On the classification of Legendre immersions *)

Masahisa ADACHI and Kenji YAMATO (足正正久、京大理) (大和健二、阪大教養)

0. Introduction

We will say that two Legendre immersions λ_0 and λ_1 are L-regularly homotopic, if there is a smooth regular homotopy λ_t between λ_0 and λ_1 , such that λ_t is a Legendre immersion

^{*)} Dedicated to Professor Nobuo Shimada on his 60th birthday

for each t. Similarly, we can speak of a homotopy through L-monomorphisms, of $T(\bigwedge)$ into T(M).

The following is the main theorem of this paper.

Theorem 1. Let \bigwedge be a simply connected smooth n-manifold and M be a compact regular contact (2n+1)-manifold. Then d induces a 1-1 correspondence between L-regular homotopy classes of L-immersions $\bigwedge \longrightarrow M$ and L-homotopy classes of L-monomorphisms $T(\bigwedge) \longrightarrow T(M)$.

The concept of regular contact manifolds was introduced by Boothby and Wang [4]. We recall this in section 1. Whether for an arbitrary smooth n-manifold \bigwedge and an arbitrary contact (2n + 1)-manifold M the theorem above still holds or not, is open.

This paper is motivated by Bennequin [3], Douady [5].

Our approach is inspired by Gromov [6] and Lees [11].

1. Regular contact manifolds

We recall here regular contact manifolds.

Let $M = (M, \sigma)$ be a <u>contact manifold</u> of dimension 2n + 1. Namely, M is a C^{∞} -manifold of dimension 2n + 1 and σ be a differential 1-form on M with $\sigma \wedge (d\sigma)^n \neq 0$ at each point $x \in M$, where $(d\sigma)^n = d\sigma \wedge ... \wedge d\sigma$.

A quadratic form θ of the Grassman algebra $\wedge^{ extstyle extst$

V is the dual to a vector space V, is said to have <u>rank</u> 2r, if the exterior product $(\mathcal{C})^r \neq 0$ but $(\mathcal{C})^{r+1} = 0$. Equivalently rank $\mathcal{C} = \dim V - \dim V_0$, where $V_0 = \left\{X \in V \mid \mathcal{C}(X, V) = 0\right\}$. It follows that on a contact manifold M the condition $\sigma \wedge (d\sigma)^n \neq 0$ implies that at each point $x \in M$ the quadratic form $d\sigma$ in the Grassman algebra $\wedge T_x^*(M)$ has rank 2n. We then have

$$V_0 = \left\{ X \in T_x(M) \mid d\sigma(X, T_x(M)) = 0 \right\}$$

is a subspace of dimension one on which $\sigma \neq 0$, and which is thus complementary to the 2n-dimensional subspace on which $\sigma = 0$.

Let Z_x be the element of V_0 on which σ has the value 1. Then Z is a vector field, which we call associated to σ , defined on all of M by σ , and which is never zero since $\sigma(Z) = 1$. This vector field defines an involutive differential system on M and we shall call the contact structure σ regular if each point has a regular neighborhood, i.e. a cubical coordinate neighborhood (x_1, \ldots, x_{2n+1}) where intersection with any given integral curve corresponds to a single segment

 $x_2 = c_2$, ..., $x_{2n+1} = c_{2n+1}$, $c_i = constant$, i = 2, ..., 2n+1, i.e., which is thus pierced at most once by any given integral curve. this implies in particular that each integral curve is a closed point set.

Hereafter, we will assume the manifold M to be compact.

If σ is a regular contact form on M, the since Z is never

zero and since the integral curves are closed and thus compact set, we see that they must be homeomorphic to the circle S^1 . Moreover, the vector field Z generates a global action of the additive group of real numbers R on M. It is clear from the above that we may suppose that the associated vector field Z generates an action of the circle group S^1 on M. If B denotes the set of orbits, it follows that B is a C^{∞} -manifold, and that if (u_1, \ldots, u_{2n+1}) is a regular coordinate neighborhood in M, the orbit corresponding to u_2 = constant, ..., u_{2n+1} = constant, then U = p(U) with coordinates u_2 , ..., u_{2n+1} is a coordinate neighborhood on B, where $p: M \longrightarrow B$ is the natural projection.

