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ABSTRACT

The TRS (term rewriting system) Working Group of ICOT has been studying applications of
TRSs to the intelligent programming system. As a result, we have implemented a TRS generator
called Metis, an experimental tool with the many functions required for such a system. This
paper describes the features of Metis and several experiments with it.

1. Introduction

A set of rewrite rules is caUed a term rewriting system or TRS. The theory of TRSs has a
wide variety of both theoretical and practical applications. It provides models for abstract data
types, operational semantics for functional programming languages, and inference engines for
automated theorem proving with equality.

The intelligent programming system is an important research topic of Japan’s Fifth Generation
Computer System (FGCS) Project. A lot of evidence suggests that the study of TRSs will
yield key technologies for the intelligent programming system, in particular for specification,
verification, and synthesis of programs. The Institute for New Generation Computer Technol-
ogy (ICOT) organized the TRS Working Group in 1985 to study TRSs theoretically, and for
application to the intelligent programming system.

Metis is the first result of the activity of the working group. It generates a complete TRS from
a set of equations automatically, semi-automatically, or interactively. It is also an experimental
tool with the various functions needed for the study of TRSs.

The kernel function of Metis is the so-called Knuth-Bendix completion procedure. Significantly
improved with better capabilities and operability by the incorporation of many new facilities.
For example, Metis can provide us with several kinds of ordering methods of terms, but the user
can orient an equation with little knowledge of the ordering methods and obtain an appropriate
rewrite rule that does not violate termination of the TRS. If the equation cannot be oriented
to either direction, Metis offers the user several kinds of recipe. It manipulates inequations
as well as equations and provides special handling of associative-commutative operators in the
completion procedure.
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Section 2 describes the basic concept of the TRS. Section 3 introduces the features of Metis in
the general framework, and in Section 4, several concrete examples illustrate how Metis actually
works.

2. Preliminaries

In this section, we will introduce the terminology and notation in this paper and survey well-
known properties of TRSs.

We will deal with finite sequences of the following two kinds of symbols (and parentheses and
commas for ease of reading):

(1) Afinite setF of function symbols, and

(2) A denumerable set $V$ of variables.

We assume the reader is familiar with the concepts of terms, ground terms, occurrences, sub-
terms, substitutions, unifiers, and most general unifiers. In what follows, we will denote the
set of all terms constructed $homF$ and $V$ by 7 $(F, V)$ , and the set of all the ground terms
constructed from $F$ by $\mathcal{T}(F)$ . The notation $t[s]$ represents a term with $s$ as its subterm. In this
context, $[s]$ represents a certain occurrence of $s$ in $t[s]$ . Thus, $t[s’]$ denotes the term obtained by
replacing the occurrence of $s$ in $t[s]$ with $s’$ . Similarly, we will use the notation $t[s_{1},$

$\ldots,$
$s_{n}|$ to

represent a term with $s_{1},$ $\ldots,$ $s_{n}$ subterms, and $t[s_{1}’, \ldots,s_{n}’]$ for the term obtained by replacing
each $s$: in $t[s_{1}, \ldots, s_{n}]$ with $s’.\cdot$ . Substitutions are denoted by the greek letter $\theta$ , possibly with
subscripts and primes.

Definition 2.1

A term rewriting system $(TRS)$ is a finite set of pairs $larrow r$ of terms. An element $larrow r$ of a
TRS is called a rewrite rule. 1
Definition 2.2

Let $R$ be a TRS. A term $t$ is said to be reduced to another term $u$ with respect to $R$, if there
exist a rewrite rule $larrow r$ and a substitution $\theta$ such that $c[\theta(l)]=t$ and $c[\theta(r)]=u$ , denoted by
$t\Rightarrow u$ . We denote the reflexive transitive closure $of\Rightarrow by\Rightarrow*$ I
Definition 2.3

Let $R$ be a TRS. Two terms $u$ and $v$ are said to be convergent (with respect to $R$) if there exists
a term $t$ such that $u\Rightarrow^{*}t$ and $v\Rightarrow {}^{t}t$ . A TRS is said to be confluent if $t_{1}$ and $t_{2}$ are convergent
for any $t$ and for any two reductions $t\Leftarrow t_{1}$ and $t\Rightarrow t_{2}$ . I
Definition 2.4

A TRS is said to $t$erminate if there exists no infinite reduction $t_{1}\Rightarrow t_{2}\Rightarrow\cdots\Rightarrow t_{n}\Rightarrow\cdots$ I

–2–



172

Definition 2.5

A term $t$ is said to be irreducible if there exists no term $u$ such that $t\Rightarrow u$. An irreducible term
$\theta$ such that $t\Rightarrow^{*}s$ is called an irreducible form of $t$ (with respect to $R$) and denoted by $t\downarrow$ . I
If $R$ is a terminating TRS, then every term $t$ has an irreducible form $t\downarrow$ . Moreover, $R$ is confluent
if and only if the irreducible form $t\downarrow$ is unique. In this case, the TRS $R$ is said to be comple $te$

and the irreducible form $t\downarrow$ is called the normal form of $t$ .
Intuitively, a reduction step represents a computation step. Therefore, termination of a TRS
means that every computation process finally stops and a certain result (i.e. an irreducible
form) is obtained, while confluence of a TRS means that the result is unique. For this reason,
completeness plays an important role in the study of TRSs (viewed as computation mechanisms)
and the normal form of a term is sometimes called the value of the term.

