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ABSTRACT

This paper surveys direct and recursive constructions for cyclic Steiner 2-
designs. A new method is presented for cyclic designs with blocks having a
prime number of elements. Several new constructions are given for designs with
block size 4 which are based on perfect systems of difference sets and additive
sequences of permutations.

1. Introduction
A balanced incomplete block design (briefly BIBD) with parameters $(v,k,\lambda)$ is a pair $(V,B)$

where $V$ is a v-set and $B$ is a collection of k-subsets of $V$ (called blocks) such that every 2-
subset of $V$ is contained in exactly $\lambda$ blocks. A Steiner 2-design is a $(v,k,\lambda)$ BIBD with $\lambda=1$ .
An automorphism of a BIBD $(V,B)$ is a bijection $\phi:Varrow V$ such that the induced mapping
$\Phi:Barrow B$ is also a bijection. The set of all such mappings forms a group under composition
called the automorphism group of the design.

A $(v,k,\lambda)$ BIBD is cyclic if it has an automorphism consisting of a single cycle of length $v$ .
Cyclic $(v,k,\lambda)$ BIBD’s will be denoted by $C(v,k,\lambda)$ . A $(v,k,\lambda)$ difference family (briefly DF) is
a collection of k-subsets $D_{1},$ $\ldots$ , $D_{t}$ of the integers $Z_{\nu}$ modulo $v$ such that for each nonzero
$x\in Z_{v}$ the congruence $d_{i}-d_{i}\equiv x(mod v)$ has exactly $\lambda$ solution $pa\dot{u}s(d_{i},d_{i})$ with $d_{i},d_{i}\in D_{l}$ ,

for some $l$ . A $(v,k,\lambda)$ DF is called simple if $\lambda=1$ . It is easily verified that a necessary condition
for the existence of a $(v,k,\lambda)$ DF is $\lambda(v-1)\equiv 0mod\cdot k(k-1)$ . In particular, if a simple DF
exists then $v\equiv 1mod k(k-1)$ . A $(v,k,\lambda)$ DF generates a cyclic BIBD $C(v,k,\lambda)$ with $V=Z_{v}$

and $B=[o^{j}D_{l}|0\leq i<v, 1\leq l\leq t]$ , where $0:Varrow V,$ $o(x)=x+1mod v$ and $n=\lambda(v-1)/$

$(k(k-1))$ . The $t$ blocks $D_{1},$ $\ldots$ , $D_{t}$ are called starter or base blocks of the design $(V,B)$ (they

are representatives of the orbits of $B$ under o). An orbit analysis of a cyclic Steiner 2-design
$C(v,k)$ yields the following necessary existence condition:

$v\equiv 1,$ $kmod k(k-1)$. (1)

The case $v=k(k-1)t+1$ corresponds to a simple DF. If $v=k(k-1)t+k$ then there are
$t+1$ starter blocks $D_{0}D_{1},$ $\ldots$ , $D_{t}$ , where $D_{0}=\{0,m,2m,$ $\ldots$ , $(k-1)m\},$ $m=(k-1)t+1$
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generates a m-orbit and $D_{1},$
$\ldots$ , $D_{t}$ generate $t$ v-orbits under 6. It is clear, that the differences

in $D_{1},$ $\ldots,D_{t}$ cover the elements $Z_{\nu}\backslash D_{0}$ exactly once.
Two difference families $D=[D_{1}, \ldots , D_{t}]$ and $D’=[D_{1’},$

$\ldots$ , $D_{t}J$

’ are said to be
equivalent if for some integers $r,s_{1},$ $\ldots$ , $s_{t}$

[$D_{1’},$
$\ldots$ , $D^{\wedge}J=[rD_{1}+s_{1}, \ldots, rD_{t}+s_{t}]mod v$ . (2)

If $D$ is equivalent with itself, then the corresponding $r$ is called a multiplier of $D$ and $\tau:xarrow rx$ ,
$x\in Z_{\nu}$ is an automorphism of the cyclic design.