Boothby and Wang [4] proved the following theorem.

Theorem 1.1. If is a regular contact form on a compact manifold M, then

- (i) M is a principal bundle over B with group and fibre s^1 ,
- (ii) T defines a connection in this bundle,
- (iii) the base space B is a symplectic manifold whose symplectic structure ω determines an integral cocycle on B and is the curvature form of σ , i.e. $d\sigma = p^*\omega$ is the equation of structure of the connection.

Actually ω is the characteristic class (with real coefficients) of the circle bundle M.

2. Space of Legendre immersions

Let \wedge be a smooth n-manifold and M be a contact (2n + 1)-manifold with contact structure σ .

In order to prove Theorem 1, we consider the space L-Imm(Λ , M) of all Legendre immersions of Λ in M with C -topology.

Let L-Mon(T(Λ), T(M)) denote the space of all L-monomorphisms of T(Λ) into T(M) with compact-open topology.

Observe that the differential d defines a map

$$d: L-Imm(\Lambda, M) \longrightarrow L-Mon(T(\Lambda), T(M)).$$

We shall prove the following theorem.

Theorem 2.1. Let \wedge be a simply connected smooth n-manifold and M be a compact regular contact (2n + 1)-manifold. Then the map $d: L-Imm(\wedge, M) \longrightarrow L-Mon(T(\wedge), T(M))$ is a weak homotopy equivalence.

Theorem 1 follows directly from Theorem 2.1: since d is a weak homotopy equivalence, it induces a 1-1 correspondence $d_{\star}:$ $\mathcal{T}_0(L-\operatorname{Imm}(\bigwedge,M)) \longrightarrow \mathcal{T}_0(L-\operatorname{Mon}(T(\bigwedge),T(M)0)$ of path components, that is, of L-regular homotopy classes of Legendre immersions and homotopy classes of L-monomorphisms.

The first step in the proof of Theorem 2.1 is to establish a covering homotopy for spaces of Legendre immersions. For convenience

of notations, we will denote the p-cube by I^p . Write D^k for standard k-disk in R^k , and $D^k \times D^{n-k+1}$ for a neighborhood of $\partial D^k \times D^{n-k}$ in $D^k \times D^{n-k}$.

Let $\bigwedge = \bigwedge_0 \smile (\mathbb{D}^k \times \mathbb{D}^{n-k})$, where $\bigwedge_0 \frown (\mathbb{D}^k \times \mathbb{D}^{n-k})$ = $\partial \mathbb{D}^k \times \mathbb{D}^{n-k+1}$. Let $f : \bigwedge \longrightarrow M$, and suppose that f / \bigwedge_0 is a Legendre immersion.

Theorem 2.2. Let $\mathcal{H}: L\text{-}\mathrm{Imm}(D^k \times D^{n-k}, M) \longrightarrow L\text{-}\mathrm{Imm}(\partial D^k \times D^{n-k+1}, M)$ be the map which maps f to $f \mid \partial D^k \times D^{n-k+1}$. Let $F_0: I^p \longrightarrow L\text{-}\mathrm{Imm}(D^k \times D^{n-k}, M)$, $F: I^p \times I \longrightarrow L\text{-}\mathrm{Imm}(\partial D^k \times D^{n-k+1}, M)$ be continuous maps such that $\mathcal{H} \circ F_0(x) = F(x, 0)$. Then there exists a continuous map $\widetilde{F}: I^p \times I \longrightarrow L\text{-}\mathrm{Imm}(D^k \times D^{n-k}, M)$ such that

i)
$$\tilde{F}(x, 0) = F_0(x)$$
,

ii)
$$\pi \circ \hat{F} + F$$
.