Historically, however, the concept of TRS appeared as a decision procedure of word problems
of universal algebra, where the completeness is very significant as well, because the decidability
of the word problems depend on completeness of the TRS obtained by converting equational
axioms to rewrite rules.

Definition 2.6

An equational theory is a set of pairs $t_{1}\simeq t_{2}$ of terms satisfying the following conditions. (We
use the $symbol\simeq for$ this purpose, and the symbol $=$ is taken to mean syntactical identity in
this paper.)

(1) $t\simeq t$ for all terms $t$ .
(2) If $t_{1}\simeq t_{2}$ , then $t_{2}\simeq t_{1}$ .
(3) If $t_{1}\simeq t_{2},$ $t_{2}\simeq t_{3}$ , then $t_{1}\simeq t_{3}$ .
(4) If $t_{1}\simeq t_{2}$ , then $9(t_{1})\simeq\theta(t_{2})$ for any substitution 9.

(5) If $t_{1}\simeq t_{2}$ , then $s[t_{1}]\simeq s[t_{2}]$ . I
Any set $E$ of pairs $l\simeq r$ of terms can be extended to an equational theory by considering the
closure $T(E)$ of $E$ with respect to the above conditions (1)$-(5)$ . In other words, the equational
theory $T(E)$ is the least congruence including $E$. The set $E$ is called an (equational) axiom
system of the equational theory $T(E)$ and an element of $E$ is called an axiom.

The word problem in an equational theory $T$ involves the determination of whether $t_{1}\simeq t_{2}$

for two arbitrary terms $t_{1}$ and $t_{2}$ . Given an equational theory $T$, suppose that there exists a
complete TRS such that $t_{1}\simeq t_{2}$ if and only if $t_{1}\downarrow=t_{2}\downarrow$ for any two terms $t_{1}$ and $t_{2}$ . Obviously,
such a TRS can be viewed as an algorithm to solve the word problem of $T$. Knuth and Bendix
devised a mechanical procedure to convert an axiom system $E$ to a complete TRS which solves
the word problems of $T(E)$ [Knuth 70, Huet 81].
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Before introducing the procedure, let us define critical pairs.

$Definition_{/}2.7$

Let $l_{1}arrow r_{1}$ and $l_{2}arrow r_{2}$ be rewriting rules and $s$ be a non-variable subterm of $l_{2}$ such that $l_{1}$

and $s$ have a most general unifier 9. Let $l_{2}=c[s]$ . The term 9 $(l_{2})$ is called the superposition of
$l_{1}$ on $s$ in $l_{2}$ . The pair $\theta(c[r_{1}])\simeq\theta(r_{2})$ is called a critical pair between $l_{1}arrow r_{1}$ and $l_{2}arrow r_{2}$ . I
We are now ready to introduce the Knuth-Bendix completion procedure.

Procedure 2.8 Knuth and Bendix’s completion

Step $0$ : Set $E$ to be the initially given axiom system. Set $R$ to be empty. Go to Step 1.

Step 1: If $E$ is empty, the current valu$e$ of $R$ is the desired TRS. Otherwise, go to Step 2.

Step 2: Remove a pair $t\simeq u$ from $E$. If the rule $tarrow u$ or $uarrow t$ can be added to $R$ without
violating termination, acquire it as a new rule and go to Step 3. Otherwise, stop; the
procedure is unsuccessful.

Step 3: Remove all the rewrite rules $larrow r$ from $R$ such that either $l$ or $r$ is reducible by the
acquired new rule and append $l\simeq r$ to $E$ instead. Go to Step 4.

Step 4: Append the acquir$ed$ rule to $R$ . Construct all the critical pairs be$twe$en the acquired
rule and all the rules in $R$ (including the acquired rule its$e$lf) and append them to $E$.
For each equation $t\simeq u$ in $E$ , find irreducible forms $t\downarrow$ and $u\downarrow$ with $re$spect to $R$ , an$d$

set $\{t\downarrow\simeq u\downarrow|.t\downarrow\neq u\downarrow, t\simeq u\in E\}$ to be the new $E$. Go to Step 1.

If the procedure terminates successfully, the resulting $R$ is a complete TRS to solve the word
problem of $T(E)$ for the initially given $E$.

3. Term rewriting system generator Metis

Metis is a TRS generator based on the completion procedure described in the previous section.
It has a lot of functions required before, during, and after generation of TRSs for a very user-
friendly system. In this section, we will describe several characteristic features of Metis.

3.1 Well-founded ordering of terms

As can be seen kom the above description, a key point of the completion procedure is ensuring
termination of a TRS. The standard way to assure termination of a system is to introduce a
well-founded order on the objects of the system and show that the operations in the system
always reduce the objects with respect to the order.

