可換環の微分作用素

広大 学校教育 石橋康徳
(Yasunori Ishibashi)

§1 準備

長を体とし，Rを長-代数とする。長積形写像$D: R \to R$と$a \in R$に対して，$[D, a] = Da - aD$とおく。
$[D, a]$はRからR自身への長-線形写像である。RからR自身への長-線形写像全体のつくるR-加群を$\text{Hom}_R(R, R)$と表し，その部分加群$\text{Diff}^m(R)$を次のように帰納的に定義する。

$\text{Diff}^m(R) = 0$ $(m < 0)$。

$\text{Diff}^m(R) = \{ D \in \text{Hom}_R(R, R) \mid [D, a] \in \text{Diff}^{m-1}(R), \forall a \in R \}$ $(m \geq 0)$ とおく。$\text{Diff}^m(R)$の元をR上のm階のR-微分作用素（あるいは単にm階の微分作用素）という。

次のことが成り立つ。

(1) $\text{Diff}^0(R) = \text{Hom}_R(R, R) \cong R$。

(2) $\text{Diff}^1(R) = R \oplus \text{Der}(R)$, \text{Der}(R) は$R$上の長-導
分のつくる加群を表す。

(3) $\text{Diff}^m(R) \subset \text{Diff}^{m+1}(R)$。

(4) $D \in \text{Diff}^m(R)$, $D' \in \text{Diff}^m(R)$ に対して, $DD' \in \text{Diff}^{m+1}(R)$, $[D, D'] = DD' - D'D \in \text{Diff}^{m+1}(R)$。

(5) $\text{Diff}^\infty(R) = \bigcup_{m \in \mathbb{Z}} \text{Diff}^m(R)$ とおくと, $\text{Diff}^\infty(R)$ は長-代数で, R を部分環として含む。

長-線形写像 $D : R \to R$ が, R 上の m-階の長-導分 (あるいは単に m-階の導分) であるとは,

\[\forall a_0, a_1, \ldots, a_n \in R \text{ に対して,} \]

\[D(a_0a_1 \cdots a_n) = \sum_{i=0}^{n} (-1)^{i} \sum_{\xi_1 \prec \cdots \prec \xi_i} a_{\xi_1} \cdots a_{\xi_i} D(a_0 \cdots \hat{a}_{\xi_1} \cdots \hat{a}_{\xi_i} \cdots a_n) \]

が成り立つときをいう。m-階の長-導分全体のつくる $\text{Hom}_R(R, R)$ の部分加群を $\text{Der}^m(R)$ と表す。$\text{Der}^0(R) = 0$, $\text{Der}^1(R) = \text{Der}(R)$ である。$\text{Der}^m(R) = 0$ ($m < 0$) とおく。

$\text{Diff}^m(R)$ と $\text{Der}^m(R)$ の関係は次の通りである。

(6) 長-線形写像 $D : R \to R$ に対して,

\[D \in \text{Diff}^m(R) \iff D - D(1) \in \text{Der}^m(R). \]

(7) $\text{Der}^m(R) = \{ D \in \text{Diff}^m(R) \mid D(1) = 0 \}$。

(8) $\text{Diff}^m(R) = R \oplus \text{Der}^m(R)$。

今後, 長は標数 0 の体を表すことにする。

$\text{Diff}^m(R)$ の任意の元の積 $D_1 \cdots D_n (D_1, \ldots, D_n \in \text{Diff}^1(R))$ の有限和の形に表されるとき, $\text{Diff}^m(R)$ は $\text{Diff}^1(R)$ で生成され
れるという。また、任意の正整数 \(m \) に対して、\(\text{Diff}^m(R) \) が \(\text{Diff}'(R) \) で生成されるととき、\(\text{Diff}^\infty(R) \) は \(\text{Diff}'(R) \) で生成されるという。次のことか成立つ。

(9) \(R \) を上のアフィン環とし、\(\mathfrak{p} \) を \(R \) の素イデアルとする。\(R (R \mathfrak{p}) \) が正則環ならば、\(\text{Diff}^\infty(R) (\text{Diff}^\infty(R \mathfrak{p})) \) は、\(\text{Diff}'(R) (\text{Diff}'(R \mathfrak{p})) \) で生成される（cf. [2]）。

(10) \(R = \mathbb{R}[x_1, \ldots, x_s] / J \) とおく。このとき、\(\text{Diff}^m(R) \) の元と \(\{ D \in \text{Diff}^m(\mathbb{R}[x_1, \ldots, x_s]) \mid D(J) \subseteq J \} \) の元とは自然な対応で 1 対 1 に対応する。\(J = (x_1^2 + \cdots + x_s^2) \)の場合を考えてみよう。

\[
D = (x_1 - x_2 - \cdots - x_s)^2 \frac{\partial}{\partial x_1} + (-x_1 + x_2 - \cdots - x_s)^2 \frac{\partial}{\partial x_2} + \cdots + (-x_1 - \cdots - x_{s-1} + x_s)^2 \frac{\partial}{\partial x_s} + 2 \sum_{i=1}^{s-1} 3x_i \frac{\partial}{\partial x_i}
\]