In section 3 we sketch the proof of Theorem 2.1, given 2.2.

We will prove Theorem 2.2 in section 4.

Theorem

3. The immersion classification theorem

Let \wedge be a smooth n-manifold and M be a contact smooth (2n+1)-manifold with contact structure σ .

We begin with a description of the set of Legendre planes in T(M), that is, the set of n-planes in the fibres of T(M) on which the contact form σ — vanishes.

Lemma 3.1. Let M be orientable. The set L(M) of Legendre planes in T(M) has the structure of a bundle on M associated with T(M) and with fibre U(n)/O(n).

Proof. Consider a Euclidean space R^{2n+1} of dimension 2n+1 with coordinate $(x,\,y,\,z)$ R^n X R^n X R. The 1-form

$$G = xdy + dz$$

$$= x_1 dy_1 + \dots + x_n dy_n + dz$$

defines a canonical contact structure on R^{2n+1} . The Legendre subspace of ∇ through the origin has equation dz=0.

We take x and y as coordinates in this hyperplane. Therefore, in this plane we have

$$d = \int_{\sigma=0}^{\infty} dx \wedge dy$$
. (cf. Arnold [1])

However, in the canonical symplectic 2n-space (\mathbb{R}^{2n}, ω), $\omega = dx \wedge dy$, the set of lagrange planes is considered to be U(n)/O(n)

Corollary 3.2. L-monomophisms $\mathfrak{T}: T(\Lambda) \to T(M)$ are in 1-1 correspondence with O(n)-bundle maps $\mathcal{F}(\Lambda) \to \mathcal{F}L(M)$.

Theorem 3.3. The restriction map

$$L-Mon(T(D^{k} X D^{n-k}), T(M)) \rightarrow L-Mon(T(\partial D^{k} X D^{n-k+1}), T(M))$$

is a fibration.

Proof. By Corollary 3.2, the covering homotopy theorem holds for L-monomorphisms. However, the assertion is simply a restatement of this property.

The next result is the 2nd step of the preparation for the proof of Theorem 2.1.

Lemma 3.4. Let $M = (M, \nabla)$ be a contact manifold of dimension 2n + 1 and D^n be the n-disk. Then the map which maps the map f to its differential df

$$d: L-Imm(D^n, M) \longrightarrow L-Mpn(T(D^n)), T(M))$$

is a homotopy equivalence.

Proof. Let 0 be the origin for D^n and write L-Imm(0, M) for the germs of Legendre immersions at 0 of D^n into M. Let $r:D^n\longrightarrow D^n$ be a radial retraction of D^n onto a prescribed small neighborhood of 0, fixed on a smaller neighborhood of 0. By an argument formally identical to Haefliger-Poenaru [10],

$$r_{\star}: L-Imm(D^n, M) \longrightarrow L-Imm(O, M)$$

is a homotopy equivalence.

On the other hand,

$$r_{\star}: L-Mon(T(D^n), T(M)) \longrightarrow L-Mon(T_0(D^n), T(M))$$

is also a homotopy equivalence by Theorem 3.3. Since the diagram

is commutative, it is sufficient to show that

$$d: L-Imm(0, M) \longrightarrow L-Mon(T_0(D^n), T(M))$$

is a homotopy equivalence.

However, an inverse L-Mon $(T_0(D^n), T(M)) \longrightarrow L-Imm(0, M)$ is porvided by Darboux's theorem (cf. Arnold [1], Appendix 4).

Proof of Theorem 2.1. By Theorem 2.2 (L-Imm(D^k X D^{n-k}, M), Π , L-Imm(∂ D^k X D^{n-k+1}, M)) is a fibre space, where Π is the restriction map. Furthermore, the following diagram:

L-Imm(D^k X D^{n-k}, M)
$$\xrightarrow{d}$$
 L-Mon(T(D^k X D^{n-k}, T(M))

 π

L-Imm(∂ D^k X D^{n-k+1}, M) \xrightarrow{d} L-Mon(T(∂ D^k X D^{n-k+1}, T(M))

is commutaive, namely d is a fibre map, where \mathcal{T}_1 is the restriction map. Therefore, by Theorem 3.3 and Lemma 3.4, we obtain Theorem 2.1, in formally identical method with Haefliger-Poenaru [10], Haefliger [8], [9].