Well-founded $orders\prec on\mathcal{T}(F,V)$ with the following properties are usually used on TRSs.

(1) If $t_{1}\prec t_{2}$ , then $9(t_{1})\prec 9(t_{2})$ for any substitution 9.
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(2) If $t_{1}\prec t_{2}$ , then $s[t_{1}]\prec s[t_{2}]$ .
Property (1) is called stability and (2) monotonicit$y$. If there is a monotonic and stable well-
founded order on 7 $(F, V)$ such that $l\succ r$ for every rule $larrow r$, it is obvious that the TRS
terminates. There is alot ofresearch for such ordering methods, such as well-known Dershowitz’s
$re$cursive path ordering [Dershowitz 82]. The original version of the recursive path ordering is
defined on the set $\mathcal{T}(F)$ of ground terms. Here, however, we extend the definition on the set
$\mathcal{T}(F, V)$ of all the terms.

Definition 3.1 Recursive path ordering

Let $<$ be a partial order on the set of function symbols $F$ . The $re$cursive path ordering $\prec$ of
7 $(F, V)$ is then defined recursively as follows:

(1) For a variable $v$ , there are no terms $t$ such that $t\prec v$ .
(2) For a non-variable $te$rm $t=g(t_{1}, \cdots, t_{n})$ and a term $s,$ $s\prec t$ if and only if

(2-1) there $e$xists $j$ such that $s\preceq t_{j}$ or

(2-2) $\theta=f(\theta_{1}, \cdots, s_{m})$ and $s_{i}\prec t$ for all $i$ and

(2-2-1) $f<g$ or

(2-2-2) $f=g$ and $(s_{1}, \cdots, s_{m})*\prec(t_{1}, \cdots,t_{n})$ , where $*\prec$ is the multi-set ordering [Der-
showitz 79] induced $by\prec$ . $1$

In (2-2-2) of the above definition, adoption of the multi-set ordering is not always necessary. If
the function symbols $f$ is varyadic (i.e. takes an arbitrary number of arguments) and the order
of the arguments does not affect the value of the function (for example, $\sum$ and $\prod$ representing
finite sum an$d$ product), the multi-set ordering is probably the most reasonable. However, if the
function symbol $f$ has a fixed arity, the lexicographic ordering is more suitable in many cases.
There may be cases where the kachinuki ordering [Sakai 85] is the most appropriate.

Metis can handle any of these three versions of the $re$cursive path orderin $g$ , namely multi-set,
lexicographic, and kachinuki. The user can employ arbitrary combinations of them, function by
function. As long as the lexicographic order is applied only to function symbols of fixed arity,
any combination defines a monotone and stable well-founded order on $\mathcal{T}(F, V)$ . Moreover, if the
underlying order $<onF$ is total and the lexicographic or the kachinuki ordering are employed
for any function symbol, then it is a total ordering on the limited domain 7 $(F)$ of the ground
terms, a very important property as we shall see later.

Metis converts axioms to rewrite rules $larrow r$ such that $l\succ r$ . Metis allows the user to define
the underlying partial order $<onF$ incrementally during the completion procedure. If the user
knows little about the above ordering method, Metis can suggest what orderi$ng$ is needed on $F$

in order to orient an equation to a certain direction. Thus, when both are possible, the user
just has to decide which direction an $e$quation should be oriented to.
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3.2 Associative and commutative operators

The weakest point of the Knuth-Bendix completion procedure is revealed by $e$quations that
cannot be converted to rules without violating the termination of the TRS. The most typical
example of such axioms is the commutative laws, such as $A+B\simeq B+A$ . Encounter with such an
equation causes unsuccessful stop in Step 2 of the procedure. Metis has several counterm$e$asures
to deal with this situation. The general measures will be described later.

It is clearly the commutativity of operators that is the main source of the above failure. In many
cases, commutative operators ar$e$ also associative. Metis $h$as a specific countermeasure effective
only against the commutative laws combined with the associative laws of the same operators.
$A$ function symbol is called an AC-operator if it satisfies the associative and the commutative
law. Metis is equipped with an algorithm of special unification for AC-operators (called AC-
unification) devised by Fages [Fages 84] and can execute the AC-completion procedure bas$ed$ on
Peterson and Stickel’s principle [Peterson 81].

For example, if Metis is told th$at+is$ an AC-operator, then the axioms $A+B\simeq B+A$ and
$(A+B)+C\simeq A+(B+C)$ ar$e$ acquired implicitly and AC-unification and AC-reduction $are$

activated $for+$ . Thus, Metis can generat$eO+Y+(-(X+Y))\simeq(-X)+O$ as a critical pair
between the $s$ ame two rules $(-X)+Xarrow 0$ by AC-unification, since

$0+Y+(-(X+Y))\Leftarrow(-X)+X+Y+(-(X+Y)\}\Rightarrow(-X)+0$ .

