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Lojasiewicz type inequalities and Newton diagrams

Toshizumi Fukui 7ia FE e HRd

8 1. Introduction

Let € be the complex number field and f be an analvytic

function near the origin 0 € C". Let Tys wee s T be a coordinate

system of €n near 0. Assume that f has an isolated singularity at 0.

In other words, in some neighborhood of 0O,
Ty = = = i i =
ar ) e o1 () 0 if and only if 0.
Then there are positive numbers «, C such that the following

Lojasiewicz type inequality (La) holds near 0.

(L) lgrad fez| = clz|%,
_ ,of af \
where grad f(z) = (a:c (), ... , ag (),
1 n
and | | is the usual euclid norm.

This inequality has appeared as a characterization of
Co—sufficiency of jets.

Theorem (1,1) [Chang-Lu,l]

Let f be an analytic function near 0. If (L,) holds near 0 for
some o < r, then ' f is a CO—Sufficient jet in holomorphic functions.

Originally this theorem was proved by Kuo in real case(see [2]).
S.Koike pointed out me that the converse of this theorem is
true (seel01).

Set ao(f) the minimal number of « such that (La) holds near 0.
In [LigpDin, 3,41, using the Newton diagram of f, he gave an

estimation of aO(f) in case for n=2. But he didn't give similar
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gnalysis in case n23. In this note, we give an estimation of qo(f)
using the Newton diagram of\f for generalrn. (Theorem (3.3)). In 8§5.
we treat real case.

Tc estimate ao(f), we use a simplicial finite subdivision of the
dual Neuton diagram T'*(f) of f.(see §2., for definition) We don't
use so-called unimodular subdivision of F*(f), which plays an
important role in the theory of torus embedding. We don't need any
knowledge of torus embedding in order to prove our theorem. The key
step of our proof is to analyée a. face of the Newton polygqn of f,
which is not compact, nor coordinéte, i.é. whiéh is corréspbnding to

I in our later notation.

O,

§8 2. Newton polygon

(2.1 Let f be an analytic function near OGCn, and let 2 av ka
v

be the Taylor expansion of f at 0. Set

R+ = {ze€eR | z=013,

Mg =0},

F+(f) = the convex hull of { v + R+ v

F(f) = union of compact faces of I' (f), and

F(k)(f) = { kfdimensional face of I'(f)}.
We call T+(f)(resp. F(f)) the Newton polygon of f (resp. the Newton
boundary of .
(2.2) Let @ = (@, ..., @) € R." and ¢ = (&, ..., ) €
(R+n)*, where (R™™ is the dual space of R". Set

1= N ,
<a, o> o, _ a .

8(x) := min { <a,x> | a € r Ny,

Y@ := {a €Tl _(fH | <a,0> = &(a) }, and
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) ¢
o = RMHY ~,
where the equivalent relation ¢ ~ o defined by yv() = y(a’).
We call y(ot) the face of I' _(f) supported by «, and T 17> the dual

Newton diagram of f. Naturally we can identify an eguivalent class

k : .
with a polyhedral cone ¢ = R+a1(o) + L.+ R+a (o), where aj(o),

.oy ak(a) are some integral vectors. We may assume that b = aJ(o) if

pb=aj(c) for some non-negative integer p. i.e. the greatest common
divisior of components of aj(o) is 1. We say that o is a k—-simplex
if az(o), ...,ak(o) are lineafly independent.

2.3 Using above identification, we can consider r*(f) as a
rational polyhedral finite subdivision of the first gquadrant. Let X
be a simlicial finite subdivisiaon of I'"(f). In other word, Z is a

finite set of simpleces that gives a subdivision of F*(f). Let Z(k)

be the set of all k-simpleces of Z. Let C"o) be a copy of C" for

(n> . i
each ¢ € Z , and Yy = (yo,j’ ce e s yo,n) be a coordinate system of
C"(0). For a matrix A = (a%) € Mat(n,n; Z), set
1 on
Ay - ¢ aq ai “g)
JREREE Yy 0o Yy e Y,

Define the mapping m : € ) —— C" by n,(y,) := a(o)yo, where
ac) = @@y, ..., a®w@)). set

. n

: {yGeC(o)[lyo’jlsz‘},

wo
W := disjoint union of wo for ¢ € Z(n), and
14

.
-

{z e ¢ | lz 1 < 1.

