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0. Introduction
In thié peper we shall give a2 homotepy-theorefic classifica-
tion of the Legendre immersions /A —> M of a smooth mn-manifold A\
tact menifeld M of dimension 2a + 1. Reczll that

into a regular con
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2 contact structure G on M is 2 d

wvith OCAJdT A...AdT # 0 =zt ezch point x € M. A szooth immersion

—
Yo
A —> M is czlled 2z Legendre immsrsion if o vanishss on

each vectors in T(M) tangent to A (A), that is, if H»*5 = 0.
To each Legendre immersion A :/\ —» M we can associate its
differentizl dqf:'T(/\) *-) T(F{). By definition d7— is &z mono-
morphism which takevs each fibre Tp(/\) to a Legendre plane in

T )(M), that is, an n-plane on which O~ wvanishes. We czll such

sends each Legendre i

menomorphism L-moncomorzhisms, so thaet &

izmersion to an L-monomorphism.

{1

We will say that two Legendre immersions 7\.0 and 7\,1 ar

L-regularly homctopic, if there is a smooth regular homotopy A, .

between A‘O and Al’ such that A ¢ is a Legendre immersion

*) Dedicated to Professor Nobuo Shimada on his 60th birthday

— ] —
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for each &. Similarly, we can speak of a homotopy through L-zmono-

morphisms, of T(/\) into T(M

The follewing is the main theors: of tais paper.

Theorem 1. Let /\ be a simply connectzd szmocth n-zmznifold
and M be a compact regular contact (2n + l)-manifold. Then d

induces a 1-1 correspondence betwesn L-rzgulzr hom motopy c’as;es

10

of L-immersions /\ —> M. and L-homotopy classes of L-monomor-

phisms T(/\) — T(M).

The concept of regular contact mznifolds was ‘introduced by
Boothby and Wang [4]. We recall this in section 1. Whether for an
arbitrary smooth n-manifold /\ and an arbitrary contact (2n + 1)-

meaifold M the theorem above still holds or not, is open.
This paper is motivated by Bennequin [3], Douady [5]..

P

Our approach is inspired by Gromev [§] aij: 2s  [11].

[a%
7]

1. Regular contact mznifol
We recall here regular ccntact manifolds.

Let = (M, 0") be a contact manifold of dimension 2n + 1.

22+ 1 and @G be

n
p-io
0
o

Namely, M is a C”-manifold of dimen
a differential 1-form on M with c“/\(dﬂ;)n # 0 at each point

X €M, where (da)” = do-A... AdT .

o , .
A quadratic form 6? of the Grassman algebra /\V , where
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V dis the duzl to a vecﬁor space V, is seid to have rznk 2r, 1if
o . r+l _ ”

the extezior product (€)T #0 but (&)T° = 0. Equi valently

EE, v = o}

razx 9 = diz V - dinm VO’ where V ={X € v

It follws that on a contact manifold M the condition T A (7))

o

a '
# 0 implies that at each point x € M the quadratic form d7

' *
in the Grassman algebra AT. (M) has rank 2n. We then have
% ,

v, = {xérmﬂ G (%, T_00) = 0 |

bspace of dimension one on which U # 0, and which is thus

4
n
1]
n
o
o

ccomplementary to the 2n-dimensional subspace on which € = 0.

Let ZX be the element of VO on which g~ has the value 1.

'is a vector field, which we call associated to C

N

Then

(8N

defined on 2ll of M by G-, and which is never zero since G (Z)
This vector field defines an involutive differential system on M

ad we shall call the contact structure O regular if each point has

o
(-39 [y3-1

1

Tre

fy

vlar nefehborhood, i.e. a cubical coordinate neighborhood

< .o Xa th any given intezrzl curve
( l’ 9 zn_._l) j g o

corresponds to 2 single segment

X, = €y "Elx2n+l = Conr? c; = constant, i = 2, eo. 2HT%}

i.e., which is thus pierced at most once by any given integral curve.
this implies in pa:ticularvthat each integral.curve is a closed
point set.