If it $h$as the rule $0+Aarrow A$ , the above critical pair is reduced to $Y+(-(X+Y))\simeq-X$ by
AC-reduction.

As shown in the above example, an AC-operator is supposed to be a binary function symbol
and Metis allows us to use infix notation for binary function symbols. Inside Metis an AC-
operator is treated as if it were varyadic. For example, the term $t_{1}+\cdots+t_{n}$ is converted to
$+(t_{1}, \ldots, t_{2})$ with a varyadic function $symbol+$ , in whatever order the $operator+is$ applied to
the arguments. The multi-set ordering is assumed to be the ordering method for AC-operators
unless otherwise specified, since the above treatment makes it the most reasonable ordering as
mentioned in the previous section.

3.3 Orientation-free rules and S-strategy

There exist many equations other than commutative laws which cannot be converted to termi-
nating rules. The approach of incorporating special unification algorithms for such $e$quations
has been studied systematically by Jouannaud and Kirchner [Jouannaud 84].

A simple trick to handle non-orientable $e$quations is introducing a new function symbol. For
example, if the equation $A^{2}\simeq A$ $x$ $A$ cannot be oriented to either direction, a new function
symbol square is introduced and the problematic equation is divided to the two equations
$A^{2}\simeq square(A)$ and A $xA\simeq squar\epsilon(A)$ . Thus, Metis $c$ an continue the completion procedure,
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since both equations can be oriented left to right. This technique seems to be too simple, but
the effect is worth implementatio$n$ [Knuth 70, Sakai 84].

A more radical remedy for such equations is adoption of orientation-free rules. This remedy
is called the unfailing completion procedure [Hsiang 85, Bachmair 86]. Metis is equipped with
an extended version of the unfailing completion procedure called S-strategy devised by Hsiang
and Rusinowitch [Hsiang 85]. The S-strategy has enabled Metis to manipulate not only non-
orientable equations, but also inequational axioms as well as equational axioms.

The S-strategy can be viewed as a kind of refutational theorem proving technique for systems
of equations and inequations. Before introducing the S-strategy, we will extend the concepts of
reduction and critical pairs and introduce the concept of extended narrowing and subsumption.
Let us fix a monotonic an$d$ stable well-founded order $\prec$ on $\mathcal{T}(F, V)$ .

Definition 3.2

A term $t$ is said to be reduced to another term $u$ by $an$ equation $l\simeq r$ (or $r\simeq l$), if $t\succ u$

and there exists a substitution 9 such that $\epsilon[9(l)]=t$ and $c[\theta(r)]=u$ . This $re$duction is called
extended reduction (by an equation) and denoted also by $t\Rightarrow u$ . $1$

Definition 3.3

Let $l_{1}\simeq r_{1}$ (or $r_{1}\simeq l_{1}$ ) and $l_{2}\simeq r_{2}$ (or $r_{2}\simeq l_{2}$ ) be equations Let $s$ be a non-variable subterm
of $l_{2}$ such that $l_{1}$ and $s$ have a most general unifier 9. Let $l_{2}=c[s]$ . If $\theta(l_{1})\not\leq 9(r_{1})$ and
$\theta(l_{2})\not\leq\theta(r_{2})$ , then the pair $9(c[r_{1}])\simeq\theta(r_{2})$ is called an extended critical pair between $l_{1}\simeq r_{1}$

(or $r_{1}\simeq l_{1}$ ) and $l_{2}\simeq r_{2}$ (or $r_{2}\simeq l_{2}$). I
If every rule $larrow r$ has the property that $l\succ r$ , the above definitions are natural extensions of
the ordinary reduction by a rule and the ordinary critical pairs between rules. For example, if
$l\succ r$ , the condition that $t\succ u$ in reducing $t$ to $u$ weakens the rewrite power of the equation $l\simeq f$

exactly to the same level as that of $t$he rule $larrow r,$ $since\prec is$ stable and monotonic. Similarly, if
$l_{1}\succ r_{1}$ and $l_{2}\succ r_{2}$ , the set of all extended critical pairs between equations $l_{1}\simeq r_{1}$ and $l_{2}\simeq r_{2}$

is equal to the set of all critical pairs between rules $l_{1}arrow r_{1}$ and $l_{2}arrow r_{2}$ .

Definition 3.4

Let $l_{1}\simeq r_{1}$ (or $r_{1}\simeq l_{1}$ ) be an $e$quation and $l_{2}$ ;t2 $r_{2}$ (or $r_{2}\not\simeq l_{2}$) be an inequation. Let $s$ be
a non-variable subterm of $l_{2}$ such that $l_{1}$ and $s$ have a most gener$a1$ unifier $\theta$ . Let $l_{2}=c[s]$ .
If $9(l_{1})\not\leq 9(r_{1})$ , then the inequation $\theta(c[r_{1}])$ ce $9(r_{2})$ is said to be narrowed from $l_{2}\not\simeq r_{2}$ (or
$r_{2}\not\simeq l_{2})$ using $l_{1}\simeq r_{1}$ (or $r_{1}\simeq l_{1}$). I
Definition 3.5