Cyclic designs have a nice structure and interesting algebraic properties. Their concise
representation makes them attractive in applications and for testing purposes. Cyclic BIBD’s
and difference systems have been studied by many authors [3], [7], [10], [13]. Results concern-
ing cyclic Steiner 2-designs are surveyed in [5] which also contains a fairly extensive bibliogra-
phy.

The present paper addresses the problem of existence of cyclic Steiner 2-designs $C(v,k,1)$.
In the next two sections we discuss direct and recursive constructions for general block sizes $k$ .
In addition to known techniques, several new constructions are presented for $k=4$ and 5. We
conclude with a list of open problems. The paper significantly extends the existence results given
in [5] for cyclic Steiner 2-designs with block sizes $k>3$ .

2. Direct Constructions
The majority of direct methods for constructing cyclic designs are based on finite fields. In

this section we survey those constructions which apply to Steiner 2-designs and apply them to
generate some new designs with blocks of prime size.

We begin with two general constructions of Wilson for $(v,k,1)$ difference families [13].

Theorem 1 Let $p=k(k-1)t+1$ be a prime and $a$ a primitive root of $Z_{p}$ . Let $H^{m}$ be the mul-
tiplicative subgroup $ofZ_{p}\backslash [0J$ generated by $a^{m}$ and let $co=a^{2mt}$ .
(i) If $k=2m+1$ is odd and $[c\triangleright 1,0$)$2-1,$

$\ldots$ , $0)^{m}-1J$ is a system of representatives for the
cosets $a^{j}H^{m}$ , $i=0,1,$ $\ldots,m-1$ , then the blocks $D_{i+1}$ $=[\alpha^{mi},\omega\alpha^{mi},\ldots, \omega^{2m}\alpha^{mi}]$ ,

$j=0,1,$ $\ldots$ , $t-1$ form a $(p,k,1)$ DF.

(ii) If $k=2m$ is even and $[1,\omega-1, \ldots , \omega^{m-1}-1]$ is a system of representatives for the cosets
$\alpha^{j}H^{m},$ $i=0,1,$ $\ldots$ , $m-1$ , then the blocks $D_{i+1}=[0,a^{mi}, \omega\alpha^{mi}, \ldots , \omega^{2m-2}\alpha^{mi}]$ ,

$i=0,1,$ $\ldots$ , $t-1$ form a $(p,k,1)$ DF $inZ_{p}$ .

Theorem 2 Let $p=k(k-1)t+1$ be a prime and $\alpha$ a primitive root of $Z_{p}$ . If there exists a set
$B=[b_{1}, \ldots, b_{k}]\subset Z_{p}$ such that $[b_{j}-b_{j}|1\leq i<j\leq k]$ is a system of representatives for the
cosets $\alpha^{i}H^{m},$ $i=0,1,$ $\ldots$ , $m-1$ , where $m=k(k-1)/2$ and $H^{m}$ is the subgroup of $Z_{p}\backslash [0J$ gen-
erated by $\alpha^{m}$ , then $D_{i+1}=a^{2mi}B,$ $i=0,1,$ $\ldots$ , $t-1$ is a $(p,k,1)$ DF in $Z_{p}$ .
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Our next result concems the case $v\equiv kmMk(k-1)$.

Theorem 3 Let $k=2m+1$ and $p=2mt+1,$ $n\geq 2$ be two odd primes and let $a$ be a primitive
root of $Z_{p}$ . Define $m-1$ numbers $r$; by the equations $a^{r_{i}}=a^{\mathfrak{l}i}-1,$ $i=1,$ $\ldots$ , $m-1$ . If there
exists a $\beta\in Z_{k}$ such that the $2melements\pm 1,$ $\pm(\beta^{\iota i}-1)\beta^{-r}{}^{t}i=1,$

$\ldots$ , $m-1$ are all distinct in
$Z_{k}$ , then the blocks

$D_{0}=f0_{0},0_{1},$ $\ldots,0_{2m}$]
$D_{i+1}=[0_{0},\alpha\dot{\mathfrak{p}}_{t},a\mathfrak{b}^{ti_{i},\ldots,a\%^{t+i}j}\overline{2}n*\prec\star 4,$ $i=0,1,$ $\ldots,$ $t-1$ (3)

form a $(kp,k,1)$ DF in $Z_{\hslash}$ .

