
87

Generation of Rewriting Programs from
Horn Clause Specifications

富樫敦 グレン マンスフィールド 野口 正一

Atsushi TOGASHI Glenn MANSFIELD Shoichi NOGUCHI
Research Institute of Electrical Communication, Tohoku University

2-1-1 Katahira-cho, Sendai-shi 980 Japan

1. INTRODUCTION

Generation of machine executable programs from specifications written in
higher level languages has always been an attractive idea. Several attempts have
been made in this direction. The basic approach in program generation is the
theorem proving approach. In the theorem proving approach the specification is in
the form of a $sequent^{[4]}$, a $tableau^{[10]}$ or a set of non-clausal logic $sentences^{[11]}$. The
program is generated as a by product of the proof of a theorem specifying the
program and it generally involves generation ofnew sequents, tableaus or sentences
by application of deduction rules. A singular characteristic of these systems is that
they are basically heuristic and rely heavily on human intuition to chose from th\’e
exploding number of legal next steps. This has made it extremely difficult to design
an algorithm to mechanically generate programs from specifications.

In this paper we address the issue of generating rewriting programs, a kind of
functional programs, from specifications given in the form ofHorn clauses based on
program transformation techniques. Horn clauses are directly executable as logic
programs (e.g. Prolog [9]). Our motivation behind this transformation lies in the
fact that, in general, functional programs are more efficient than logic programs.
The reason being that, unlike logic programs which rely on backtracking, functional
programs may be transformed into confluent forms where backtracking is not
necessary $[7,8]$. The key rules used in the generation of rewriting programs from
Horn clause specifications are“folding” and “unfolding”. ’

To illustrate our idea of program generation, or program transformation,we take
the example of alist reversal program. The list reversal” program in Prolog is

Rev$([], [])$. (1)

Rev$([A|X], Z)$:- Rev(X, Y), $Ap(Y, [A],Z)$. (2)

$Ap([],X, X)$. (3)
Ap($[A|X],$ Y, [A $|Z]$) :- $Ap(X, Y, Z)$. (4)

where input-output assignment of the variables in the Rev predicate is given in the
form:

Rev$(X;in, Z;out)$

This means Rev takes a ground term as its first parameter and a variable as the
second parameter in every goal. The definition of rev in the target (functional)

language is given by the clause ofthe form:

1

数理解析研究所講究録
第 625巻 1987年 87-97

88

$reu(X)=Zarrow Rev(X, Z)$. (5)

Step-l: by matching the rhs of (5) with the lhs’s of (1)&(2) we obtain
rev$([])=[]$. (6)
rev$([A|K)=Zarrow Rev(X, Y),$ $Ap(Y, [A], Z).$ (7)

respectively.
Step-2: by matching the term Rev(X,Y) in (7) with the rhs of (5) we get

rev$([A|X])=Zarrow rev(X)=Y,$ $Ap(Y, [A], Z)$. (8)

Step-3: applying the resultant equality in the body of (7-1) to the entire clause we
have-

rev$([A|X])=Zarrow Ap(rev(X), [A], Z)$. (9)

The definition of the append predicate ap is
$ap(X,Y)=Zarrow Ap(X,Y,Z)$. (10)

Step-4: as in step-2 matching the rhs’s (9)&(10) we obtain
rev([A I $X]$) $=Zarrow ap(rev(X), [A])=Z$. (11)

Step-5: as in step-3 applying the resultant equality to the entire clause we obtain

rev$([A|X])=ap(rev(X), [A])$. (12)

In a similar manner using the specifications of append we obtain-
$ap([], X)=X$. (13)
$ap([A|X], Y)=[A|ap(X,Y)]$. (14)

As a result of the above exercise we have obtained clauses (6), (12), (13)$and(14)$

which are in the functional form. Thus we have, in effect, generated a rewriting
program-

rev$([])=[]$. Rl.
rev$([A|X])=ap(rev(X), [A])$. R2.
$ap([], X)=X$. R3.
$ap([A|X], Y)=[A|ap(X,Y)]$. R4.

from the Horn clause specifications of the list reversal program given in (1) $-(4)$.