とおくと、\(D \in \text{Diff}^2(\mathbb{R}[x_1, \ldots, x_s]) \) で、\(D(J) \subseteq J \) である。したがって、\(D \in \text{Diff}^2(R) \)。一方、\(D_1, D_2 \in \text{Der}(R) \) に対して、\(D_1 D_2(x_i^2) \in (x_1, \ldots, x_s)^2 \) である。

したがって、\(D \in \text{Diff}'(R) \) \(\text{Diff}'(R) \)。ゆえに、\(\text{Diff}^2(R) \) は \(\text{Diff}'(R) \) で生成されない。

(11) \(R = \mathbb{R}[x_1, x_2, x_3] / (x_1^3 + x_2^3 + x_3^3) \) とおく。\(\text{Diff}^\infty(R) \) は有限生成 \(\mathbb{R} \) 一様環でもないし、左ネーター環でも右ネーター環でもない（cf. [1]）。
中井予想：
R を \mathbb{R} 上のアフィン整域とし，\mathfrak{p} を R の素イデアルとする。$\text{Diff}^\infty(R_{\mathfrak{p}})$ と $\text{Diff}'(R_{\mathfrak{p}})$ で生成されるならば，$R_{\mathfrak{p}}$ は正則局所環である。

Zariski-Lipman 予想：
R を \mathbb{R} 上のアフィン整域とし，\mathfrak{p} を R の素イデアルとする。R への群 $	ext{Der}(R_{\mathfrak{p}})$ が自由加群ならば，$R_{\mathfrak{p}}$ は正則局所環である。

中井予想と Zariski-Lipman 予想とは密切な関連があり，中井予想が真であれば，Zariski-Lipman 予想が真であることが証明されている (cf. [8])。中井予想に関して次の結果を得た (この場合どのときは，$\dim R = 1$ の場合に予想が正しいことが示されているだけである [6])。

定理 1 ([4], Theorem 4). R は代数閉体 \mathbb{R} 上の次数環で，2次元の完乗環とする。このとき，$\text{Diff}^\infty(R)$ が $\text{Diff}'(R)$ で生成されるならば，$R \cong \mathbb{R}[x_1, x_2]$ である。

定理 2 ([5], Theorem 2.3). 有限群 $G \subset \text{GL}(n, \mathbb{R})$ が多項式環 $R = \mathbb{R}[x_1, \ldots, x_n]$ に自然に作用しているとする。このとき，$\text{Diff}^\infty(R^G)$ が $\text{Diff}'(R^G)$ で生成されるならば，
\(R^G \) は多項式環に同型である。

定理 3 ([5], Theorem 3.3). \(S \) を体 \(K \) 上のアフィン整域, \((S) \in \text{Spec}(S) \), \(R = S_{(S)} \) とする。\(G \) は \(\text{Aut}(R) \) の有限群で, その元によって与えられる \(R \) の剰余体の自己同型はすべて恒等変換とする。このとき, \(\text{Diff}^0(R^G) \) と \(\text{Diff}'(R^G) \) で生成されるならば, \(R^G \) は正則局所環である。

本講演では定理 1 の証明を中心に述べる。

§2. 定理 1 の証明

本節では定理 1 の証明の概略を解説する。詳細については, [4] を参照して下さい。

\(R = \bigoplus_{i=0}^\infty R_i \) を \(K \) 上の有限生成次数整域とする。\(R_0 = K \), \(R = \bigoplus_{i=0}^\infty R_i \) として, \(R = K[x_1, \ldots, x_n]/\mathfrak{p} \) (\(\mathfrak{p} \) は全次素イデアル) と表す。

\(R \) の微分作用素 \(D \) が, 任意の \(x \) に対して \(D(R_i) \subseteq R_{i+1} \) をみたすとき, \(D \) を \(l \) 次の全次の微分作用素という。オイラー
一導分 \(I = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} \) を考える。イデアル \(\mathfrak{p} \) は全次であるから, \(I(\mathfrak{p}) < \mathfrak{p} \) である。したがって, \(I \in \text{Diff}'(R) \) である。