An equation $t\simeq u$ is said to be subsumed by other equations $l_{1}\simeq r_{1}$ (or $r_{1}\simeq l_{1}$ ), $\ldots,$
$l_{n}\simeq r_{n}$ (or

$r_{n}\simeq l_{n})$ , if there exists a substitution $\theta$ such that $c[\theta(l_{1}), \ldots, \theta(l_{n})]=t$ and $c[\theta(r_{1}), \ldots, \theta(r_{n})]=$
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$u$ . An inequation $t\not\simeq u$ is said to be subsumed by another inequation $l\not\simeq r$ (or $r\not\simeq l$), if there
exists $a$ substitution $\theta$ such that $9(l)=t$ and $9(r)=u$. I
Unfailing completion is a modified $ve$rsion of ordinary completion employing extended critic$a1$

pairs and extended reduction instead of the ordinary ones; and the S-strategy can be viewed as
the unfailing completion with refutation by extended narrowing.

Procedure 3.6 S-strategy

Suppose that a system of equational and inequational axioms is given together with an equation
or inequation to be solved (called the target formula).

Step $0$ : Set $E$ to be the given axiom system plus $t$he negation of the target formula (Skolemized
if necessary). Set $R$ to be empty. Go to Step 1.

Step 1: If $E$ is empty, the current value of $R$ is a complete set of equations and inequations
deduced $hom$ the axioms and the negation of the $t$arget formula, in the sense that
neither new equations nor new inequations can be derived. Since $R$ is also consistent,
the target formula cannot be deduced from the axioms. If $E$ is not empty, go to Step
2.

Step 2: Remove an equation $t\simeq u$ or in$e$quation $t\not\simeq u$ (called the ruling formula) from $E$ . Go
to Step 3.

Step 3: If the ruling formula is an equation, move all the equations $l\simeq r$ and all the inequations
$l\not\simeq r$ from $R$ to $E$ such that either $l$ or $r$ is reducible by the ruling formula and remove
$aU$ the $e$quations subsumed by the ruling formula from $R$ . If the ruling formula is an
inequation, remove all the inequations subsumed by the ruling formula from $R$ . Go to
Step 4.

Step 4: Append the ruling formula to $R$ . Construct all the extended critical pairs and all the
narrowed inequations between the ruling formula and all the equations and inequations
in $R$ . Append them to $E$. For eac$h$ equation $t\simeq u$ or inequation $t\not\simeq u$ in $E$ , find
irreducible forms $t\downarrow$ and $u\downarrow w$ith respect to $e$quations in $R$ . If there is an inequation
$t$ ce $u$ such that $t\downarrow$ and $u\downarrow$ are unifiable, then stop. A contradiction is detected and,
therefore, the target formula is deduced from the originally given axiom system. Oth-
erwise, let the new $E$ be the set of equations $t\downarrow\simeq u\downarrow$ such that $t\downarrow\neq u\downarrow$ not subsumed
by any equation in $R$ and inequations $t\downarrow\not\simeq u\downarrow$ not subsumed by any inequation in $R$ .
Go to Step 1. 1

The unfailing completion differs from the S-strategy only in that it does not treat non-ground
inequations. If the ordering $\prec$ is total on the set $\mathcal{T}(F)$ of all the ground terms, the S-strategy
is logically complete and, therefore, so is the unfailing completion.

–8–



178

4. Experiments

Let us begin wit$h$ purely algebraic examples. The first example is the word problem of rin $g$

theory.

Example 4.1

Metis $w$as given an AC-operator $+and$ a binary operator $*$ (not AC in general) wit$h$ the
following axioms:

(1) $0+A=A$

(2) $(-A)+A=0$

(3) $(A*B)*C=A*(BsC)$

(4) $(A+B)*C=A*C+B*C$

(5) $A*(B+C)=A*B+A*C$

We $h$ad Metis run the completion procedure in automatic mode. Metis obtained $(A*B)*C=$
$A*(B*C)$ and $0+A=A$ as the first and the second ruling formula and converted them to
the rules $(A*B)*Carrow A*(B*C)$ and $O+Aarrow A$ , respectively. The third ruling formula
$(-A)+A=0$ could be oriented left to right by the recursive pat$h$ ordering, if $0<+or0<-$ .
So Metis asked the user which should be introduced.

[METIS] $->k$
$<<$ Knuth – Bendix (automatic execution) \rangle \rangle

New Rule is rl: $(A*B)*C$ $->$ $A*(B*C)$

New Rule is $r2$ : $O+A$ $->$ A
You can orient $-A+A$ $->$ $0$ by the following.

[1] $0<<+$
[2] $0<<-$
else exit

After selecting $0<+$ , we had Metis continue the procedure.

select no ? 1
[ $0<<+$ is asserted. ]

New Rule is $r3$ : $-A+A$ $->$ $0$

New Rule is $r4$ : $-(-A)$ $->$ A
New Rule is $r5$ : $-(0)$ $->$ $0$

Which do you want to orient ?

