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AN INTEGRAL REPRESENTATION THEOREM FOR THE HELMHOLTZ EQUATION

Noriaki SUZUKI
(RE&XE B¥H &ARMKH)
§1. The purpose of this paper is to show the integral representation
for positive solutions of the Helmholtz equation (A-I)f = O on
(O,w)anN_n by a passsage to the theory of the heat equation. In the case

n = 0, it is well-known (see for example [2] and [3]) that every positive

solution has an integral representation
(1) £(x) = | exp(<X,A>)du(A)

where u 1is a positive measure on the sphere. We give here a new proof

of this fact as an illustration of our method. Let f > 0 be a solution

of Af =f on RN. Then the function u(X,t) = etf(X) satisfies Au =
%%— on RNXR. Hence by the integral representation theorem for positive

solutions of the heat equation ([1, p.374]) there is a positive measure

U on RN such that
2
u(X,t) = [ cexp(<X,A> + t]a] )du(a).
R

Since 0 < (A—I)zf(X) = f(ﬂA“z—l)zexp(<X,A> + t(ﬂA"z—l))du(A), we have
supp(p) C SN—l, so that (1) is obtained.
In section 2 we describe our main theorem for general n .2 1. After

giving the integral representation theorems for the heat equation in
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section 3, we prove the theorem in section 4. Finally we make a remark

about the minimal Martin boundary at infinity with respect to the

Helmholtz equation.

§2. Given integers N and n with 1 £n £ N, let D = (0,<>°)n><RN-n =

{X = (Xl’XZ"' ,XN) € RN; X > 0 for i = 1,2,;. ,n}. -The Green function

of the Helmholtz equation A - I on D 1is given by

© n N
-t
G(X,Y) = [ e [ i {w(xi—yi,t) - w(xi+yi,t)} T w(xi—yi,t)]dt
0 i=1 i=n+1

A
o

where w(x,t) = (4ﬂt)_1/2exp(—x2/4t) if t>U, and =0 if t

‘Now, for each A = (al,.. ,aN) € 9D, we define

5
H (X,A) = ( I —)G(X,Y){,_
1 iet(a) Vi Y=A

where T(A) = {i; 1 £ i £n and a; = 0}.

For every subset I C {l,2... ,n}, we put Zl ={1,2,.. ,n} - % and

S. = {A e’SN_l; a, = 0 for any i € I and a; > 0 for any 1i € Zl}.

X

For each A e.ﬁr)SN_l, we also define

N

HZ(X’A) = .H X, .H s;nh(aixi) . I exp(aixi) if A e SZ'
: ielX 1621 i=n+1
Observe that Hj("A)’ j = 1, 2, are positive solutions of the

Helmholtz equation on D.

We now state the theorem in this paper.
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Theorem. For every positive solution f of the Helmholtz equation on

D = (O,w)anN_n, there are unique Borel measures uy on 3D and By on
Dn SN_1 such that

(2) £(X) = [ Hj(X,A)du (&) + [ Hy(X,A)du,(A).
Furthermore if f is continuous on D then dpl(A) = f(A)do (A), where

do(.) is the surface measure on 9dD.

§3. In this section we give integral representation theorems for the
heat equation. Following [1], a solution of the heat equation will be
said to be parabolic.

For x, te R and a z 0, we put

w(x-a,t) - w(x+a,t) if a > U

k(x,t,a) =
-’tiw(x,t) (=0 if t=0) if a=0
and
. 2 ,

sinh(ax)exp(ta™) if a > 0

k*(x,t,a) =
X if a = 0.

n _N-n
Let D = (0,0) xR as before. For each (X,t) e Dx(~w,x) and

(A,s) elﬁx[—m,m) we define
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~
n N
I k(x.,t-s,a.) I  w(x,-a,,t-s) if s € R.
. i . i i
i=1 i=n+l1
K((X,t),(A,8)) =<
n N 2
I k*(x.,t,a.) I exp(a.,x,+ta,) if s = -o=.
. i . i1 i
i=1 i=n+1
-~

The following was proved in [4, Theorems 2.2 and 3.4] in the case

1 (see also [5]), and a similar proof can be carried out for arbitrary

=]
1]

1 so that we have

=1
[\

Proposition 1. For évery positive parabolic function u on Dx(0,x),

there is a unique Borel measure p on 9(Dx(0,»)) such that
u(X,t) = [ K((X,t),(4,s))du(4,s).