Hereafter, we will assume the manifold M to be compact.

If ¢~ {is a regular contact form on M, the, since Z is never
n
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we sae that they must be heomzscmorphic to the circle §7. Mcracver, the
vector field Z generates a globel action of the additive group of
rezl numbers R on M. It is clear frem the above that we may

suppose that the associated vector field Z gsnerates an action of

the circle group S en M. If B denotes the set of orbits, it

follows that B is a C -manifold, and that if (u,, ... , u, ..)

1 2n+l1
is a regular coordinate neighborhood in M, the orbit corresponding
to u, = constant, ... , u, - = constzant, thea U = p(U) with
coordinates Ugs eee s Ug g is a coordinate n=ighborhcod on B,
-where p ¢t M —> B dis the natural projection.

Boothby and Wang [4] proved the following theorem.

Theorem 1.1. If @ is a regular contzct form on a compact
manifold M, then
(1) ™ is a principal bundle over B with group and fibre S,
(ii) ¢” dzfines a connecticn in this bundle,
(iii) the bzse space B dis a symplectic manifold whose
symplectic structure 0 deteramines an integral cocyéle on B
and is the curvature form of G-, i.e. dg-= p*wW 1is the equation

of structure cf the connection.

Actually J 1s the characteristic class (with real coefficients)

of the circle bundle M.
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2. Szecew cf Legandrz izmersions
Lat /N be 2 szooth n-zzznifold and M be a comtact (Ca + 1)-
manifold with ccocntact structure U .
In order to prove Theorsm 1, we comsider the space L-Izm(A, M)
~ * ) 3 - o . w w
of all Legendre izmersions of A in M with C -topologv.
Let L-Mon(T(A), T(D)) denote the space of all L-zcncmoroh-
isas of T(A) dinto T(M) with compact-opex topology.
QObserve that the differentiel d defivas a map
d : -m“(/\ M) ——>  L-Moa(T(A), TCH).
We shzll prove the fclleowing thecrem.

Theorem 2.1. Let /\ be a simply connected

act

and M be a compact regular con (2n + 1)-mz

d » M) = L-Mon(T(A), TM))

2%

lv from Theoren 2.

+
et

Theoren 1 follows direc

ot

smooth n-manifold

nifold. Then the map

is a wezk homotopy equivalence.

a wezk hemotopy equivalence, it induces a 1-1 corrsspondence d
7{0(’~12@(/\, M) —> TEO L-Men (T (/\), T(M)0 of path c*::one‘ts,.
that is, of L-regular homotopy classes of Legendre immersions and
homotopy classes of L-moncmorphisms.

The first step in the proof of Theorem 2.1 is to establish a
covering homotopy for spaces of Légendre immersions. For ccnvenience
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s . . . D e k
of notations, we will denots the p-cube by I, Write D for
: . . | S k n-k+1 ..
standzrd k-disk in R, and DT XD for a neighborhoed of

_1 ) _
an x D™ 11 DX x DX,

R L LT,

,"" p Dh x D

n-rt|

m—%‘ o

b g

Ny ¢ e m——
. R

D&

Let /\ =\, \“ (0* x 2°7%), where Ay M ®0F x "%

~kt+
= B Dk X p e l. Let £ : /\ —>1¥M, and suppose that f{/\o is a

- ¢

Legendre immersion. -t

A

k+1

, M) —> L-Ima( D" x D" ¥,

Theorea 2.2. Llet TT : L«Imm(Dk x
YL
M) be the map which maps f to flSD” x D" &'l. Let F. : I° —>

0
&Tl, M) be

- n 4 ) —
L-Tza (0 X D™F, M) F : I° X I — L-Imm(d DX X D°

continuous maps such that Tt‘>FO(x) = F(x, 0). Then there exists a

. ol P k n-k ey
continuous map F : I" X I —> L-Imm(D X D » M) such that

i) F(x, 0) = Foix),
1i) TCOF ¢ F.