[1] $A*(B+C)$ $->$ $A*B+A*C$

[2] $A*B+A*C$ $->$ $A*(B+C)$
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else exit

The sixth ruling formula was the left distributive law and it could be oriented to either direction
depending on the orderings on function symbols. Since we instructed Metis to convert it to the
rule $A*(B+C)arrow A*B+A*C$, the system automatically $introduced+<-as$ the ordering
on function symbols.

select no ? 1
[ $+<<*$ is asserted. ]

New Rule is $r6$ : $A*(B+C)$ $->$ $A*B+A*C$

New Rule is $r7$ : $(A+B)*C$ $->$ $A*C+B*C$

New Rule is $r8$ : $A+-(B+A)$ $->$ $-B$

[ $+<<-$ is asserted. ]

New Rule is $r9$ : $-(A+(-B))$ $->$ $B+(-A)$

The nineth ruling formula can be converted to the $rule-(A+(-B))arrow B+(-A)$ if and only
$if+<-$ . So Metis introduced the ordering without interaction.

New Rule is $r10$ ; $-(A+B)$ $->$ $-A+(-B)$

DELETE r8
DELETE $r8*$

DELETE r9
New Rule is rll: $A*0+A*B$ $->$ $A*B$

New Rule is $r12$ : $A*O$ $->$ $0$

DELETE rll
DELETE rll*
New Rule is $r13$ : $O*A+B*A$ $->$ $B*A$

New Rule is $r14$ : $O*A$ $->$ $0$

DELETE r13
DELETE $r13*$

New Rule is $r15$ : $(-A)*B+A*B$ $->$ $0$

Which do you want to orient ?

[1] $(-A)*B$ $->$ $-A*B$

[2] $-A*B$ $->$ $(-A)*B$

else exit
select no ? 1
[ - $<<*$ is asserted. ]

New Rule is $r16$ : $(-A)*B$ $->$ $-A*B$

DELETE r15
DELETE $r15*$

New Rule is $r17$ : $A*(-B)+A*B$ $->$ $0$

New Rule is $r18$ : $A*(-B)$ $->$ $-A*B$
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DELETE r17
DELETE $r17*$

Knuth - Bendix terminated.
Your system is [COMPLETE]

The procedure terminated successfully. Here is the resulting complete TRS for the word problem
of rings.

[METIS] $->$ list
$<<$ state listing $>>$

e\dagger ringee

operators:
$+/AC$ (multiset ordering)
$0/0$
$-/1$
$*/2$ ( left to right lexicographic ordering)

orderings:
$0$ $<$ $t|+lt$ $<$ $*-$
$t10^{||}$ $<$ $+*-$
$+.0$ $<$ $t-||$ $<$ $*$

$+.-.0$ $<$ $0*$

equations:
No equations.

rules:
$r1$ : $(A*B)*C$ $->$ $A*(B*C)$

$r2$ : $0+A$ $->$ A
$r2*$ : $A+0+B$ $->$ $A+B$

$r3$ : $-A+A$ $->$ $0$

$r3*$ : $A+(-B)+B$ $->$ $A+0$

$r4$ : $-(-A)$ $->$ A
$r5$ : $-(0)$ $->$ $0$

$r6$ : $A*(B+C)$ $->$ $A*B+A*C$

$r7$ : $(A+B)*C$ $->$ $A*C+B*C$

$r10$ : $-(A+B)$ $->$ $-A+(-B)$

$r12$ : $A*0$ $->$ $0$

$r14$ : $0*A$ $->$ $0$

$r16$ : $(-A)*B$ $->$ $-A*B$
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$r18$ : $A*(-B)$ $->$ $-A*B$

Huet and Hullot developed a method to prove inductive theorems without explicit induction
[Huet 82] using a modified version of the Knuth-Bendix comple$t$ion procedure. Their method is
called inductionless induction and is effective for many th$e$orems $wh$ich usually $re$quire explicit
induction.

In order to use the method, ground terms have to be classified into two categories, namely,
constructor $termswh$ic$h$ are always irreducible and constructed only of special function symbols
called constructors, and non-constructor terms which are always reducible and include a function
symbol other than constructors. To prove an inductive theore$m$, we add the statement as an
axiom and execute the completion procedure. The statement is an inductive theorem if the
process succeeds to completion without yielding any rules to rewrite constructor terms.

Metis was given an ordinary definition of the append operation for two lists and two different
definitions of the reverse operation of a list.

[METIS] $->$ list rule
$<<$ state listing $>>$

$\uparrow--$-append a reverse $—tt$

rules:
rl: append $([].A)$ $->$ A [e3]
$r2$ : rev $([].A)$ $->$ A [e5]
$r3$ : reverse([]) $->$ [1 $[e1]$

$r4$ : append $([A|B].C)$ $->$ [Alappend (B. $C)$ ] [e4]
$r5$ : rev $([A|B].C)$ $->$ rev (B. $[A|C]$ ) [e6]
$r6$ : reverse([AlB]) $->$ append(reverse(B), [A]) [e2]

If we define $1_{-}|\lrcorner$ (cons) and Il (nil) as the constructors, then the above conditions are satisfied.
We added an equation rev $(A$ , [] $)=reverse(A)$ and had Metis execute the completion procedure.