In particular if u is continuous on DX [0 5 ) then du(A,s)
u(A,s)do(A,s), where do(.,.) is the surface meaéure of 3(Dx(0,»)), and
if u is continuous on Dx(0,) then du(A,s) = u(A,s)do(A)ds on

9aDx(0,»), where do(.) dis the surface measure on 3D.
By the Appell transform the integral representation on Dx(-«,0) was
given in [4, Theorem 4.1] (in the case n = 1). Since this method is

available for arbitrary n 2 1, we also see

Proposition 2. For every positive parabolic function u on Dx(-»,0)

there is a unique Borel measure yu on 9Dx(-»,0)UDx{-»} such that
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(3) u(X,t) = [K((X,t),(A,s))du(A,s).

In particular if u is continuous on D x(-w,0) then du(A,s) =

u(A,s)do(A)ds on 3Dx(-=,0).

We remark here that the second assertion is deduced from the last
assertion in Proposition 1 by applying the Appell transform.

Before returning to the Helmholtz equation, we make an observation on
the Martin boundary of Dx(-»,0) with respect to the heat equation. (For

details, we refer to [l, p.262—383]). Let A1 = (al,az,_.. ,a,.) with a;

N
=1, 15isn and =0, n+l1SisN. Then ((4,,0),D%(~=,0)) is a Martin
point set pair ([1, p.359]). By the same manner as in [1, p-374-375, in

the case N = n = 1] we see that the Martin boundary SM(DX(-oo,O)) for

this pair is 8Dx(-»,0)UDx{-w} U{Om} and the Martin kernel is given by

K((X,t),(A,s))

KeC0L0), (008)) = %03, (hea))

for (A,s) € 3Dx (0 ,0) U Dx{—o} and K*((X,t),Ow) = 0. In the Martin
topology, (Y,r) € Dx(-—,0) tends to (A,s) e Dx(~»,0) if and only if‘
(Y,r) » (A,s), (Y,r) tends to (A,-») € Dx{-o} if and only if r » -«
and Y/-r > A, and (Y,r) tends to Ow if and only if r » 0 or
jY|/(1-x) » ». Thus, on 3Dx(-»,0) the Martin topology coincides with
the Euclidean topology. Similarly to [l, p.367], we also see that O
is the only non-minimal Martin boundary point. If u is positive

parabolic on Dx(-=,0) and pfu(Al,O) < o (the parabolic fine limit at
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(AI;O), ctf. [l, p.359]), then there is a unique Borel measure ,* on

a™M(Dx(-=,0)) with [du = pfu(Al,O) such that

(4) u(X,t) = [R*¥((X,t),(A,s))dp*(A,s).

§4. In this section we give a proof of the theorem. Now, let f > 0
be a solution of Af =f on D = (O,w)anN~n.

We first assume that f is cohtinuous on ‘5. Then the function
u(X,t) = etf(X) is continuous on _)5><(-°°,‘0) and parabolic on " Dx(-%,0).

By Proposition 2, there is a Borel measure My on D (from now on we

identify Dx{-»} with D) such that

0
(5) u(X,t) = [[ K((X,t),(A,s))e f(A)dsdo(A) + JRCK, ), (8, =) )du, (A).

—00

An elementary culculation shows that for each A e 3D

-t 0 *_
(6) T R(X,1),(A,80)e%ds = [ eTK((X,1),(4,0)dt = K, (X,A),

=00

which also implies that e_th((X,t),(A,—w))duz(A) is independent of t

and is a solution of Af = f. It follows that supp(pz) C ﬁ'r]SN_l, for

o
]

(0-D)% [ R((X,1),(A,~=))dp, (A)
D
1)

[_AP-1K(E, 1), (A=) (4).
D
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Since for each A € D N SN—1

(8) ' lim K((X,t),(A,~)) = H,(X,A) (increasingly),

t40
we have the second part of the Theorem by letting t 4 0 in (5).