Define a mapping 7:W —— V by n(y_) := n,(y, ) for ¥y € W,.

For a subset 7 of { 7,

E

.y N}, set

f EG'[ = { Y, € Wo | v ; = 0, for any i € [ }, and

— % e~

E

L]
=y
S
~~y
1l
@
m
Iy

o o, I | ¥ .= 0, for any § € (1,...,n}-I }.
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(2.4)Lemma
1 K_I(O) n Wa is compact.
2) m is surjective.
Proof) 1) Since nc—l(O) is a union of some coordinate spaces, 1) is

obvious.

ZKJTTGi :
2) For any £ € V, set T, =T;e . ri =20, 0 8. <1
ZHJTTGO
Set yc’j = ro’j-e s ro’i =0, 0 < Go’i < 1.
a’. (o) a?(o) _
Since xi = yo,] °*°'~yo,n , Wwe obtain that
a’. (o) a?(o)
=T, e Ty , (2.4.1)
_ 1 n
and Gi =‘ai(c)eo’j+...+ai(o)ec’n (mod Z). (2.4.2)

Since a(o) has the maximal rank, the equations (2.4.2) have a
solution. We have to solve (2.4.1) for some ¢ under the condition

T, P < 1. If ri = 0, for i=7/,...,n, then we obtain that

KA
"(2.4.1) <=> log r = >
. J=Z

Therefore [-log Tih oeet -log rn) € g

J
ai(o) 1og ro,. on 7

; 0.1 Toqg ® O

s

(=> (—log ror IR , ~log rc € the first quadrant

n .

<=> ro,j <1 for jg=1, ..., n."

Since X is a subdivision of the first quadrant, there are ¢ and ro
N 3

satisfying (2.4.1). Since (C-0" NV is dense in V, and in view of

1), (2.4.1) have a solution with 7 j < 1. (q.e.d)

(2.5)  Define f_ by 3 a._ z’ for v ¢ (R.M™. Note that 7_ is a
v > e, Ty + ¥

polynomial if Y is compact. We say that f is non—-degenerate if the

equations
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af i
amj te oz

have no common solution on mj.....m # 0 for any compact face y of

n
r .

§3. Result.
(3.1) Let H? denote the hypersufface with v © HY for y €
F(n-l)(f). Let mi(?) denote the i-coordinate of the point
(i—axis) N Hy. Set
m{y) = max { ml(y), oo mn(v) }s and

My (f) = max  m(¥) | v € ré¢n-1)

(£ 1.
(3.2) We consider the following condition for the Newton polygon.

(3.2.1) Condition U Yy =T,
' (n-1)
ver H
(3.3) Theorem.

Let f be an analytic function near 0. Assume thal f has an
isolated singularity at 0 and f is non-degenerate in the sense of
(2.6), and T _(f) satisfies tke condition (3.2.1). Then

ao(f) < mo(f) - 1.

(3.4) Corollary.

Let f be as above, and let r be the smallest integer with
r > mO(f)-l. Then i¥F is a CO—sufficient jet.

(3.5) Remark. Theorem (3.3) asserts nothing new when the function
f is convenient ("convenient" means that the Newton polygon F+(f)
meet each coordinate axis).(See [51.) But when f is not convenient,
this is a new result.

5 5 5

(3.6) Example. Set f(xl,$2,$3) =TT T, T,Ta

Then ao(f) < mo(f)-l = 25/4 -~ 1 = 21/4. In this case it is easy to
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show that the equal mark holds. Define g by f + $3100' Then we

get ao(g) = ao(f) = 21/4, and mo(g) = 100. So, in general, the equal

mark does not always hold.

84. Proof.
(4.1) For a = (az, e e an), set

m(a) := min { az, see 5 @}, and

n
Ma) := max { a;,, ... , a, }.
(4.2) Let ¥ be a simplicial subdivision of F*(f). Set
=1 2 ta ez P @ > 0. |
We consider the following conditions for ZX.
Condition{4.2.1). () . {l-simplex of TH(MHHr.
Condition(4.2.2).  For a subset A of =17, |

1y An 2i1> #¢, if N v(a) is compact, and
a€A

2) 2¢a) = M) or £(a) = 0 for any a € T17.