In section 3‘we\skétch the proof of Theorem 2.1, gi:SBL3;3;_§\
"Theorem

We will prove Theorem 2.2 in section 4.
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3. The immesrsion classificztion theoren

Let /\ be a smocth n-meaifold and M be a contact smooth

a
r
Y
e}
ot
0
ot
t
o
0
ot
(=
t
o
E )

(2n + 1)~zznifold with co

We begin with a description of the set of Legendre planes in

b

T@®), that is, the sat of n-plaznes in the fibres of T(M) on which

S

the contact form @ vanishes.

Lerma 3.1, Let M be orientzble. The set L(M) of Legendre
planes in T(M has the structure of a bundle on M associated
with T(M) and with fibre U(n)/0(n).

' . . 2n+1 ; .
Proof. Consider a Euclidezn space R of dimension 2n + 1

. ‘s n n X
with cocrdinzte (x, y, z) R X R X R. The 1l-form

9

xdy + dz

= x. dy

+ ... +x dy + dz
1 n-°'n

1
e . ; 2n+1 ’
déefines a caznoniczal ceontact structure on R . The Legsndre sub-

spzce of © through the origin has equation dz = 0.
We tzke i eand y as coordinates in this hyperplane. Thefefore,
in this plane we hav
d G‘{v_= 0= dx Ady. (cf. Arnold T[1])
However, in the canonical symplectic 2n-space (Rzn,ﬁo’), W=

dx A dy, the set of lagrangé planes is considered to be U(n)/0(n)




87

(cf. Armold [2], Souriau [12]). From this fact, we: ol

: . . . o
New suppose /\ has been given a2 Rifzmannizn mztric, and =A

— /A be the frame bundle, i.e. principzl O(n)-bundle asscciatead

with T(A). Let éﬁL(M) —> L(M) be the O(n)-bundle of n

the Legendre planes in T(M).

Corollary 3.2. L-moncmophisms & @ TA) — T are in

P

1-1 correspondence with 0O(a)-bundle maps ‘E%(/\)‘“? :% L) .
Theorem 3.3. The restriction map

e | | s
L-¥on(T(DX X D™°%), T()) = L-¥on(T(d DX X D* 1), T())

is a fibration.

Proof. By Corollary 3.2, the covering homotopy theorem holds for
L-monczmorphisms. However, the assertion is simply a restatement of

this property.

The next result is the 2nd step of the preparation for the

proqfof Theorem 2.1.

Lezma 3.4. Let M= (M, O) be a contact manifold of dimension
20 +1 and D" .be the n-disk. Then the map which maps the map f
to its differential df

d : L-Imm(D", M) —> L—}‘.?n(T(Dn)), T(M))
0

is a homotopy equivalence.
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£t 0 of D into M, let
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: . I
r: D —> D be a rediel retraction o¢f D cnto a prescribed

B

sz=2l1l neighborhood of O, fixed on a szmzller neightorhood of O,

By an argument formaelly identical to Heefligsr-Poemaru [10],
K n
r, : L-Im(@, M) —> ‘L~Imm(0, M)

is 2 homotopy equivalence.

On the other hand,

r. 1 L-Yon(TOD), TGN) —> L-xon(rc)(D“), T Q)

x °

is also a2 hezmotopy egquivzlence by Theorem 3,3, Since the dizgranm

& ,
L-T'*ﬁ(Dn,” M) —> L-Mon (T(D™), TOD)

- bkl

N .,
e | . L%
L-Imm(0, M) ——— L-xon(fo(b“), T(D)

is cocmutative, it is sufficient to show that

d : L-Imn(0, M) —— L-¥on(T_(0"), TCN)

is a homotopy equivalence.
, : . ‘ , ,
However, an inverse L-Mon(TO(D ), T(M)) — L*Imm(o, M)

is porvided by Darboux's theorem (cf. Arnold [1], Appendix 4).