Proof We note, that since in the farly of blocks $B=(B_{1},$ $\ldots$ , $B_{t}$], $B_{i+1}=[0,a^{i},$
$\ldots$ ,

$\alpha^{2mt-t+i}]$ each nonzero difference appears exactly $k-2m+1$ times, $B$ forms a $(p,k,k)$ DF in
$Z_{p}$ . To complete the proof, it suffices to show that for any fixed difference in $B$ the correspond-
ing subscript differences cover every non-zero element of $Z_{k}$ exactly once. Since for each $i$ ,
$(\alpha^{ti}-1)\alpha^{-r_{t}}=1$ this is equivalent to the assumption $that\pm 1,$ $\pm(\beta^{ti}-1)\beta^{-r_{\dagger}},$ $i=1,$ $\ldots$ , $m-1$
are distinct in $Z_{k}$ . Finally, sinc$ek$ and $p$ are distinct primes the design is cyclic in $Z_{\phi}$ . $\square$

We will apply Theorem 3 to blocksize $k=7$. Then $m=3$ and $p$ is a prime of the form
$p=6r+1,$ $t\geq 2$. If $a$ is a primitive root of $Z_{p}$ , then $a^{3\iota}=-1$ and since

$(a^{t}+1)a^{2t}=a^{2\prime}-1=(a^{t}+1)(\alpha^{t}-1)$

we have $a^{t}-1=a^{2t}$ . Let $r$ be the solution of $a^{r}=a^{2t}-1$ . We require that for some $\beta\in Z_{7}$

the 6 numbers
$\pm\beta^{2t},$ $\pm(\beta^{t}-1),$ $\pm\beta^{2t-r}(\beta^{2t}-1)$ (4)

cover the non-zero elements of $Z_{7}$ . Since $\beta^{2t}$ camot be congruent to 1 modulo 7, we see that
$t\equiv 1$ or 2 $\mathfrak{X}3$ . If $t\equiv 1mod 3$ , then (4) are distinct if either $\beta=2$ and $r\equiv 0mod 3$ , or $\beta=4$

and $r\equiv 2mod 3$ . If $t\equiv 2\mathfrak{X}3$ , then we need either $\beta=2$ and $r\equiv 1mod 3$ , or $\beta=4$ and $r\equiv 0$

$mod 3$ . Combining all these conditions we obtain the following result.

Corollary 4 Let $p=6t+1$ be a prime, $t\geq 2,$ $t\not\equiv Omod 3$ , and let $a$ be a primitive root in $Z_{p}$ .
Then the blocks (3) form a $(7p,7,1)$ DF for some $\beta\in Z_{7}$ if and only if $t\not\equiv rmod 3$ , where $r$

satisfies $\alpha^{r}=a^{2l}-1$ .

We note, that for some values of $t$ we obtain two non-isomorphic cyclic designs. If $t\equiv 4$

$mod 6$, then (4) are distinct also if either $\beta=3$ and $r\equiv 2mod 3$ , or $\beta=5$ and $r\equiv 0mod 3$ . If
$t\equiv 2mod 6$ , then (4) are distinct also if either $\beta=3$ and $r\subseteq Omod 3$ , or $\beta=5$ and $r\equiv 1mod 3$ .