4. Covering homotopy property for the space of Legendre immersions

Now we prove the covering homotopy property for the space

of Legendre immersions into a compact regular contact manifold,

i.e. Theorem 2.2.

Let $f_0: I^p \longrightarrow L-I_{mm}(D^k \times D^{n-k}, M)$, $f: I^p \times I \longrightarrow L-I_{mm}(\partial D^k \times D^{n-k+1}, M)$ be continuous maps. Let

$$TC : L-Imm(D^k \times D^{n-k}, M) \longrightarrow L-Imm(\partial D^k \times D^{n-k+1}, M)$$

be the map which maps g to the restriction $g \triangleright D^k \times D^{n-k+1}$. Suppose $\pi \circ f_0(x) = f(x, 0)$. Then we want the lifting \hat{f} of f to L-Imm($D^k \times D^{n-k}$, M) with $\hat{f}(x, 0) = f_0(x)$. Now M is a compact regular contact manifold, M is a principal S^1 -bundle over a symplectic manifold B: (M, p, B), B = (B, ω). Moreover, we have $d\sigma = p*\omega$. Corresponding to f_0 , f, we have the following maps, respectively:

$$F_{0}: I^{p} \times D^{k} \times D^{n-k} \longrightarrow M,$$

$$F: I^{p} \times I \times \partial D^{k} \times D^{n-k+1} \longrightarrow M.$$

Here, for each $(u, t) \in I^p \times I$, if we put $f_{u,t}(x) = F(u, t, x)$, $f_{u,0}(x) = F_0(u, x)$, $f_{u,t}$ are Legendre immersions. Composing these maps with $p: M \longrightarrow B$, we have the following maps

$$G_{0}: I^{p} \times D^{k} \times D^{n-k} \longrightarrow B,$$

$$G: I^{p} \times I \times \partial D^{k} \times D^{n-k+1} \longrightarrow B.$$

Here, if we put $g_{u,t}(x) = G(u, t, x)$, $g_{u,0}(x) = G_0(u, x)$, then $g_{u,t}$, $g_{u,0}$ are lagrange immersions, by Theorem 1.1.

Applying the flexibility theorem of lagrange immersions (cf. Gromov [7]), we have a family of lagrange immersions

$$\widetilde{G}: I^p \times I \times D^k \times D^{n-k} \longrightarrow B,$$

which is an extension of both G_0 and G. However, for $k \neq 1$ by Theorem 1.1, we can lift \widetilde{G} to M, namely, we obtain the following C—map

$$\widetilde{F}: I^p \times I \times D^k \times D^{n-k} \longrightarrow M,$$

- i) \widetilde{F} is an extension of both F_0 and F,

 ii) if we put $\widetilde{F}(u, t, x) = f_{u,t}(x)$, then $f_{u,t}: D^k \times D^{n-k} \longrightarrow$ M is a Legendre immersion, for each (a.t) $\in I^{p_n}I$,

 iii) $p \circ \widetilde{F} = \widetilde{G}$.

Since we assume that the source manifold \wedge is simply connected, we have obtained Theorem 2.2.

Proof of the existence of lift F for $k \neq 1$.