: : ; k . __k
Proof of Theorem 2.1. By Theorem 2.2 (L-Imm(D~ X D" , M),

TC, L—Imm(a Dk X Dn—k+1, M)) 1is a fibre space, where T(- is

.
.

the restriction map. Furthermore, the following diagram
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: 8 n-%

L—Im(Dk X Dn-:c, M) —_— L-Mcn (T (Dk X p - , T(}’f))
TC L ". . ‘/t‘ \,/
- d
1308 x PR ) S 1awn(r(3 0% x 0L, 1an)

is commutzive, namely d 1is a fibre map, where T“l is the rest-
riction map. Therefore, by Theorez 3.3 and Lezz=z 3
Theorem 2.1, in formally identiczl method with Ezefliger-Posnzru

[10], Haefliger [8], [9].

(o]
rh
=
[
0Q
i
s }
[aW
r¢
-
"
£l
1]
[11)
a4
[F))
' '
(o]
=]
n

4, Covering homotopy prooerty'for the speace

<
Hh
(o]
at
rt
oy
W
m
(b

Now we prove the covering hc-o;op propertls ne s

- -

of Legendre immersions into a cozmpzct regular centact manifold,

i.e. Theorem 2.2.
Let £.:I° —5 L-Im(@ X D5, M), £ : 1P X I —>

0
_

L—Imm(a Dk X D" &+1, M) be continucus mzps. Let

. . R

Tt L-Tom % x DX, 1) —> L-1=a(d DY x DPEL 4

. e b y ok n-k+1
be the map which maps g to the rastriction gloD X D"
f of f£

Suppose T[olfo(x) f(x, 0). Then we waat the 1if pg
to L-Imm(Dk X Dn_ , M) with f(x, 0) = £ O(X). Now M is a
‘compact regular contact manifold, M 1is a principal ,Sl~bundle over
a symplectic manifqld B: (M, p, B), B= (B, wW). Moreover, we
have dg—= p*w, Corresponding to fo, f, weAhave the following

maps, respectively :
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1

k k

F.:I° XD XDV —> M,

0

F o:1°x1x908x 0™ s

Eere, for ezch (u, t) E»Ip X I, if we put fu t(x) = F(u, t, x),
J

- = =8 r cendr {m—==rsion or-csin
fu,o(x) Fo(u, & %), fu,t are Legendre imzsrsions. Comgosing

these meps with p : M —> B, we have the following maps

k

_1
G, :1I°xp°x D" —> B,

0

R
c:1PxITxdpfxp ¥ 5 B,

Eere, if we. put. g, t(x) = G(u, t, xX), g, O(X) = Go(u, x), then
? 3

ere legrengs imzersions, by Thesorem 1.1.

1)

Applying the flexibility theorem of lagrznge immersions (cf.
Gromov [7]), we have a fzmily of lzgrange immersions

1

o~~~
P k n-k

G:I"XIXD XD > B,

which is a1 extension of both GO dad G. However, for k # 1
-~ - - v
by Theore= 1.1, wz caa 1ift G to M, nzmely, we obtzin the follow-
o0

ing C€C =-map

lad k 1

n-x
F:I?P X IxD° X D —> M,

Ao
i) F d4s an extension of both FO and F,

k

. . ~ _ . n-
ii) 4if we put F(u, t, x) = fu,t(x)’ then fu,t : D. XD

k

—>

M i1s a Legendre immersion, far eacl, («4,t) € IP“ I'

L

1ii) peoF = G.
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Proof of the existence of 1lift F for k # 1.