3
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For $k=7$ solutions exist when $t=2^{*},$ $5,7,13,16^{*},$ $26^{*},$ $35,37,38^{*},$ $40^{*},$ $46^{*},$ $47$ , etc.
The base blocks for $t=2^{*},$ $5$ and 7 are

$0_{0}$ $1_{1}$ $4_{4}$ $3_{2}$ $12_{1}$ $9_{4}$ $10_{2}$ $0_{0}$ $1_{1}$ $4_{4}$ $3_{2}$ $12_{1}$ $9_{4}$ $10_{2}$

$0_{0}$ $2_{2}$ $8_{1}$ $6_{4}$ $11_{2}$ $5_{1}$ $7_{4}$ $0_{0}$ $2_{5}$ $8_{6}$ $6_{3}$ $11_{5}$ $5_{6}$ $7_{3}$

$0_{0}$ $1_{1}$ $26_{4}$ $25_{2}$ $30_{1}$ $5_{4}$ $6_{2}$ $0_{0}$ $1_{1}$ $37_{2}$ $36_{4}$ $42_{1}$ $6_{2}$ $7_{4}$

$0_{0}$ $3_{2}$ $16_{1}$ $13_{4}$ $28_{2}$ $15_{1}$ $18_{4}$ $0_{0}$ $3_{2}$ $25_{4}$ $22_{1}$ $40_{2}$ $18_{4}$ $21_{1}$

$0_{0}$ $9_{4}$ $17_{2}$ $8_{1}$ $22_{4}$ $14_{2}$ $23_{1}$ $0_{0}$ $9_{4}$ $32_{1}$ $23_{2}$ $34_{4}$ $11_{1}$ $20_{2}$

$0_{0}$ $27_{1}$ $20_{4}$ $24_{2}$ $4_{1}$ $11_{4}$ $7_{2}$ $0_{0}$ $27_{1}$ $10_{2}$ $26_{4}$ $16_{1}$ $33_{2}$ $17_{4}$

$0_{0}$ $19_{2}$ $29_{1}$ $10_{4}$ $12_{2}$ $2_{1}$ $21_{4}$ $0_{0}$ $38_{2}$ $30_{4}$ $35_{1}$ $5_{2}$ $13_{4}$ $8_{1}$

$0_{0}$ $28_{4}$ $4_{1}$ $19_{2}$ $15_{4}$ $39_{1}$ $24_{2}$

$0_{0}$ $41_{1}$ $12_{2}$ $14_{4}$ $2_{1}$ $31_{2}$ $29_{4}$

The solutions for $t=5$ and 7 are first examples of BIBD’s with the parameters (217,7,1) and
(301,7,1), respectively. For $k=11$ solutions exist when $t=33,54^{*},$ $57,91,94^{*}$ , etc. and for
$k=13,$ $t=13,19,59$, etc. ( indicates 2 solutions).

We conclude this section with a well-known result in finite geometries [6].

Theorem 5 Let $q$ be a prime power. Then the lines in the projective geometry $PG(n,q),$ $n\geq 2$

form a cyclic design with parameters $((q^{n+1}-1)/(q-1), q+1,1)$ .

3. $Recur\rho ive$ Constructions
Given two difference families it is sometimes possible to combine them to construct a new

one. Several such constructions are known for general cyclic BIBD’s [4] [8] [14]. To apply
them, various conditions on the block sizes are usually required.

We begin with a construction by C.J. Colbourn and M.J. Colboum [4].

Theorem 6 Let A $=$ [$0,a^{i_{1}}$ , . . . , a], $i=1,$ $\ldots$ , $t$ be a $(v,k,1)$ DF in $Z_{v}$ and let $B^{s_{j}}=$

$[0,b^{j_{1}} , . . . , b^{j_{k-1}}],$ $j=1,$ $\ldots$ , $s$ be a $(w,k,1)$ DF in $Z,$ .
(i) If $v=k(k-1)t+1$ and $w$ is relatively prime to $(k-1)!$ , then for $i=1$ , . . . , $t$ ,

$j=1,$ $\ldots$ , $s$ and $l=0,1,$ $\ldots$ , $w-1$

[$0,a^{i_{1}}+lv,a^{i_{2}}+2lv,$
$\ldots$ , a $+(k-1)lv$ ]

$[0,vb^{j_{1}},vb^{j_{i}}, \ldots , vb^{j_{k-1}}]$
(5)

is a $(vw,k,1)$ DF in $Z_{vw}$ .