2. REWRITING PROGRAMS
We assume familiarity with the basic notions of (many-sorted) equational logic

and term rewriting systems. See for instance [8]. For simplicity of notation, we
assume we have only one sort; all the results of this paper carry over to many-sorted
cases without difficulty.

In this paper, we use several symbols as syntactical meta variables. We use $X,$ Y,
Z for variables, $f,$ $g,$ h for function symbols, $a,$ $b,$ c for constants, $M,$ $N,$ $L,$ $R,$ $K,$ $l,$ r for
terms, $s,$ t for ground terms (terms containing no variables), $u,$ v for occurrences, and
$\theta,$ $0,$ $\eta,$

ζ for substitutions, possibly with primes or subscripts. The symbol $\equiv is$ used to
denote the syntactical identity. For a term M, we denote by Ocr(w its set of

2

$8\backslash ’\dashv$

occurrences and by M/u the subterm of M at the occurrence $u\in Ocr(M)$. We use
$Var(M)$ to denote the set of variables occurring in M. Given two terms $M,$ N and an
occurrence $u\in Ocr(M)$, we define $M[uarrow N]$ as the term M in which the subterm M/u

at the occurrence u is replaced by N, and $M[N]$ as the term M in which some subterm
of M is replaced by N.

Definition A term rewriting system is a finite set RS of rewriting rules of the
form $larrow r$ such that $Var(l)\supset Var(r)$, where l and r are terms.

RS may be applicable to a term M if and only ifthere is an occurrence $u\in Ocr(M)$

such that $M/u=l\theta$, for some rule $larrow r\in RS$ and for some substitution θ . In this case,
we say that the rule $larrow r$ is applied to the term M to obtain the term $M[uarrow r\theta]$. The
choice ofwhich rule to apply is made in a non-deterministic way. We write $M\Rightarrow_{RS}N$

to indicate that a term N is obtained from a term M by a single application of some
rule in $RS.$ Let $\Rightarrow RS$ denote the reflexive and transitive closure $of\Rightarrow RS$. If $M^{*}\Rightarrow_{RS}N$

holds, we say M is reducible to N in $RS.RS$ may be omitted $from\Rightarrow_{RS}$ and \Rightarrow_{RS} when
it is clear from the context.

We shall formulate a rewriting program- a program which can be regarded as a
set of rewriting rules, in the framework of a term rewriting system as in [5] with
emphasis on the irreversibility of the rules. The theoretical issues related to
computing with rewriting rules have been treated in detail in [7,8,12]. Hoffmann
and O’Donnell [5] have illustrated the usefulness ofthis style ofprograms, and have
also investigated the problems involved in implementing its programs.

Let Σ be a(finite) signature of function symbols. Following [15], we assume the
signature Σ is partitioned as $\Sigma=\Sigma^{c}\cup\Sigma^{d}$. We shall call the function symbols in Σ^{c}

constructors, and the elements in Σ^{d} defined function symbols. Constructors create
concrete data structures to be processed. Defined function symbols define certain
manipulations over the constructed data structures; their meanings are described
using rewriting rules.

Definition An rewriting program on Σ is a term rewriting system RS such that
each rewriting rule is of the form $f(M_{1}, \ldots, M_{n})arrow M$, where f is a defined function
symbol.

Let RS be a rewriting program. A computation (sequence) from a ground term M_{0}

is a, possibly infinite, reduction sequence $M_{0}\Rightarrow M_{1}\Rightarrow$... $\Rightarrow M_{n}\Rightarrow$ The
computation succeeds, or successfully terminates if M_{n} is a ground term t containing
no defined function symbols for some $n\geqq 0$; hence, by the definition of rewriting
programs, no further rule can be applied to M_{n} . In this case, $M_{n}=t$ is the result of
this successful computation. Otherwise, the computation fails, i.e., either it
terminates at a term M which includes some defned function symbols, or it never
terminates.