(4.2.3) It is easy to show that the condition (4.2.1) implies
the condition (4.2.2) under the assumption (3.2.1). (See-(4.7).)
(4.3)Proposition.

Suppose that f has an isolated singuiarity at 0 and is
non-degenerate in the sense of (2.5), and let 2 be a simlicial
subdivision of F*(f) satisfying the condition (4.2.2). Then

o, (f) < max (L(@)/m(a)la € TPy - 1.

(4.3.1) Since Q(aj(c))/m(aj(a)) = m(?(dj(o))), it is easy to show

that (4.3) implies (3.3). Then, in this section, we shall prove

proposition(4.3).
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(4.4) set z = Ay, where A = (a%).
N, := {.7e {1,...,n} | ma®) >0 1,
N_ = {ge{t,....n} | 2ady =01,
NO'.— {];...,n} - N, - N_.

For a subset [ of {( 1, ..., n }, set

by
i

InN, I :=InN, I_=1nH_,

_ 0
7 iE (il ai # 0, there is a number j € IO}, and
. . J _ R

7 {(i| a¥ = Q(a)f for j € I},

= =
" ]

i
: i
(0,...,0,1,0,...,0), and

Set e

J

N yda“y.

JjelI
(4.5) Define gk(yo) and gé(ya) by

of
C T A Y _(y )y =
k axk o' 7o 7

-e
—y
1]

2¢a? o))

yc,j 'gk(yc), and

s

1
Q(aj(o))—az(o)
g,J -gé(yo>.

a-F
axk(nacyo)) = I Y

jeN+
Then

<v,a1>—Q(a1) <v,an>—Q(an)
ocna.yo’n N

gk(ya) g Vi 4y yo,l

; ; J J

- J J <v,a* >-a

, _ <v,a'>-2(a") k
9, (Yy) = é Vi @y m oy, y

. sd ; o,J
JeN - 7 JENOUN_
Note that gk and g& are analytic functions.

(4.6) Since

az(o)
Y. "9, (Y, =
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on I y. . #Z 0.
JEN UN 7.3
O -
(4.7)Lemma.  If v(a) N (v ----- v 20} # ¢, then L(a) 2 M(a).

Proof. It is enocugh to prove that
(4.7.1) if ya)y n { vi Z 0} # ¢, then L(a) = ai.

By the assumption, there is a v = (vl, ce s vn) € y(a) n I° with v,

# 0. Then 2(a) = al'vl + ... + an~vn > a; v, p-3 ai

(q.e.d.)
(4.8)Lemma. Suppose that f has an isolated singularity at 0. Let I be
a subset of {1,...,n}. Assume that ?I is not compact. Then there

are a number 4 € {1, ..., n} and a point v € F+(f)nZn such that

J

<v,a’> = ai for any 4§ € I.

Proof. Assume that any ¢ =1, ..., n, there is a number 7 € I such
that <v,a’> > a%.
1 1 T n
: <v,a >-a <v,a d>-a
nee QAL SR S @y
Since axk( y) = 2 vk av yl . yn s
v‘ .
%i~°n is identically zero on E,. So , n(E,) is a
T, I I .

singular locus of f, Because f has an isolated sigularity at 0,
K(E}) = {0}, Therefore n—?(at)'is compact. (g.e.d.)
i€]
(4.8.1) Under the same assumption of (4.8), in view of (4.7),
we get that 2ca?y = Mwa?y for any J € I.
(4.8.2) Under the same assumption of (4}8), for any v 64?};’0ne of
the following properties hold.
(4.8.2.1) Vi = 0 for any k € MI'

(4.8.2.2) There is a unique k € MI such that
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Vk = 1 and \)k; : - i0Ir any k € N I- {k}.