[METIS] $->kB$ iNTERACTIVE
$<<$ Knuth – Bendix (interactive execution) $>>$

Current ruling formula [CAN] be oriented.
$<<<<$ $e7$ : reverse (A) $=(<>)=$ rev (A. []) $>>>>$

Which do you want to orient ?
[1] reverse (A) $->$ rev (A. [])

[2] reverse (A) $<-$ rev (A. [])

else exit
Which ? 1
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[rev $<<$ reverse is asserted. ]

Current ruling formula is [0RIENTED]

New Rule is $r7$ : reverse (A) $->$ rev(A. [])

DELETE r3
DELETE r6

Current ruling formula [CAN] be oriented.
$<<<<$ $e8$ : rev (A. [B]) $=(<>)=$ append (rev (A. []). [B]) $>>>>$

Which do you want to orient ?
[1] rev (A. [B]) $->$ append ($rev$ (A. []), [B])

[2] rev (A. [B]) $<-$ append (rev (A. []). [B])

else exit
Which ? 2
[rev $<<$ append is asserted. ]

Current ruling formula is [0RIENTED] .
New Rule is $r8$ : append(rev(A. []) , [B]) $->$ rev (A. [B])

Current ruling formula is [0RIENTED]

New Rule is $r9$ : append (rev(A. [B]). [C]) $->$ rev (A. [B. $C]$ )

Current ruling formula is [0RIENTED]
$<<<<$ $e10$ : append (rev (A. [B. $C]$ ) . $[D]$ ) $\approx>=$ rev (A. [B. C. $D]$ ) $>>\rangle\rangle$

Since the current and the former ruling formulas suggested that a new lemma

append(rev(A, $B$), $C$) $=rev$ ($A$ , append(B, $C)$ )

would be useful, we added it.

$[METIS/KB]->$ new IEMMA
$<<$ introduce a new lemma \rangle \rangle

Lemma $>$ append (rev (A. B). $C$ ) $=$ rev (A. append (B. $C)$ ).

Current ruling formula is [0RIENTED]

New Rule is $r10$ : append (rev (A.B). C) $->$ rev (A. append (B. $C)$ )

DELETE r8
DELETE r9

Knuth - Bendix is terminated.
Your system is [COMPLETE].
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The completion terminated and, therefore, both the target statement and the lemma inserted
on the way were proved to be inductive theorems.

Several examples were taken from the theory of $\lambda$-calculus and combinators [Hindley 86, Baren-
dregt 84]. In the theory of combinators, the combinator $K=\lambda XY$. $X$ and $S=\lambda XY$Z. $X*$

$Z*(Y*Z)$ (as usual we assume that $symbols*standing$ for application of functions are left
associative) are $c$alled basic combinators because $a\mathbb{I}$ the $\lambda$-terms without free variables can be
constructed from $S$ and X only.

Example 4.2

It is well-known that the identity $I=\lambda X$. $X$ is represented by $S*K*K$ , Metis was given the
two axioms $K*X*Y=X$ and $S*X*Y*Z=X*Z*(Y*Z)$ for $K$ and $S$ to derive the
identity. The problem can be expressed as $\exists I.\forall X$. $I*X=X$. Metis convert$ed$ its negation to
Skolemized form A*$l(A)\neq $l $(A)$ ($1 is the so-called Skolem function).

[METIS] $->$ proVE $\epsilon sTRATHGY$ TERMINAL
$<<$ prove formulas by $S-strategy\rangle\rangle$

$Fo$rmula $>$ some (I. all (X, $I*XrX$ )).

Try to $pr$ove formula : $A*$ $i(A) $-/*$ $1(A)
Enter S-gtrategy. . .
Current ruling formula is [INEQUATI0N]
New Rule is rl: A*$l (A) $<-/->$ $1 (A)

Current ruling formula is [0RIENTED] .
New Rule $ig$ $r2$ : $k*A*B$ $->$ A

Current ruling formula ls [INEQUATI0N 1
New Rule is $r3$ : A $<-/->$ $1(k*A)

Current ruling formula is [NOT] orientable.
New Rule $ig$ $r4$ : $s*A*B*C$ $<->$ $A*C*(B*C)$

Current ruling formula is [0RIENTED]

New Rule is $r5$ : $s*k*A*B$ $->$ $B$

$e13$ : $*1(\epsilon*k*A)u/r$ $l(s*k*A) $[r5/rl]$ is a contradiction.
Then [PROVED].

–14–



184

The first ruling formula was the target formula A*$l(A)\neq $l(A) and the second was the axiom
for $K$ , which $w$as oriented left to right. The third formula was an extended narrowing throm the
first using the second, since A=K*A*$I(K*A)\neq $I(K*A). The fourth was the axiom for
$S$ whic$h$ could not be oriented. The fifth was an extended critical pair between the fourth and
the second, since $S*K*A*B=K*B*(A*B)=B$. Using this, a contradictory narrowing
was obtained from the first ruling formula. By examining this process, we easily find all terms
of the form $S*K*A$ are equal to the identity function, and $S*K*K$ is merely an instance of
such terms.