Example 1. Using the list reversal program Rl-R4 derived in section 1, a
computation for the term rev($[a|[b|[c|$nil]]]) successfully terminates, and results in
$[c|[b|[a|nil111$

3

90

3. PROGRAM GENERATION
3.1 Equational Clauses

Definition An equational clause is a formula in first order logic (with equality
$=)$ of the form

$L_{1}=R_{1},$
\ldots , $L_{m}=R_{m}arrow M_{1}=N_{1},$ \ldots , $M_{n}=N_{n}$,

where each $L_{i},$ $R_{i},$ $M_{j},$ $N_{j}(l\leqq i\leqq m, l\leqq j\leqq n)$ is a term.
Deflnition An (oriented) equational definite clause (or a conditional equation) is

an equational clause ofthe form

$L=Rarrow M_{1}=N_{1},$ $\ldots,$
$M_{n}=N_{n}$.

In this paper, an equational definite clause is implicitly oriented from left to
right: the equation $L=R$ in the head (conclusion) part of a clause is treated as the
rewriting rule $Larrow R$ rather than the equation $L=R$. Note that an equation $L=R$
(or more explicitly a rewriting rule $Larrow R$) is an equational defnite clause without
conditions. In equational definite logic, a predicate can be viewed as a truth
function; an atomic formula A (in first order logic) is expressed as the equation $A=$

true. Hence, a definite clause $A:- B_{1},$
\ldots , B_{n} in Horn clause logic is represented as

the equational defnite clause $A=truearrow B_{1}=true,$
$\ldots,$

$B_{n}=true$. Throughout this
paper, we will often refer to an equational definite clause simply as an equational
clause for brevity.

3.2 A Deductive System

Any set S of equational clauses defines a reduction relation on terms. To define
the reduction relation associated with S , let us consider a deductive system RD

consisting of the following inference rules:

(rerlection) (replacement)

$M\geqq N$

$M\geqq M$ $L[M]\geqq L[N]$

(transition) (substitution)

$M\geqq L$ $L\geqq N$ $M\geqq N$

$M\geqq N$ $M\theta\geqq N\theta$

(modus ponens)

$M_{1}\theta\geqq K_{1}N_{1}\theta\geqq K_{1}$... $M_{n}\theta\geqq K_{n}N_{n}\theta\geqq K_{n}$

4

$9_{\backslash }|$

$M\theta\geqq N\theta$

(where $M=Narrow M_{1}=N_{1},$ \ldots , $M_{n}=N_{n}\in S$)

We say $M\geqq N$ is provable from a set S of equational definite clauses, denoted by
$S\vdash M\geqq N$, ifthere is a proof(figure) of $M\geqq N$ from S in RD . Note that the notation
$M\geqq N$ for ordered pairs stems from the fact that the ordered pairs provable from a
set of equational clauses in the deductive system are characterized by means of a
partial ordering relation on terms when we give an interpretation to each function
symbol.

Now, we shall define a reduction relation induced by a set of equational definite
clauses.

Definition Let S be a set of equational definite clauses. For terms M and N,
(1) M is reducible to N in $S,$ $M^{*}arrow sN$, if and only if $S\vdash M\geqq N$;
(2) M and N are conuerging in $S,$ $M\downarrow sN$, ifand only if $M^{*}arrow sL$ and $N^{*}arrow SL$ fof

some term L ;

(3) M is reducible to N in one step in $S,$ $Marrow sN$, if and only if there is an equational
clause $L=Rarrow M_{1}=N_{1},$ \ldots , $M_{n}=N_{n}\in S$ such that $M/u\equiv L\theta,$ $N\equiv M[uarrow R\theta]$

and $M_{i^{\theta}}\downarrow S^{N}t^{\theta,1}\leqq i\leqq n$, for some $u\in Ocr(M)$ and for some substitution θ .
Proposition 1. The reduction relation $arrow S$ is the reflexive and transitive closure

$ofarrow s:M^{*}arrow sN$ iff $M\equiv M_{0}arrow sM_{1}arrow s\cdotsarrow sM_{n}\equiv N$ for some $n\geqq 0$.
Proof. If part is straightforward by the definition $ofarrow s$. Only ifpart can be

verified by structural induction on the proof of $M^{*}arrow sN$ (i.e., on the proof figure
which proves $S\vdash M\geqq N$ by definition).