\(I \) は \(0 \) 次の全次の微分作用素である。\(n \) 階の微分作用素で,
数 l 次の葉層微分作用素であるもの全体のつくる 物空間を $\text{Diff}^m_l(R)$ と表し、$\text{Diff}^\infty_l(R) = \bigcup_{m \geq 0} \text{Diff}^m_l(R)$ とおく。

$$\dim R \geq 2, \quad X = \text{Spec}(R), \quad X_0 = X - \{m\} (m = \bigoplus_i R_i),$$

$\overline{X} = \text{Proj}(R)$ とおく。X_0 上の m 段の l-微分作用素の芽の層を $\text{Diff}^m(X_0)$ と表し、$\text{Diff}^\infty(X_0) = \bigcup_{m \geq 0} \text{Diff}^m(X_0)$ とおく。また、X_0 上の m 段の l-微分作用素 D で、$[1, D] = lD$ をみたすようなものの芽の層を $\text{Diff}^m_l(X_0)$ と表す。自然な射影：$X_0 \rightarrow X$ を π と表し、$\Delta^m_l = \pi^* (\text{Diff}^m_l(X_0))$ とおく。

補題 1. $\text{depth} R_m \geq 2$ のとき、次のことが成り立つ。

(i) $H^0(X_0, \text{Diff}^\infty(X_0)) \cong \text{Diff}^\infty_l(R)$.
(ii) $H^0(\overline{X}, \Delta^m_l) \cong \text{Diff}^m_l(R)$.
(iii) $\Delta^m_l \cong \Delta^m_0 \otimes \mathcal{O}_{\overline{X}}(l)$.

$$\sigma_1 = \Delta^1_0, \quad \sigma_m = \Delta^m_0 / \Delta^{m-1}_0 \ (m \geq 2)$$

から、次のようなコホモロジー群の完全列を得る。

$$0 \rightarrow \Delta^{m-1}_l \rightarrow \Delta^m_l \rightarrow \sigma_m \otimes \mathcal{O}_{\overline{X}}(l) \rightarrow 0$$

$$\text{diff}^{m-1}_l(R) \quad \text{diff}^m_l(R)$$

$$0 \rightarrow H^0(\overline{X}, \Delta^{m-1}_l) \rightarrow H^0(\overline{X}, \Delta^m_l) \rightarrow H^0(\overline{X}, \sigma_m \otimes \mathcal{O}_{\overline{X}}(l))$$

$$0 \rightarrow H^1(\overline{X}, \Delta^{m-1}_l) \rightarrow H^1(\overline{X}, \Delta^m_l) \rightarrow H^1(\overline{X}, \sigma_m \otimes \mathcal{O}_{\overline{X}}(l))$$
補題 2. $\overline{X} = \mathbb{P} \omega j(R)$ は正則スキームとする。T を \overline{X} の接ベクトル束とすると, 次のような \overline{X} 上の層の完全列が存在する。

$$0 \rightarrow \sigma_{n-1} \xrightarrow{\theta} \sigma_n \rightarrow S^n(T) \rightarrow 0.$$ ただし, θ はオイラー導分 I による乗法である, $\sigma_0 = \sigma_{\overline{X}}$ である。

層の完全列

$$0 \rightarrow \sigma_{n-1} \otimes \sigma_{\overline{X}}(l) \rightarrow \sigma_n \otimes \sigma_{\overline{X}}(l) \rightarrow S^n(T) \otimes \sigma_{\overline{X}}(l) \rightarrow 0$$ から, 次のようなコホモロジー群の完全列を得る。

$$0 \rightarrow H^0(\overline{X}, \sigma_{n-1} \otimes \sigma_{\overline{X}}(l)) \xrightarrow{\phi_{n,l}} H^0(\overline{X}, \sigma_n \otimes \sigma_{\overline{X}}(l))$$

$$\xrightarrow{\psi_{n,l}} H^0(\overline{X}, S^n(T) \otimes \sigma_{\overline{X}}(l)) \rightarrow H^1(\overline{X}, \sigma_{n-1} \otimes \sigma_{\overline{X}}(l))$$

(13) さらに

$$H^1(\overline{X}, \sigma_n \otimes \sigma_{\overline{X}}(l)) \rightarrow H^1(\overline{X}, S^n(T) \otimes \sigma_{\overline{X}}(l))$$

$$\rightarrow H^2(\overline{X}, \sigma_{n-1} \otimes \sigma_{\overline{X}}(l)) \rightarrow \cdots.$$ で, 次数環 R は完交環とする。R は有次の多項式から成る正則列 f_1, \ldots, f_{n-2} で生成される。代数曲線 $\overline{X} = \mathbb{P} \omega j(R)$ は特異点をもたないとし, \overline{X} の接ベクトル束 T の双対束を $\omega_{\overline{X}}$ と表す。このとき, $\omega_{\overline{X}} \cong \sigma_{\overline{X}}(a)$ ($a = \sum_{j=1}^{n-2} \deg(f_j) - n$) である。このとき, 次のことことが成り立つ。
補題 3. $a > 0$ とする。完全列 (13) において、$l \geq ma+1$ ならば、Ψ_m, l は全射である。また、$l \leq ma$ ならば、Φ_m, l は零写像である。したがって、$l \leq ma$ ならば、Φ_m, l は同型である。