$\#$
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(ii) If $v=k\alpha,$ $w=k\beta$ and $\beta$ is relatively prime to $(k-1)!$ , then for $i=1,$ $\ldots$ , $t,$ $j=1,$ $\ldots$ , $s$

and $l=0,1,$ $\ldots$ , $w-1$

$[O,a^{i_{1}}+lv,a^{i_{2}}+2lv, \ldots , a^{i_{k-1}}+(k-1)lv]$

$[0,ab^{j_{1}},\omega^{j_{2}}, \ldots, \alpha b^{j_{k-1}}]$ (6)
$[0,\alpha\beta,2a\beta,$

$\ldots,$
$(k-1)a\beta J$

is a $(ka\beta,k,1)$ DF in $Z_{k\alpha\beta}$ . Here $a=(k-1)t+1,$ $\beta=(k-1)s+1$ , and only full orbit base
blocks A, $B^{s_{j}}$ are considered.

We note that the construction can be us$ed$ if either $w$ or $\beta$ are prime. Then the existence of
a $(w,k,1)$ DF implies the existence of a $(w^{n},k,1)$ DF for every $n\geq 1$ . Similarly, ffom a $(k\beta,k,1)$

DF we obtain a $(k\beta^{n},k,1)$ DF. Also, if a $(v,k,1)$ DF exists with $v\equiv 1mod k(k-1)$ and prime $k$

then there exists a $(vk,k,1)$ DF.

In [8] M. Jimbo and S. Kuriki have introduced a more general construction for cyclic
BIBD’s which is based on orthogonal aIrays. Applying it to Steiner 2-designs we obtain the fol-
lowing typical result.

Theorem 7 Suppose there exists a $C(v,k,1)$ and a $C(w,k,1)$, where $v\equiv 1mod k(k-1)$ and $k$

is an odd prime. Then there exists a $C(vw,k,1)$ . If, in addition, $w\equiv 1mod k(k-1)$ , then the
conclusion holds for $k$ a prime power.

So, for example, if $k$ is an odd prime not dividing $v$ , then th$e$ existence of a $C(v,k,1)$

implies the existence of both $C(v^{n},k,1)$ and $C(kv^{n},k,1)$ for any $n\geq 1$ .
The next construction employs cyclic pairwise balanced designs. A pairwise balanced

design (briefly PBD) is a pair $(V,B)$ where $V$ is a v-set and $B$ is a collection of subsets of $V$

(blocks) such that every 2-subset of $V$ is contained in exactly one block. A PBD will be denoted
by $(v,K,1)$, where $K=[k_{1}, \ldots , k_{n}]$ is th$e$ set of block sizes.

Theorem 8 Suppose there exists a cyclic $(v,K,1)$ PBD with $K=[k_{1}, \ldots , k_{n}]$ and that for each
$k_{j}$ there exists a $(k_{j},k,1)$ Steiner 2-design. Then there exists a $C(v,k,1)$ .

Proof Replace each base block in the PBD by the blocks of the corresponding Steiner 2-design
to obtain the base blocks of the final $C(v,k,1)$ . $\square$

In the next section we shall give some other recursive constructions for cyclic designs with
blocks of size 4 and 5 which are based on the concepts of perfect systems of difference sets and
additive sequences of permutations.
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4. Special Constructions
The existence question for cyclic Steiner triple systems has been completely settled by Pel-

tesohn [10], who constructed $C(v,3,1)$ for all $v\equiv 1,3mod 6,$ $v\neq 9$ .
For block sizes $k>3$ the existence problem for $C(v,k,1)$ remains unsolved. The state of

affairs is most promising for the cases $k=4$ and 5.
In order to present additional recursive constructions we require a few more definitions.
A collection of $t$ k-subsets $D_{j}=[d^{i_{0}},d^{i_{1}} , . . . , d_{k-1}^{i}],$ $0=d^{i_{0}}<d^{t_{1}}$ $<$ $<d^{i_{k-1}}$ ,

$i=1$ , . . . , $t$ is said to be a perfect difference family (PDF) in $Z_{v},$ $v=k(k-)t+1$ , if the
$tk(k-1)/2$ differences $d^{i_{l}}-d_{j}^{i},$ $0\leq j<l<k$ cover the set [1,2, $\ldots,$ $tk(k-1)/2J$ . PDF’s are
equivalent to regular perfect systems of difference sets starting with 1, which have been studied
by many authors (see [1] for a recent \S urvey). It has been shown [2] that PDF’s can exist only
when $k$ is 34 or 5. For $k=3$ the existence of a PDF is related to Skolem’s partitioning problem
[1].

