7t) U {0,2,3,42¢+7)
is a DF in Z gy, ,13.
3. Forr =6
B= (-4,-5-1,-2,3,-6,6,5,1,-3,0,2,4)
Y= (-1,-5,-6,3,-3,-4,4,2,5,-2,6,1,0)
D (13t+1) = A(13¢) U {0,1,4,6}
is a PDF in Z 156;413.

4. Forr =9
B=(-6,7,1,-2,-3,5,3,-9,-4,7,-8,0,-5,9,-1,6,2.,4,8)
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Y= (-2,1,-8,-9,3,-1,-5,-6,5,2,-7,7,-3,8,-4,6,0,9,4)
D (19t+4) = A(19¢) U {0,1,7,x+23} U {0,2,x+14,x +19)]
U {0,3x+13x421) U {0,4,x+15,x424), x = 114¢
is a PDF in Z278;149.
5. Forr =11
B =(0,-2,1,-7,2,-6,-1,-5,4,-10,-11,-9,6,-4,-8,-3,11,8,10,3,5,7,9)
¥=(9,5,4,-10,0,7,10,-9,8,-4,-3,1,-5,-11,-8,2,6,-2,11,6,7,-1,3)
D (23145) = A(23t) U {0,1,8,x+28] U {0,2,x +14,x+24} U
[03,%+18,x429) U {0,4,x+17,x 423} U {0,5,x +21,x+30), x = 138t
is a PDF in Zy7¢;461.

6. Forr =12
using o,y and A(5¢) from 1 to obtain A(25¢)

D (25t+5) = A25t) U {0,1,x+18,x+29) U {0,4,x+20,x+26}
U {0,3,8,x+27} U {0,7,x+21,x+30} U {0,10,12,x+25}, x = 150t
is a PDF in Z 300461, and
D (256+6) = AQ25t) U {0,1,x 434, +36] U {0,3,x+18,x+29)
U {0,4,x+20,x+28} U {0,5,x+22,x+32]
U {0,6,x+19,x+31} U {0,7,x+21,x+30}, x = 150t
is a PDF in Z 300r47.

Proof Use (9) to check that the required sets are covered by all differences from the base
blocks. OO

We note that the constructions 2,5,6b are new and that 1,3,4,6a have been known [11]. The
ASP with » = 11 has been found by P.J. Laufer:.

If we apply all methods listed in Sections 2, 3 and 4 and add the computer generated DF’s
from [5] we obtain the following results for 1 <t <50:

(12¢+1,4,1) PDF

¢ = 1,4-8,14,21,23,26,28,30-31,36,41
(12¢+1,4,1) DF

t =1,3-10,14-15,19-21,23,26,28-31,34-36,38,40-41,43,45,50
(12t+4,4,1) DF
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t =3-6,12,20,24,30,32,36,43.

Block size 5§

As before, two direct constructions are known.

Theorem 12 Letp =20 + 1,¢ > 1 be a prime and let o be a primitive root of Z,,.
(1) ([31[13)) Ifp #x2+ 100y2 for any integers x and y then
{a2i ’a4t+2i ,08142i y12042i ’a16t+2i} i=01,...,t-1 (1)
isa (p,5,1) DF in Z,. |
(i) (5] Ifor +1=05(o — 1) for some odd integers r and s then
{0,(12‘ ,(x2i+’ ,a21+2i’a21+2i+r} i=01...,t-1 (12)
{0,p,2p,3p 4p }
form a’(5p 5,1)DFinZs,.

Concerning PDF’s with blocks of size 5 and ASP of length 4, results can be proved which
are similar to those stated in Theorem 10 [1]. They can be used to derive the following construc-
tion.

Theorem 13 Let D(t)={Dy,...,D;} be a PDF in Cyqp 41 and let D(s)= (D,,...,Ds} be a
DF in Cy0541. Then a DF D (r) exists in Cog,41, 7 =20st+s+t and D (r) is perfect whenever
D (s) is perfect.

Proof Use D (t) to construct an ASP of length 4 and order m =20:+1 [1]. With help of this
ASP construct the blocks A(ms) in a similar way as in (9). Then D (r)=A(ms) U D (s). O

PDF’s with k£ = 5 can exist only if ¢ is even and # 2 6 [1]. They have been enumerated for
t =6 [9] and examples are known for ¢ = 8, 10, 732, 974, etc.

Difference families are known for the following values of £, 1 <t <50:
(20t +1) PDF
t=6,8,10
(20t +1) DF
t =1-3,6,8,10,12,14,21-22,30,32-33,35,41,43-44
(20¢+5) DF | '
| t =3-5,7,9-10,13,15,18,22,24-25,27-28,30,34,37,39-40,42-43,45,48-50.
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Open Problems

1.

= o

Does there exist a (12¢+1,4,1) DF for every r 23?7 Can all of these DF’s be perfect if
t 247

Does there exist a C (v ,4,1) for every v # 16, 25 and 28?

Does there exist an ASP of length 3 for every order m > 5, m # 9,10?
Do there exist C (v,5,1) forv =81 and 857

Construct examples of PDF’s D (¢) fork =5 and even ¢ 2 12.
Construct examples of ASP of length 4 for orders m > 7.

/0
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