In the general case, we put

)

s X

n+l’"”

fm(X) = f(x1+l/m,x2+1/m,.. ,xn+l/m,x N

and um(X,t) = etfm(X) for each m =2 1. Then fm is continuous on
D and satisfies the Helmholtz equation on D. Hence by (4) and the above

- -1
proof, there exists a Borel measure My o On Dn SN such that
. b

e £, (K) = [RH((X,0),(A,8))duE (A,8) + [RX((X, 1), (A,me))dis | (A)
(9)

= J[RQX, 1), (4,8))e%E, (A)dsdo(A) + [K((X,t),(A,==))du, (A),

- s * =
where pi‘f,m = K((Al,O),(A,s))e fm(A)dst(A) and uz,m

Y 1 Pf = 1l t =
K((Al,O),(A, ))duz,m(A). Since um(Al,O) llmt‘m e fm(Al) fm(Al)

[oo]

is bounded in m, (p’{ m)m=l (i =1, 2) is a wvaguely bounded sequence of
3

positive measures on the Martin boundary 3M(D><(—oo,0)), so that we may

assume that this has a vague limit p% (i = 1, 2). Then we see that
=  JN-1
supp(p’i)c DnS and
(10) Lim - [ K((X,£),(A,=))duy ((A) = [ K*((X,t),(A,~=))du,(4).

Now, we denote by pf*l and uf*z the restrictions of the measure ].lfc
s b .
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to 9Dx(-,0) and to D, respectively. We shall show that there is
a measure y; on D such that u?fl(A,s) = K((Al,O),(A,s))esdul(A)ds.

Let Y be an arbitrary continuous function on 3Dx(-»,0) with compact
support and fix -« < Sy < 0. We can easily check that the function
¥(A,8)e’K((4],0),(A,8))/K((4,,0),(A,s )) in  (A,s) is continuous and
has compact support on 9Dx(~»,0) and that there is a constant C =
C(¥,s,) > 0 such that e°K((A;,0),(4,5)) z CK((4;,0),(A,s_)) on

supp(y). Since

> 0 s
£ (A)) 2 gD[w K((A},0),(A,8))e f_(A)do(A)ds

z C [[ K((A},0),(A,s ))f_(A)do(A)ds,
supp(¥)

we may assume that K((Al,O),(A,so))fm(A)d o (A) converges vaguely to a

Borel maesure [i on 9D as m > «, Then

* = 1 *
fdugr) = lim o feduy

]

.S
1m [ VA9 K(A1,00,(859) (4,00, (8,5 ))¢_(A)do(a)ds
K((4,,0),(A,s )
s \ 1 ~
[[ va,s)e K((A1,0), (4 ) oy; (hye )y AP s

Therefore  du¥* = K((AI,O),(A,s))esdul(A)ds, where du (A) =

(K((A],0),(A,5,))) 7 di(a).

Consequently, letting m » «» in (9) and remarking (6) and (10), we
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have
e"£(X) = [[ K((X,1),(4,5))e%dsdy; (A) + [ KH((X,t),(A,==))d(ug*, + 15)(A)
= [ " (X,8)du (A) + [ R((X,0),(A,=))du,(4,8),

where du,(A) = (K((A,,0),(A,==))) 'd(wy* w5)(A). By the same mannmer
3

as in (7) we see supp(uz) cDn SN_l. Hence, as a consequence of (8),

the desired integral representation (2) follows by letting t 4 0. Since

the uniqueness of the representation measures follows from Proposition

2, we obtain our theorem.

§5. It is easily seen that our method is also available for the
operator A-cI (c: real constant) on D. Remark that if ¢ < 0 there
is no positive solution. In the Martin boundary theoretic view point,
our result explains that the minimal Martin boundary of D at infinity
with respect to A-cI (i.e., the set of normalized minimal solutions which
vanish at ail finite boundary points) is homeomorphic to c(SN_lrfﬁ) =
{cA, A€ s¥-1np;.

On the other hand, Landis & Nadirashvili [6] tells us that

{f; Af =0 and f > 0 in DE,f=0 on aDE}

is one dimensional, where E CISN“l is a domain with Lipschitz boundary

and D = {xe RN; X # 0, x/|x] € E}. By these observations it can be

conjectured that the minimal Martin boundary of DE at infinity with
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respect to ‘A - ¢I would be homeomorphic to CE; but we know no other

example which reinforces this conjecture.
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