定理 1 の証明には、さらに次の結果を使う。

補題 4 ([13]). $R = \bigoplus_{n=0}^{\infty} R_n$ は 2 次元の正規変数環で、$
\mu = \bigoplus_{n=1}^{\infty} R_0 \oplus \mu_0$ に特異点をもつとする。このとき、(R, μ) の循環特異点 (cyclic quotient singularity) でないならば、R の脊次導分で次数が正でないものはオイラール導分である。

定理 1 の証明の概略。$\text{Diff}^\infty(R)$ が $\text{Diff}'(R)$ によって生成されるので、R は正規である ([4], Theorem 3)。R_μ ($\mu = \bigoplus_{n=1}^{\infty} R_0$) が正則であることを示せばよい。$R$ が μ に特異点をもつと仮定してみよう。

(R, μ) が巡回商特異点のとき、R は次数が負の脊次導分をもたない (cf. [13])。しかし、この場合には R の脊次微分作用素で次数が負のものを構成できる。したがって、$\text{Diff}^\infty(R)$ は $\text{Diff}'(R)$ で生成されない。これは仮定に反する。
(R, m) が巡回商特異点でないとき，$\dim \overline{x} = 1$ であるから完全列 (12) において $H^2(\overline{x}, A^{m-1}_X) = 0$ となる。リーマンロッホの定理により，$l > ma$ （a は補題 3 の前で定められた整数）ならば，$H^1(\overline{x}, A^{m-1}_X) = 0$ したがって，$l \geq ma + l$ ならば，

$H^0(\overline{x}, O_X(l)) \cong \text{Diff}^m(R)/\text{Diff}^{m-1}(R)$。

一方，完全列 (13) から

$\text{Im}(\Psi_{m, ma+1}) = H^0(\overline{x}, O^{m+1}_X(\text{ma+1}))$

$= H^0(\overline{x}, O_X(1)) \neq 0$，

$\text{Im}(\Psi_{m, ma+1}) \cong H^0(\overline{x}, O^{m+1}_X(\text{ma+1}))/H^0(\overline{x}, O^{m+1}_X(\text{ma+1}))$

$\cong \text{Diff}^m_{ma+1}(R)/(\text{ID} \text{Diff}^{m-1}_{ma+1}(R) + \text{Diff}^{m-1}_{ma+1}(R))$。

R の有限導分で次数が正でないものはオイラー導分である（補題 4）。したがって，

$\text{Diff}^m_{ma+1}(R) \supset \text{Diff}^m_{ma+1}(R) \wedge \{\text{Diff}'(R) \text{で生成される微分作用素}\}$。

以上に，$\text{Diff}^m(R)$ は $\text{Diff}'(R)$ によって生成されない。これは仮定に反する。以上で，$a > 0$ の場合に矛盾を導いたが，$a \leq 0$ の場合の議論はもっと簡単になる。詳細については，[4] を参照して下さい。

§3. 補遺
定理 2, 3 の証明には次の補題が鍵になる。

補題 5 ([5], Proposition 1.2). \(R \rightarrow \mathbb{R} \) と一意平行とし、\(G \) を \(\text{Aut}(R) \) の有限群とする。\(G \) の\(R \)への作用は自明とする。
\(X = \text{Spec}(R) \) の閉集合 \(Z \) で次の二条件をみたすものか存在すると仮定する。

(i) 任意の \(f \in Z \) に対して、\(\text{depth } R_f \geq 2 \).
(ii) 自然な射：\(X \to Y = \text{Spec}(R^G) \) は \(Z \) の外ではエター
ルである。

このときには、剰余写像：\(\text{Diff}^m(R)^G \to \text{Diff}^m(R^G) \) は同型
である。ただし、\(\text{Diff}^m(R)^G \) は \(m \) 階の \(G \) 一変数微分作用素
全体のつく \(R^G \) 一加群を表す。

定理 2, 3 の証明の詳細については、[5] を参照して下さ
い。

最後に、可換環の微分作用素に関するいくつかの研究を
あげておくことにする。

(i) \(X \) が 3 次元アフィン空間の錐の場合 ([1], [9], [12])。
(ii) \(X \) が特異点もつ代数曲線の場合 ([10], [11], [15])。
(iii) \(X \) が非特異代数多様体の場合 ([14])。
(iv) 微分作用素の延長について ([16]).
References