; ce s . ot D
v taking sufiiciently small cubic subdivision of I7 X I X

v
-

1
S s L) SN - e . . : . . 1
Dk X D 7, it sufiices that we consider the czss where the S -

bundle (1, p, B) to be

M= (R2n+l, Gg), G = indyi + dz,

2n+1

R S (:(l, e s Koo Yis eee s Yoo z)
B = (%%, w), W=do,

21

Rqa(xl,..,xn,yl,. , Y.),

P (xl, cee s Xy Yga oeee s Yos 2 —> (x5 eee s xn; Yis e

Thea for (u, t) &€ 1P X I, let

Loy}
X3

3 Dk X Dn—:c—rl : R‘Zn-r-l

-1 . ‘ -
FUO':DkXDn‘ _\__/_?RZQI
)

be Legendre immersions with I-'u 0 C} Dk X Dn-kll = fu_,o._ Let us

denote as follows @

F = (x ):

u,0 u,0’ Yu,O’ Zu,O

12



92

5 = (x ' Yy =pof .
u,t u,t’ yu,t P ,t
. =z . 2n
Then 52‘1 0’ S:u . eTe lzgrange, immersions into (R", W) such
3 3

that

7 ~

( )-:J = "dZ ’

:fu,t - u,t
(4.1)

o ¢ —

*G = - dZ
(Eu,O) - u,0’
k n-k+1
and Z JD° XD =z .
,0 u,0
(here we are considering y 2 as coordinate functions cn
u,t’ "u,0 '
k n-’.——"l . 3 .
the bundle space en 9 D XD induced by fu N and on
]
k n-kx .
nduced by raspectively).
D XD ind b3 Fu 0’ pectively)
]

such that
- .
: k n-k+1 _
j)u',tsaD XD —?ut’

f?u,O - §iu,0'

As is stated above, we use here the flexibility of lagrange immersions

(cf. Gromov [7], Part III).

13 ——
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~ k . .n-%
Now wz construct a2 Legendre immersion Fu r c: D XD —_—
3
n+1 .
qu with

F 18D XD = f ,
Q, < u,t

F |
w0 - Fu g+ Since 5~ is a lagrange immersion,

o
we heave (?u t)*.-»= 0. Thersfora, (33 t *g is closea on Dk X

n-% . y eI k
D . By Poincare’'s Lemma, we have a2 C functicn Ku ¢ D X
3 .

) .
Dn K——a R, such that

- e D
(?u,t)xf = -dxX Y (u, t) I° X I.

Suppose k 2 2. Then B D x D" n-k+l is. connected. By (4.1) we have

k n-k+
Ku’tl:}D XD T T =2z +c .,

Q’_j ‘ vay - '
here <, i:Y‘onstant on Dk x D" for ezen (u, )&
X1, ad C issconstant en DX X D™X for ezch u ¢ IP.

- Then we have

ket y ko _n-k+ -
¢ |30%x ook ot x oz {QDkXD““
u,0 u,0 u,0
k n-k+1
= K ’Ola‘n XD -z,
= cu,O.
’ ~ .
Therefore, for each (u, t) € 1P X I, we can take|constant Cu ¢
Lo 5

a

14
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bn Dk X Dn-£ such

that
k n-k+1 _
0) cu’t{an XD =cy e
~
Cu,O N cu,O,
o~ . D
1 Cu ¢ is smoothly dependent on (u, t) € I7 X I.
. )
new we put
7 ~ ~
Zu,t - Ku,t - cu,t ?
Cad v
zutzvkxvn“ —> R, for (u, t) & 1P X I.
3
Then we heve
k n-k+1
Zy ¢ dDT XD =z,
o~ - aﬂ,.,-,!
zu,D E ’O(-
We define for (u, t) €1°x1
F o :DSx D% > ¥
u,t
— ~ P
Fu,t = (59u,t’ Zu,t)'A
Then we have
~ ~ ~
w * = *
(‘u,t) o (j?u,t) ET + dZu,t
= 0,
~
namely, Fu ¢ is a Legendre immersion and
H]

15
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02

Thus we have a lift which we want.

) .
Note. 1In case k =1, Cu ¢ @s above os not well-defined.
’ 3
Department of Mathematics Department of Mathexmztics
Faculty of Science College of General Educztion
Kyoto University ' Oszka University
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