Let $X^{1}$ be the m-vector $(-r,-r+1, \ldots, -1,0,1,\ldots,r-1,r),$ $m=2r+1$ and let $X^{2},$
$\ldots$ , $X^{n}$ be

permutations of $X^{1}$ . Then $X^{1},$
$\ldots$ , $X^{n}$ is an additive sequence ofpemutations (ASP) of order $m$

and length $n$ if the vector sum of every subsequence of consecutive permutations is again a per-
mutation of $X^{1}$ . ASP’s play an important role in recursive constructions for PDF’s and vice
versa [1] [11] [12].

Block size 4
We begin with two direct constructions.

Theorem 9 let $p=12t+1,$ $t\geq 1$ be a prime and let $\alpha$ be a primitive root of $Z_{p}$ .
(i) ([3] [13]) If $p\neq x^{2}+36y^{2}$ for any integers $x$ and $y$ then

[$0,a^{2i}$ ,oc4$t+2i\alpha 8t+2i$] $i=0,1,$ $\ldots,$ $t-1$ (7)

is a (p,4,1) DF in $Z_{p}$ .
(ii) ([5]) If $\alpha\equiv 3mod 4$ (and such an $a$ always exists in $Z_{p}$ ) then

$[0,a^{4i},a^{4i+3},\alpha^{4i+6}Ji=0,$
$\ldots,$ $3t-1J$

$[0,a^{4j+1},\alpha^{4t+4j+1},\alpha^{8tiAj+1}]j=0,$
$\ldots,$ $t-1J$ (8)

$fO,p,2p,3p]$

form a $(4p,4,1)$ DF in $Z_{4p}$ .

The next two constructions will exhibit the relationship between PDF’s and ASP’s.

Theorem 10 ([3] [13]) $1xtD_{i}=[0,a_{i},b_{j},c_{i}],$ $i=1,$ $\ldots$ , $t$ be a PDF in $Z_{12t+1}$ and let $X^{1},$ $X^{2},$ $X^{3}$

be an ASP of order $m=2r+1,$ $r\geq 2$ and length 3. Then

4
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(i) For $i=1,$ $\ldots$ , $t$ and $j=1,$ $\ldots$ , $m$ th$e6tm$ positive differences in th$e$ family
$\Delta_{mi-m+j}=[0_{J}na_{j}+a_{j},mb_{j}+\beta_{jJ}nc_{j}+\gamma_{i}]$ (9)

cover the set $[r+1,r+2, \ldots , r+6\iota m]$ . Here $a,\beta$ and $\gamma$ are the m-vectors $X^{1},$ $X^{1}+X^{2}$ ,
$X^{1}+X^{2}+X^{3}$ , respectively.

(ii) For $i=1,$ $\ldots$ , $t$

$X_{i^{1}}=(-c,a-c,-b,b-c,a-b,-a,a,b-a,c-b,b,c-a,c)_{j}$

$X_{i^{2}}=(c-b,c,b-a,c-a,b-c,a-c,-b,a,b,-c,a-b,-a)_{j}$ (10)
$X_{t^{3}}=(b-a,-b,a-c,a,c,c-b,b-c,-c,-a,c-a,b,a-b)_{j}$

the $(12t+1)$-vectors $X^{j}=(0X^{j_{1}}$ , . . . , $X^{j_{t}}),$ $j=1,2,3$ form an ASP of order $12t+1$ and
length 3.