Proposition 2. Let HS be a set of $defin_{\alpha}\dot{\#,}te$ clauses and S the set of equational
definite clauses translated from HS . For any ground atom $A,$ $A\in Model(HS)iffS\vdash$

$A\geqq true$ (equivalently $A*arrow s$ true), where Model(HS) denotes the least Herbrand
model of HS . (Refer to [9] for the precise definition of the least Herbrand model of
definite clauses.)

Proposition 3. Let RS be a rewriting program. For any terms M and $N,$ $M^{*}\Rightarrow RS$

N iff $RS\vdash M\geqq N(M^{*}arrow RsN)$.
3.3 Generation Rules

1

Our aim is to generate rewriting programs from Horn clause specifications. Our
approach is based on program transformation. It adopts the ”unfolding” and
“folding” techniques in [14] as key generation rules. The basic structure of this
approach is the triple $<S;D;P>$, where

1. S is a Horn clause specification, i.e., a set of oriented equational definite
clauses obtained from a given set HS of Horn clauses by converting each
definite clause $A:- B_{1},$

\ldots , $B_{n}\in HS$ into the form $A=truearrow B_{1}=$ true, ... ,
$B_{n}=true$.

2. D is a set ofdefinitions, each of them is of the form

5

9 \angle

$f(X_{1},$
\ldots , $x_{k)}=Zarrow M_{1}=N_{1},$ \ldots , $M_{m}=N_{m}$,

where fis a new function symbol not appearing in HS . Definitions explicitly
define functions. The head part $f(X_{1}, \ldots X_{k})=Z$ specifies input-output
assignment to the variables $X_{1},$

\ldots , X_{h} and Z . The body part $M_{1}=N_{1},$
\ldots , M_{m}

$=N_{m}$ specifies the conditions which should be satisfied for the head part to
be true.

3. P is a set of oriented equational definite clauses, to which generation rules
are applied until every clause in P is altered into an equation.

How to Generate

An essential distinction between logic and functional languages is input-output
directionality as discussed in [13]. Functional languages are directional in that the
programs make an explicit commitment about which quantities are inputs and
which are outputs. Logic programs do not make such a commitment. However, a
logic program usually has a predicate which possesses, from its own purpose, an
implicit commitment about input-output assignment to its parameters. For
example, in the list reversal program in section 1, for the purpose of computing the
reverse list of a given list, a goal of the form rev(L, Z) is imposed, where L is a list
and Z is a variable. This goal provides input for the first parameter and reflects an
expectation that the second parameter is an output. We can thus say the list
reversal program has the main predicate rev with mode (in, out). Here, a mode is an
assignment of input and output to the parameters of a predicate symbol [13].

Let HS , a set of definite clauses, be the specification of a rewriting program. We
assume that there is a main predicate p with some mode m assigning one output and
the rest inputs to the arguments of p . Without loss of generality, we assume that the
last parameter ofp is output in m , i.e., p ($X_{1},$

\ldots , $X_{k^{;}}$ in; Z : out).

The generation process proceeds as follows.

Procedure: Rewriting Programs
Input: [HS:Horn Clause Specifications]
Output [P:RewritingPrograms]

Convert HS into the set S of equational definite clauses and set.
$D:=\{f_{p}(X_{1}, \ldots , x_{k)}=Zarrow P(X_{1}, \ldots , X_{k}, Z)=true\}$;
$P:=\{f_{p}(X_{1}, \ldots , X_{k})=Zarrow P(X_{1}, \ldots , X_{k}, ZJ=true\}$

Apply the following rules non-deterministically until every clause in the
current set P becomes a rewriting rule. The resulting P is the desired
rewriting program.

-Definition Rule
-UnfoldingRules
- FoldingRule
$-SubstitutionRules$
-Elimination Rule
$-$ Splitting Rule
$-$ Deletion Rule

6

$\backslash ()’,)$

The rules used in the procedure translate the current sets $S;D;P$ into new ones
$S;D’;P’$, this is depicted as:

8; $D;P$

$S;D’$; P ’

Now, we shall describe each rule in the sequel. We use letters $\Gamma,$
Δ , and Λ ,

possibly with primes or subscripts, to denote the sequences of equations. In the
following, two groups of function symbols are provided: constructors and defined
function symbols. Constructors are ones appearing in the original specification HS

as function symbols and defined function symbols are ones introduced by the
DefinitionRule.