By taking sufficiently small cubic subdivision of $\ I^p \ X \ I \ X$ $\ D^k \ X \ D^{n-k}$, it suffices that we consider the case where the $\ S^1-$ bundle (M, p, B) to be

$$M = (R^{2n+1}, \sigma), \qquad \sigma = \sum_{i} x_{i} dy_{i} + dz,$$

$$R^{2n+1} \ni (x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}, z)$$

$$B = (R^{2n}, \omega), \qquad \omega = d\sigma,$$

$$R^{2n} \ni (x_1, \dots, x_n, y_1, \dots, y_n),$$

$$\underline{\sigma} = \sum_{i} x_i dy_i,$$

$$p : (x_1, ..., x_n, y_1, ..., y_n, z) \longrightarrow (x_1, ..., x_n, y_1, ..., y_n)$$

Then for $(u, t) \in I^p \times I$, let

$$f_{u,t}: \partial D^k \times D^{n-k+1} \longrightarrow R^{2n+1}$$

$$F_{u,0}: D^k \times D^{n-k} \longrightarrow R^{2n+1}$$

be Legendre immersions with $F_{u,0} \partial D^k \times D^{n-k+1} = f_{u,0}$. Let us

denote as follows:

$$F_{u,0} = (X_{u,0}, Y_{u,0}, Z_{u,0}),$$

$$f_{u,t} = (x_{u,t}, y_{u,t}, z_{u,t}),$$

$$\vec{P}_{u,0} = (x_{u,0}, Y_{u,0}) = p \circ F_{u,0},$$

$$\vec{P}_{u,t} = (x_{u,t}, y_{u,t}) = p \circ f_{u,t}.$$

Then $\underline{\Phi}_{\mathrm{u},0}$, $\mathcal{G}_{\mathrm{u},\mathrm{t}}$ are lagrange immersions into $(\mathbf{R}^{2\mathrm{n}},\omega)$ such that

$$(\mathcal{J}_{u,t})^{*} = -dz_{u,t},$$

$$(\mathcal{F}_{u,0})^{*} = -dz_{u,0},$$
and $z_{u,0} \geqslant D^{k} \times D^{n-k+1} = z_{u,0}.$

(here we are considering $z_{u,t}$, $Z_{u,0}$ as coordinate functions on the bundle space on $\partial D^k \times D^{n-k+1}$ induced by $f_{u,t}$ and on $D^k \times D^{n-k}$ induced by $F_{u,0}$, respectively).

Assertion. In this situation, we have a lagrange immersion

$$\widetilde{\mathcal{G}}_{u,t}: D^k \times D^{n-k} \longrightarrow (\mathbb{R}^{2n}, \omega)$$

such that

$$\widetilde{\mathcal{G}}_{u,t} \Big| \partial D^k \times D^{n-k+1} = \mathcal{G}_{u,t},$$

$$\widetilde{\mathcal{G}}_{u,0} = \Phi_{u,0}.$$

As is stated above, we use here the flexibility of lagrange immersions (cf. Gromov [7], Part III).

Now we construct a Legendre immersion $\widetilde{F}_{u,t}:\mathbb{D}^k \times \mathbb{D}^{n-k} \longrightarrow \mathbb{R}^{2n+1}$ with

$$\widetilde{\mathbf{F}}_{\mathbf{u},\mathbf{t}} \geqslant \mathbf{D}^{\mathbf{k}} \times \mathbf{D}^{\mathbf{n}-\mathbf{k}} = \mathbf{f}_{\mathbf{u},\mathbf{t}},$$

 $\widetilde{F}_{u,0} = F_{u,0}. \text{ Since } \widetilde{\varphi}_{u,t} \text{ is a lagrange immersion,}$ we have $(\widetilde{\varphi}_{u,t})^* := 0. \text{ Therefore, } (\varphi_{u,t})^* := 0. \text{$

 $(\mathcal{G}_{u,t})^{\star} \underline{\sigma} = -dK_{u,t}, \quad (u, t) \qquad I^{p} \times I.$ Suppose $k \geq 2$. Then $\partial D^{k} \times D^{n-k+1}$ is connected. By (4.1) we have

$$K_{u,t} | \partial D^k \times D^{n-k+1} = z_{u,t} + c_{u,t},$$

$$K_{u,0} = Z_{u,0} + C_{u,0}$$

here $c_{u,t}$ is/constant on $D^k \times D^{n-k+1}$ for each $(u, t) \in I^p \times I$, and $C_{u,0}$ is/constant on $D^k \times D^{n-k}$ for each $u \in I^p$.