In order to utilize products of the form (9) for constructing new difference fammilies we need
to find additional base blocks with differences covering the set $[1, \ldots, r]$ and possibly
$[r+6\iota m+1, \ldots , 6\alpha]$ for some $x\geq 1$ .

We list now the known recursive constructions for $1\leq m\leq 25$ .

Theorem 11 Let $D(t)=[D_{1}, \ldots , D_{t}]$ be a PDF and let $\Delta(mt)=[\Delta_{1}, \ldots , \Delta_{nu}]$ be defined by
(9), where $m=2r+1$ and $a=(-r,-r+1, \cdots , -1,0,1,\ldots, r-1,r)$ . Then
1. For $r=2$

$\beta=(- 2,0,2,- 1,1)$ , $\gamma=(0,- 2,1,- 1,2)$

$D(5t+1)=\Delta(5t)\cup[0,1,30t+4,30t+6J$

is a PDF in $Z_{60t+13}$ .
2. For $r=3$

$\beta=(- 1,- 2,- 3,3,2,1,0)$ , $\gamma=(- 2,1,- 3,0,3,- 1,2)$

$D(7t+1)=\Delta(7t)\cup[0,2,3,42t+7J$

is a DF in $Z_{84t+13}$.
3. For $r=6$

$\beta=(- 4,- 5,- 1,- 2,3,- 6,6,5,1,- 3,0,2,4)$

$\gamma=(- 1,- 5,- 6,3,- 3,- 4,4,2,5,- 2,6,1,0)$

$D(13t+1)=\Delta(13t)\cup$ [0,1,4,6]

is a PDF in $Z_{156t+13}$ .
4. For $r=9$

$\beta=(- 6,- 7,1,- 2,- 3,5,3,- 9,- 4,7,- 8,0,- 5,9,- 1,6,2,4,8)$

7
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$\gamma=(- 2,1,- 8,- 9,3,- 1,- 5,- 6,5,2,- 7,7,- 3,8,- 4,6,0,9,4)$

$D(19r+4)=\Delta(19t)\cup[0,1,7,x+23Ju[0,2,x+14,x+19J$

$\cup[0,3\nearrow+13,x+21]\cup[0,4,x+15_{r}x+24J,$ $x=114r$

is a PDF in $Z_{228t+49}$ .
5. For $r=11$

$\beta=(0,- 2,1,- 7,2,- 6,- 1,- 5,4,- 10,- 11,- 9,6,- 4,- 8,- 3,11,8,10,3,5,7,9)$

$\gamma=(9,5,4,- 10,0,- 7,10,- 9,8,- 4,- 3,1,- 5,- 11,- 8,2,6,- 2,11,- 6,7,- 1,3)$

$D(23t+5)=\Delta(23t)\cup[0,1,8_{r}\kappa+28J\cup[0,2,x+14\nearrow+24J\cup$

$[0,3\nearrow+18,x+\dot{2}9J\cup[0,4,x+17,x+23J\cup[0,5,\kappa+21\nearrow+30],$ $x=138t$

is a PDF in $Z_{276t+61}$ .
6. For $r=12$

using $\alpha,\beta,\gamma$ and $\Delta(5t)$ from 1 to obtain $\Delta(25t)$

$D(25t+5)=\Delta(25t)\cup[0,1,x+18_{r}x+29J\cup[0,4_{r}\mathfrak{r}+20,x+26]$

$\cup[0,3,8\nearrow+27J\cup[0,7,x+21_{r}\kappa+30J\cup[0,10,12_{r}\kappa+25J,$ $x=150r$

is a PDF in $Z_{300t+61}$ , and

$D(25t+6)=\Delta(25t)\cup[0,1\nearrow+34_{r}\kappa+36J\cup[0,3,x+18,x+29J$

$\cup[0,4\nearrow+20,x+28J\cup[0,5,x+22_{r}\kappa+32J$

$\cup[0,6,x+19_{r}\kappa+31J\cup[0,7_{r}\mathfrak{r}+21,\kappa+30],$ $x=150t$

is a PDF in $z_{3\alpha\}t+79}$ .