The Definition Rule

The definition rule introduces new definitions offunctions expressed as:

$S;D;P$

$S;D\cup\{ffX_{1}, \ldots , X_{h}J=Zarrow\Gamma\};P\cup\{f(X_{1}, \ldots , x_{k)}=Zarrow\Gamma\}$

where f is a new function symbol not appearing in $S\cup D\cup P$, which is treated as a
defined function symbol, and Γ is a sequence of equations constructed from function
synbols in $S\cup D$, variables $X_{1},$

\ldots , $X_{h},$ Z and other variables.

Application of any of the following rules modifies P only. While the sets S and D

remain intact. So the description of S and D are omitted in these rules.

The Unfolding Rules

The unfolding rules unfold clauses in P with equational clauses from PUS. The
lhs Unfolding Rule replaces the left hand sides of the equations in the body parts of
clauses expressed as:

$P\cup\{M=Narrow\Gamma, L=R, \Delta\}$

P $U\{(M=Narrow\Gamma, L[u_{i}arrow N_{i}1=R, \Lambda_{i}, \Delta)\theta_{i}|1\leqq i\leqq k\}$

such that $(L/u_{i})\theta_{i}\equiv M_{i}\theta_{i}$, for each $M_{i}=N_{i}arrow\Lambda_{i}\in S\cup P$. On the other hand, the rhs

UnfoldingRule replaces the right hand sides:

$P\cup\{M=Narrow\Gamma, L=R, \Delta\}$

$PU\{(M=Narrow\Gamma,L=R[u_{i}arrow N_{i}], \Lambda_{i}, \Delta)\theta_{i}|1\leqq i\leqq k\}$

such that $(R/u_{i})\theta_{i}\equiv M_{i}\theta_{i}$, for each $M_{i}=N_{i}arrow\Lambda_{i}\in S\cup P$.
The Folding Rule

The folding rule folds equational clauses in P with definitions in D

7

$9\iota 1$

$P\cup\{M=Narrow\Gamma, \Lambda\theta, \Delta\}$

$P\cup\{M=Narrow\Gamma, (f(X_{1}, \ldots ,x_{k)}=Z)\theta, \Delta\}$

where $f(X_{1},$
\ldots , $x_{k)}=Zarrow\Lambda\in D$.

The Substitution Rules

The substitution rules substitute a term K for every occurrence of a variable X in
a clause in P, whenever the equation $X=K(K=X)$ appears in the body part.

$P\cup\{M=Narrow\Gamma,X=K, \Delta\}$ $P\cup\{M=Narrow\Gamma, K=X, \Delta\}$

P $U\{M=Narrow\Gamma, \Delta\}(K/X)$ $P\cup\{M=Narrow\Gamma, \Delta\}(K/X)$

where X does not appear in K.
The Elimination Rule

The elimination rule eliminates an identity equation $K=K$ from the body part
of a clause in P.

$P\cup\{M=Narrow\Gamma, K=K, \Delta\}$

$PU\{M=Narrow\Gamma, \Delta\}$

The Splitting Rule

This rule is used to decompose a complex equation into several component
equations in the body part of the clause

$P\cup\{M=Narrow\Gamma, c(M_{1}, \ldots , M_{n})=c(N_{1}, \ldots,N_{n}), \Delta\}$

$P\cup\{M=Narrow\Gamma, M_{1}=N_{1}, \ldots, M_{n}=N_{n}, \Delta\}$

where c is a constructor.
The Deletion Rule

This rule allows the deletion of a clause that contains mismatching constructors
in an equation in its body

$P\cup\{M=Narrow\Gamma, c(M_{1}, \ldots,M_{n})=c’(N_{1}, \ldots,N_{n}), \Delta\}$

P

where c and c’ are distinct constructors.
The following definitions are technical to prove the partial correctness of the

generation procedure.

8

$9_{c^{\square }})$

Definition Let Q be a set ofequational definite clauses.
1. An equational clause $M=Narrow M_{1}=N_{1},$

$\ldots,$
$M_{n}=N_{n}$ is emulated by Q iff for

any ground substitution $\theta,$ $M\thetaarrow_{Q}N\theta$ if $M_{i}\theta\downarrow QN_{i}\theta$, for every $i,$ $1\leqq i\leqq n$.
2. A set P of equational clauses is emulated by Q iff every clause in P is emulated

by Q .
Lemma 1. $LetP$ and Q be sets ofequational clauses such that P is emulated by Q .