(4.8.3) Moreover assume that the condition (4.2.1). Since ?I n
0
{vl.....vn¢0} # ¢, and ?I isn't compact, the consegquences of
0

(4.8)-(4.8.2) hold for IO'
Lemma (4.9) Assume that Yy isn't compact, and that.
YI N {Vl""‘vn Z0} # ¢,

Then there is an analytic function fi’ for each {1 € NI’ such that

f(ml, cees T) = _E mi-fi(ml, cevs T
LGNI
Proof. 1f there is a v € F+(f) with v, = 0 for any i € NI’ then

<y, a’> = 0 for any J € IO' This is a contradiction. (g.e.d.)

(4.10.1) Set hi = fii{mj=0]j€NI}. Since f has an isolated

singularity at 0, then we obtain that

(h; =0 | i € Npd o= (0 on { T; = 0| 7 € N[ }.

In particular, at least one of hi isn't identically zero. Moreover if
the coefficient field is €, then we get that #LI 2 n - #NI, where
Ll = {{ € NI | hi isn't identically zero}.

(4.10.2) NI ) MI ] LI'

. . 7 .
Proof. It is clear that NIDMI’ For any J € IO, a = 0 if kK € NI’

Suppose hi is not identically 0, then the weighted degree of mihi

%, and thus equals to l(aj). Therefore,

J equals to a

with respect to a

i € M]. (q.e.d.)

(4.110)Lemma. For any v € E?, the following conditions are equivalent.
1) gk(y) = 0.

2) efy /amk(m) =0,

I

otherwise.

£
oy
4]
g}
o]
82
1}
<
it
~
2
oy
«?
~
w2
if
[y
[
s
[ Sy
m
—
w2
n
<
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<v.a3>-ﬂ(aj)

Proof. Since g, lE, = 3 v,ra. T .
n J\_ J
-3 vera, T yj<v,a >-4fa )
UEYI J=1
we obtain that " g,(¥) = 0 for y € E?
n J
<=> 2 Vi@, I §'<v,a = 0
UGYI J=1 J
<=> 3 v ¥ =0
VEY;

{=> afyl/exk(x) = 0." (q.e.d.)
(4.12)Lemma. For any y € E?, the following conditions are
equivalent.

1) g&(y) = 0.
2) of /8z, () = 0,
where FI X := {v € F+(f)l <v,aJ> = Q(aJ), for any j€I+, <v,a3> = ai,

for any J € I Ul _}.

Proof. Since g&IEI =

S vea T ¥ w,a?>-0¢a?) . v <w,a’>-a}
V. _ J . _ J
verI’k JeN -1, | JEN JUN _ IOuI_
- S v N 7 w,al>-2?y 7 <v,a?>-aj
- : k “v._ ., 77 . i ‘
verl’k JEN JEN JUN _ “
_ ~ <v,a’>-2¢a’) ~ 2@a’)-a
2 v,-a g v P>-2¢’ . T % 2¢a’ i
- k “v. .77 : . J ’
verl’k J=1 JENOUN_
we obtain that
" , _ , ok
gk(y) = 0 for y € EI
n J
<=> > vk~av'H §j<v,a = 0
Verl,k J=1
<=> 8fp /amk<5) = 0Q." (qg.e.d.)
I,k '

..10_
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(4.13) Lemma. Assume that f(has an isolated singularity at 0.

1) If kK € MI’ then rl,k = ¢.

2) If k € MI, then afF /Smk = 8f¥ /Sxk,
I,k I
where ¥, = ¥ Nss _y N YW@,
I IVl S;-H;
85 = (v, =0 | 3 € Jy, e (l,...,n},
S; = (j€{l,...,nm)| there is a number ¢ € I_ with a’ = e}, and
a% =d, if i € MI; d-1, if iGN[—MI; 0 , otherwise,

d = sufficiently large integer.
Proof.;) By the definition of £ and Fl k and (4.8), 1) is obvious.

2) BSet Hk = af?I/az
3
AT

k" We obtain that

afr /emk f

Y
koY1l

27
9z 14 N da _
ko Yrur oS-k

, _ : )
1.k n 53[‘{k} n (vp=1, if k GSI}

—14)

) .
= oz, ((F.) ) )
8z k k’8 ¥ n s
o)
= = —((z, h
amk k

)
I

)
k N 63

Y _
1,017 °s,-¥

=Hk

The definition of I'; , implies the first equality. Since k € ¥,
(4.8.2) implies the second one. The third one follows from (4.8.2)

and (4.9). (gq.e.d.)