Proof Use (9) to check that the required sets are covered by all differences from the base
blocks.

We note that the constructions 2,$5,6b$ are new and that 1,$3,4,6a$ have been known [11]. Th$e$

ASP with $r=11$ has been found by P.J. Laufer.

lf we apply all methods listed in Sections 2, 3 and 4 and add the computer generated DF’s
from [5] we obtain the following results for $1\leq t\leq 50$ :

$(12t+1,4,1)$ PDF

$t=1,4- 8,14,21,23,26,28,30- 31,36,41$

$(12r+1,4,1)$ DF

$t=1,3- 10,14- 15,19- 21,23,26,28- 31,34- 36,38,40- 41,43,45,50$

$(12c+4,4,1)$ DF
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$t=3- 6,12,20,24,30,32,36,43$ .

Block size 5
As before, two direct constructions are known.

Theorem 12 Let $p=20t+1,$ $t\geq 1$ be a prime and let $a$ be a primitive root of $Z_{p}$ .
(i) ([3] [13]) If $p\neq x^{2}+\iota\circ\Phi^{2}$ for any integers $x$ and $y$ then

[$a,a,a,\alpha,\alpha 2t4\iota+zst+2i12t+2i16;+v_{]}i=0,1,$
$\ldots,$ $t-1$ (11)

is a $(p,5,1)$ DF in $Z_{p}$ .
(ii) ([5]) If $\alpha^{r}+1=\alpha^{s}(\alpha^{r}-1)$ for some odd integers $r$ and $s$ then

$[0,a^{2i},a^{2i+r},\alpha^{2t+2i},a^{2t+2i+r}]i=0,1,$
$\ldots,$ $t-1$ (12)

$[0p,2p,3p,4p]$

form a $(5p,5,1)$ DF in $Z_{5p}$ .

Conceming PDF’s with blocks of size 5 and ASP of length 4, results can be proved which
are similar to those stated in Theorem 10 [1]. They can be used to derive the following construc-
tion.

Theorem 13 Let $D(r)=[D_{1}, \ldots , D_{l}]$ be a PDF in $C_{20t+1}$ and let $D(s)=[D_{1}, \ldots , D_{s}]$ be a
DF in $C_{20s+1}$ . Then a DF $D(r)$ exists in $C_{20r+1},$ $r=20st+s+t$ and $D(r)$ is perfect whenever
$D(s)$ is perfect.

Proof Use $D(t)$ to construct an ASP of length 4 and order $m=20t+1[1]$ . With help of this
ASP construct the blocks $\Delta(m)$ in a similar way as in (9). Then $D(r)=\Delta(m)\cup D(s)$ . $\square$

PDF’s with $k=5$ can exist only if $t$ is even and $t\geq 6[1]$ . They have been enumerated for
$t=6[9]$ and examples are known for $t=8,10,732,974$, etc.

Difference families are known for the following values of $t,$ $1\leq t\leq 50$ :
$(20r+1)$ PDF

$t=6,8,10$

$(20t+1)$ DF

$t=1- 3,6,8,10,12,14,21- 22,30,32- 33,35,41,43- 44$

$(20t+5)$ DF

$t=3- 5,7,9- 10,13,15,18,22,24- 25,27- 28,30,34,37,39- 40,42- 43,45,48- 50$ .

7
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Open Problems
1. Does there exist a $(12t+1,4,1)$ DF for every $t\geq 3$? Can all of th$ese$ DF’s be perfect if

$t\geq 4$?

2. Does there exist a $C(v,4,1)$ for every $v\neq 16,25$ and 28?

3. Does there exist an ASP of length 3 for every order $m\geq 5,$ $m\neq 9,10$?

4. Do there exist $C(v,5,1)$ for $v=81$ and 85?

5. Construct examples of PDF’s $D(t)$ for $k=5$ and even $t\geq 12$ .
6. Construct examples of ASP of length 4 for orders $m\geq 7$ .
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