Then $M^{*}arrow_{P}N$ implies $M^{*}arrow_{Q}N$, for every ground term $M,$ N.
Proof. Suppose $M^{*}arrow pN$, then there is a proof figure Π which proves $P\vdash M\geqq$

N by definition. Without loss of generality, we can chose a proof figure Π such that
every term appearing in Π is a ground term. The lemma is verified by structural
induction on n .

Suppose $M\geqq N$ is proved from P by applying (modusponens) depicted as:
$M_{1}\theta\geqq K_{1}N_{1}\theta\geqq K_{1}$... $M_{n}\theta\geqq K_{n}N_{n}\theta\geqq K_{n}$

$M\geqq N$

where $M=L\theta$ and $N=R\theta$ for some clause $L=Rarrow M_{1}=N_{1},$
$\ldots,$

$M_{n}=N_{n}\in P$. By
induction hypothesis, $M_{i}\theta^{*}arrow_{Q}K_{i}$ and $N_{i}\theta^{*}arrow_{Q}K_{i}$, hence $M_{i}\theta\downarrow Q^{N}i^{\theta}$, for every $i,$ 1

$\leqq i\leqq n$. Since P is emulated by $Q,$ $Marrow Q^{N}$. Hence, $M^{*}arrow gN$.
The other cases are similar.to the above and left to the reader. $[]$

Lemma 2. Suppose $<S;D’;P’>is$ obtained $from<S;D;P>by$ applying a
single rule. IfP is emulated by SUD , then P

’ is emulated by $S\cup D’$.
Proof. Let $<S;D’;P’>be$ the triple that results from $<S;D;P>byapplyi_{arrow}ng$ a

single rule. Now, suppose P is emulated by $S\cup D$. We have \S everal cases depending
on which rule is applied. Say it is the $lh_{S^{\backslash }}U$nfolding Rule. Suppose the situation is
depicted as:

$S;D;P_{1}\cup\{M=Narrow\Gamma, L=R, \Delta\}$

$S;D;P_{1}\cup\{(M=Narrow\Gamma,L[u_{i}arrow N_{i}]=R, \Lambda_{i}, \Delta)\theta_{i}|1\leqq i\leqq k\}$

$where_{-}(L_{\sim}/u_{i})\theta_{i}\equiv M_{i^{\theta_{i}}}$, for each $M_{i}=N_{i}arrow\Lambda_{i}\in S\cup P$. Note that every equational
clause in P_{1} is emulated by $S\cup D$ by assumption. Let θ be any ground substitution.
Suppose that $K\theta_{i}\theta\downarrow S\cup D^{K’\theta}i^{\theta}$, for every equation $K=K$’ in $\Gamma,$ $\Lambda_{i},$ Δ and $L[u_{i}arrow$

$N_{i}]\theta_{i}\theta\downarrow s\cup DR\theta_{i}\theta$.
If $M_{i}=N_{i}arrow\Lambda_{i}\in S$, then $M_{i}\theta_{i}\thetaarrow_{S\cup D}N_{i}\theta_{i}\theta$ by definition. If $M_{i}=N_{i}arrow\Lambda_{i}\in$

P, then $M_{i}\theta_{i}\thetaarrow_{S\cup D}N_{i}\theta_{i}\theta$ since P is emulated by $S\cup D$. In either case, $M_{i}\theta_{i}\thetaarrow SUD$

$N_{i}\theta\{\theta$, hence $L\theta_{i}\thetaarrow_{S\cup D}L[u_{i}arrow N_{i}].\theta_{i}\theta$. This implies $L\theta_{i}\theta\downarrow S\cup D^{R\theta_{i}\theta}$ since $L[u_{i}arrow$

$N_{i}]\theta_{i}\theta\downarrow S\cup D^{R\theta}i^{\theta}$. Hence, $M\theta_{i}\thetaarrow_{S\cup D}N\theta_{i}\theta$. Because $M=Narrow\Gamma,$ $L=R,$ Δ is
emulated by $S\cup D$. These discussions show the equational clause $(M=Narrow\Gamma,$ $L[u_{i}$

$arrow N_{i}]=R,$ $\Lambda_{i},$ Δ) θ_{i} is emulated by SUD , for every $i,$ $l\leqq i\leqq k$.