(4.14)Lemma. Assume that f is non-degenerate in the sense of (2.5),

and that f has an isclated singularity at 0 , and that IO # ¢. Then

of

— Y A far amyu b €M 0% = £ g e e e -
{ amk = 0, for any k EMI Y c {x : ., =0 },

where y = ?I.

._11_
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Proof. For the sake of,simplicity, we assume that
LI={1, cee 5 8}, NI=(1, cves 9, S+1, cees C 3}

By (4.10.1), we get that 8 > 1. By (4.10.2), Ly cH,.

. 0 0
Assume that there is a ($c+1’ .y xn) such that
0 0
$c+1 mn # 0, and that
0 0, _
Hk(xo+1’ . mn) = 0, for any k € MI'
S , )
Note that f (z) = kglkak(xc+1,.‘.,$n). By the assumption of
non-degeneracy of subfaces of vy,
oH . '
> xj-551($g+1, ey $g) = Q0 for 41 =.¢+1, ..., ny c¢ {0 £.=0},
jed i jedg ?
for any subset J of LI.*

oH

’ i.. 0 0 ) ~
In other words, Tank‘(azi(mc+1, e ee mn) = g.

On the other hand, since Hl’ oo s HS are weighted homogeneous

. . .
polynomials for some weight (ac+1, cee s G

n dH .
J ¢ B AP ¢ _ 0, _ -
2 AT oy e, ) =0, for o= 1,..., 08
i=C+1 1
. SHi 0 0
This asserts that rank (8$i($0+1, R In)) < 8. This is g
contradiction. : (qg.e.d.)

(4:.14.1) .As a consequence of this proof, we obtain that

#L, < n - #N

{ I

(4.15) In this paragraph, we assume that f has an isolated
singularity and is non-degenerate. Let = be a simplicial subdivision

of F*(f) satisfying the conditions (4.2.1) and (4.2.2).

- _ . , _
(4.15.1)Claim. The function 2 !g;;(y)l2 is positive on & Loy,
k=1
k

Proof. Assume that there is a point ¥ € EI such that
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n
2 ]gi(y)lz = 0. If i yj = 0, then g,(y) = 0, for k=1,...,m,
k=1 JEN JUN

>ecause of (4.6). By Lemma (4.11), this contradicts non-degeneracy of

f. Assume that - ¥, = 0. Lemma(4.12) and (4.14) assert that
jenun_ 7 |

non-degeneracy implies positivity of 2 |9é(y)|2. By (4.13),
keM
I

n
2 lgk(y)lz = 3 Igé(y)lg. So this is a cotradiction. (gq.e.d.)

(4.15.2)
n
lgrad £12¢*9%y ) = 3 l—i; @9y 5|2
= S 1 lyo jIZ(Q(a (o)) ak(c))'lgé(ya)lz
k=1jeN+ ’
2 (2 ¢a’ (0)) m(a? (o)))
=z T 1y, sl 2 ng(y [ 2
JEN . k=1
(4.15.3)
1 n
- n a; (o) ay (o)
2@, 4 . KT k97 2
[z]“¢ ¥,) = k§1ly°’1 Yo.n l
1 1 , n, __. T
- |y IZm(a (o)) g Iy dplor-mia=(ayy a (@)-m(a <o>)!2
Y Yo,1 Yo,n
JGN 7.7 k=1 ’ ’

Note that the condition (4.2.2.2) implies
el Py=0) = (3, ;=0 for j with nca (0))>03.
(4.15.4) By (4.15.1)-(4.15.3) and (2.4), finally we obtain that
®,(f) < max {Q(aj(a))/m(aj(o)), for o, J with‘m(aj(a)) >0y -1,
Z(n).

where a(0)=(a1(0),...,an(o)) for g €

This completes the proof of proposition (4.3).

§ 5. Real case.
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In this section we treat a real function f:(R",0) —(R,0).
We can define the number ao(f) in the same way as the complex case.
Similar charcterization of Co—sufficiency of real jet was proved by
Kuo [21.
(5.1) Definition.