Example 4.3

Next, we had Metis try to prove the fixed-point theorem, i.e. that there exists a fixed-point for
any combinator, with the existence of the combinators $B=\lambda XY$Z. $X*(Y*Z)$ of composition
of functions and $M=\lambda X$. $X*X$ of self-application, which are defined by $B=S*(K*S)*K$
and $M=S*I*I$. Metis was given the axioms $B*X*Y*Z=X*(Y*Z)$ and $M*X=X*X$.
The theorem can be expressed as $\forall F.\exists P$. $F*P=P$.

[METIS] $->$ list all
$<<$ state listing \rangle \rangle

operators:
$*/2$ ( lexicographic ordering left to right )
$b/0$
$m/0$

orderings:
No orderings

equations:
$e1$ : $m*A$ $\approx$ $A*A$ [axiom]
$e2$ : $b*A*B*C$ $\Leftrightarrow$ $A*(B*C)$ [axiom]

rule $s$ :
No rules.

[METIS] $->$ prove sstrategy terminal
$<<$ prove equationg by S-strategy $>>$

Equation $>$ all (Fl some ($p,$ $F*p\cdot P$ )).

Try to prove equation : $1*A $\approx/-$ A
Enter S-strategy. . .

Current ruling formula is [INEQUATI0N]
New Rule is rl: $1*A $t-/->$ A
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Current ruling formula is [NOT] orientable.
$<<<<$ el: $m*A$ $=$ $A*A$ $>>\rangle\rangle$

Since the above ruling formula could not be oriented, we let Metis introduce a new functio$n$

symbol $s$ and rewrite both $A*A$ and $M*A$ to $s(A)$ . Acquisition of the new function symbol
and orientation of new equations was done interactively as follows:

[METIS/PR0VE/S-STRA] $->$ new function
$<<$ introduce a new function \rangle \rangle

$0perator?s$
[ $e3$ : $m*A$ $s(A)$ (axiom) is asserted. ]
[ $e4$ : $A*A$ $s(A)$ (axiom) is asserted. ]

Current ruling formula [CAN] be oriented.
$<<<<$ $e4$ : $A*A$ $-(<>)\Leftrightarrow$ $s(A)$ $>>\rangle\rangle$

[$METIS/PROVH/S$ -STRA] $->$ suggestion current
$<<$ suggestion for ordering \rangle \rangle

Which do you want to orient ?

[1] $A*A$ $->$ $s(A)$

[2] $A*A$ $<-$ $s(A)$

else exit
Which ? 1
[ $s<<*1s$ asserted. ]

Current ruling formula is [0RIENTED] .
New Rule is $r2$ : $A*A$ $->$ $s(A)$

Current ruling formula ls [0RIENTED] .
New Rule $1s$ $r3$ : $m*A$ $->$ $s(A)$

Current ruling formula is [INEQUATION] .
New Rule is $r4$ : $s( 1)$ $<-/->$ $1

Current ruling formula is [0RIENTED]

New Rule is $r5$ : $b*A*B*C$ $->$ $A*(B*C)$

Current ruling formula is [0RIENTED] .
New Rule is $r6$ : $s(b)*A*B$ $->$ $b*(A*B)$

Current ruling formula is [ 0RIENTED] .
New Rule is $r7$ : $s(b*A)*B$ $->$ $A*(b*A*B)$

,
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Current ruling formula is [0RIENTED] .
New Rule is $r8$ : $A*(B*(b*A*B))$ $->$ s(b*A*B)

Current ruling formula is [0RIENTED]

New Rule is $r9$ : $s(s(b))*A$ $->$ $b*(s(b)*A)$

Current ruling formula is [ INEQUATI0N] .
New Rule is $r10$ : s(b*$l*A) $<-/->$ A*(b*$l*A)

$e32$ : s(b*$l*m) $=/=$ s(b*$l*m) $[r3/rl0]$ is a contradiction.
Then [PROVED].

Metis finally found a contradictory inequation. The inequation $w$as obtain$ed$ by substituting $M$

to $A$ in r10 and rewriting the right hand side by $r3$ . The inequation r10 was from rl and $r8$ ,
since

$s$ (B*$1*A)=$I*(A*(B*$I*A))\neq A*(B*$I*A).

and the rule r8 was from r2 and $r5$ , since

$A*(B*(B*A*B))=B*A*B*(B*A*B)=s(B*A*B)$ .
Examining this process of refutation $sh$owed us that m*(B*$l*m) is the value substituted to
the original variable $A$ in the inequality obtained by the negation of the target formula. In fact,
it is a fixed point of $1, since

M*(B*$I*M)=B*$I*M*(B*$I*M)=$I*(M*(B*$$I*M$))
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