Then we have

$$c_{u,0} \left| \partial D^{k} \times D^{n-k+1} \right| = K_{u,0} \left| \partial D^{k} \times D^{n-k+1} - Z_{u,0} \right| \partial D^{k} \times D^{n-k+1}$$

$$= K_{u,0} \left| \partial D^{k} \times D^{n-k+1} - Z_{u,0} \right|$$

$$= c_{u,0}.$$

Therefore, for each $(u, t) \in I^p \times I$, we can take constant $C_{u,t}$

on $\mathbf{D}^{k} \times \mathbf{D}^{n-k}$ such that

0)
$$c_{u,t} \partial D^k \times D^{n-k+1} = c_{u,t},$$

$$\widetilde{c}_{u,0} = c_{u,0},$$

1) $\widetilde{c_{u,t}}$ is smoothly dependent on $(u, t) \in I^p \times I$.

now we put

$$\widetilde{Z}_{u,t} = K_{u,t} - \widetilde{C}_{u,t};$$

$$\widetilde{Z}_{u,t} : D^k \times D^{n-k} \longrightarrow R, \text{ for } (u,t) \in I^p \times I.$$

Then we have

$$Z_{u,t} \left[\begin{array}{l} \partial D^{k} \times D^{n-k+1} = Z_{u,t}, \\ \widetilde{Z}_{u,0} = Z\widetilde{u,0}, \end{array} \right]$$

We define for $(u, t) \in I^p \times I$

$$\widetilde{F}_{u,t} : D^k \times D^{n-k} \longrightarrow \mathbb{R}^{2n+1},$$

$$\widetilde{F}_{u,t} = (\widetilde{\varphi}_{u,t}, \widetilde{z}_{u,t}).$$

Then we have

$$(\widehat{F}_{u,t})*\sigma = (\widehat{\mathcal{F}}_{u,t})*\mathcal{I} + d\widehat{Z}_{u,t}$$

$$= 0,$$

namely, $F_{u,t}$ is a Legendre immersion and

$$\widetilde{F}_{u,t} / \partial D^k \times D^{n-k+1} = f_{u,t},$$

$$\widetilde{F}_{u,0} = F_{u,0}.$$

Thus we have a lift which we want.

Note. In case k = 1, $C_{u,t}$ as above os not well-defined.

Department of Mathematics
Faculty of Science
Kyoto University

Department of Mathematics

College of General Education

Osaka University

References

- [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1974
- [2] V. I. Arnold, On a characteristic class which enters in quantization condition, Functional Analysis and its Appl.,1, 1-14(1967).
- [3] D. Bennequin, Entrlacements et equation de Pfaff, These Doctrat d'Etat, Univ. Paris VII, 1982.
- [4] W. Boothby H. C. Wang, On contact manifolds, Ann. of Math., 68,
- [5] A. Douady, Noeds et structures de contact en dimension 3 [d'apres D. Bennequin], Seminaire Bourbaki, No. 604 (1983).
- [6] M. L. Gromov, A topological technique for the construction of solution of differential equations and inequalities, Act. Congr. Intern. Math., Vol. 2, 221-225(1970).
- [7] M. L. Gromov, Partial Differential Relations, Springer (tomappear). 1986
- [8] A. Haefliger, Homotopy and integrability, Lecture Notes in Math. Springer, 197, 133-163(1971).
- [9] A. Haefliger, Lectures on the Theorem of Gromov, Lecture Notes in Math. Springer, 209, 128-141(1971).
- [10] A. Haefliger-V. Poenaru, La classification des immersions combinatoires, Publ. Math. I.H.E.S., 23, 75-91(1964).
- [11] J. A. Lees, On the classification of Lagrange immersions, Duke Math. J., 43217-224(1976).
- [12] J. M. Souriau, Structure des systemes dynamiques, Dunot, Paris, 1970.
- [13] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.

1986. Dec