Let v be a compact face of ' _(f) and IY be a subset of
{1,...,n} depending on Y. We call

N := {(Y,IY)IY: a compact face of ' _(f))
a Newton data of f if the following properties (5.1.1) and (5.1.2)
are satisfied.
(6.1.1) (df,/8z, = o L€ Az e z_=0}.
(5.1.2) [_c I, if wy.
(5.1.3) Note that the real analogue of (2.5) implies the existence of
a Newton data.

3 2k

(5.2) Example. f($1,$2) =z, + xz z, (k=1).

Set Y1=?(el), ?2=Y(el+262), y3=?(ez), and yij=yinyj.

N = {(Yz,{1}),(Y12,{1}),(?23,(1})} is a Newton data of f.

Then

(5.3) Theorem.

‘Suppose that f has an isolated singularity at 0 and a Newton
data N. And suppose that F,(f) satisfies the condition (3.2.1). Then

ao(f) < m), |

where mN) = max{(L(a)-a)/m(a)la:l-simplex of [ _(f) with m(a)>0,
ie]?(a)}’

This theorem follows immediately from the following
(5.4) Proposition.

Suppose that f has an isolated singularity at 0 and a Newton

data N. Let X be a simplicial finite subdivision of F*(f) satisfying

- 14 -
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the condition (4.2.2). Then

(1) .
. LGI?(a)}.

Proof. The proof is almost similar to complex case. But we have to

ao(f) < nN,Z) 1= max{(i(a)—ai)/m(a)l aeyx

modify the construction of a simplicial subdivision of F*(f).
(5.5) Notation.
Wp = W0 R™, wa,R W, n RY, /g =V 0 RY, na nIWR, and so on.

It is easy to show the following two lemmata.

(6.6) Lemma.

Let ~ be a simplicial finite subdivision of F*(f) satisfying
(5.6.1) For any 1€{1,...,n}, there is a number j€{1,...,n} such that
J . (n) . .
ai(o) is odd, for any ¢ € 2 . Then RR. WR —_— VR is a
surjection.

(5.7) Lemma. For aizo, bi>0’ eizo, such that one of ci is positive,

the following inequalities hold.

max{ai/bilt=1,...,n} > (zciai)/(gcibi) > min(ai/bi|t=1,...,n}.
(5.8) For any o € ™), define k(o) and p(o) by

n - k(o) = #(al(o),...,an(o)}n{e

1,...,en}, and

p(o) = #(jla?(o) € 22, for any 1i}.
After suitable renumbering, we may assume that

ai(o) = e, 1=k(o)+1,...,n,

2@ty > 0, i=1,...,k0),

a?(o) € 27 for i=1,...,n; j=1,...,p(0)<k(o), and

there is a number i such that a;(c) is odd for

any  J=p(o)+1,...,k(o).
(5.9) Choose a_ € (a'(9),...,a"(@)} such that m(ay) > 0, for ¢ with

k(9)>0. Choose b_ € (2Z+1)P %z Py 6 for ¢ with k(0)>0.

Then there is a simplicial finite subdivision Zu (u=1,2,...) of Z

_15_
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satisfying

(1) _ «(1D -

Zu = 27U (bclp(o)>0, and k(o)=0} U {(u—l)aa+b0|p(o)>0, and

k(og)>0}.

Since Zu satisfies (5.6.1), the mapping corresponding to Z“ is
surjective. Then we obtain

aO(f) < inf {m(N,2“)|u=1,2,....}.
By (5.7) and the construction of Zu’ it is easy to show that

inf {m(N,Zu)lu=1,2,...} = m(N).

Note that
n
lgrad 7123 Py ) = 3 18120y 52
k=1 “%k
> 3 151 a9y 52
kel k
g
sctcal woryr-aloyy .. .2
= 2 T oy, sl k gyl
kEIo JGN+
» J _ J
> 1 Iyo- jl?.(sl(a (Tg)) mo(a (g))) z Ig];(yo)lz’
jen, 7 kel

J

. J .
where m_(a"(¢)) = min {ai(c)ltelo}.

Comparing it with (4.15.3), we obtain proposition(5.4).
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