9

9 t)

The other cases can be verified similarly to the above. This completes the proof.
$[]$ y

Now, we will prove the partial correctnesaof the generation procedure.

Theorem 1. Let HS be a Horn clause specification with a main predicate p and S

be the set of equational definite clauses converted from HS . Sappose the procedure
produces a rewriting program P as a result from the initial setting $<S;\{f_{p}(X_{1},$

\ldots ,
$x_{h)=}Zarrow p(X_{1}, \ldots , X_{h}, Z)\};\{f_{p}(X_{1}, \ldots , x_{k)=}Zarrow p(X_{1}, \ldots , X_{k}, Z)\}>$. For any
ground terms $t_{1},$

\ldots , t_{k}, and t, if $f_{p}(t_{1}, \ldots , t_{k})*\Rightarrow pt$ (in P), then $p(t_{1}, \ldots, t_{k}, t)\in$

Model(HS) .
Proof. Let $<S;D;P>$ be the last structure returned by the procedure. It is

trivial that $f_{p}(X_{1},$
$\ldots,$ $X_{k)=}Zarrow p(X_{1}, \ldots , X_{k}, Z)$ is emulated by $SU\{f_{p}(X_{1},$

\ldots ,
$X_{k)=}Zarrow p(X_{1}, \ldots , X_{k}, Z)\}$. By using Lemma 2 same times as the number of
applying generation rules, it follows that P is emulated by $S\cup D$. Thus, by Lemma 1,
$M^{*}arrow_{S\cup D}N$ if $M^{*}arrow pN$, for every ground term $M,$ N. Suppose $f_{p}(t_{1}, \ldots , t_{k})^{*}\Rightarrow pt$,
where $t_{1},$

\ldots , t_{k} , and t are ground terms. Proposition 3 claims that if Q is a set of
equations two reduction relations \Rightarrow_{Q} and $arrow Q$ are identical. Hence, $f_{p}(t_{1}, \ldots, t_{h})$

$*arrow pt$. Since P is emulated by $SUD,$ $f_{p}(t_{1}, \ldots , t_{h})*arrow_{S\cup D}t$. Recall the defnition
$f_{p}(X_{1}, \ldots , X_{k})=Zarrow p(X_{1}, \ldots , X_{k}, Z)=true$ specifying the defined function symbol
f_{p} is unique in D and every defined function symbol appearing in D does not appear
in S . So that $p(t_{1}, \ldots , t_{h}, t)^{*}arrow S$ true must hold. Thus the ground atom $p(t_{1}, \ldots, t_{k}, t)$

belongs to the least Herbrand model Model(HS) by Proposition 2.

4. CONCLUDING REMARKS

The approach outlined here is an attempt to generate machine executable
programs from specifications written in higher level languages. The early works in
program generation relied strongly on theorem proving techniques. On the other
hand, this approach is based on program transformation techniques. Several
generation rules, a kind of transformation rules, are introduced to generate
rewriting programs from Horn clause specifications.

As further works (or as continuation of this work), this paper may involve
further considerations: proving the total correctness of the generation process,
extending the specification language or the target language, or refinement of the
generation process. However, we believe that out approach is more suitable than
theorem proving approach to design a mechanical algorithm generating programs
form specifications. We hope that this paper has opened up an new idea for further
studies in this field.

REFERENCES

1. Chang, A. K. and Lee, R. C. T., Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

10

9/

2. Fribourg, L. , Oriented equational clauses as a programming language, J.
Logic Programming,1, pp.165-177, 1984.

3. Goguen, J. A. and Meseguer, J., Equality, Types, Modules and Generics for
Logic Programming, J. LogicProgramming, 1: 179-210 (1984).

4. Hsiang, J. and Plaisted, D., Deductive Program Generation, draft paper,
1985.

5. Hoffmann, C. M. and O’Donnell, M. J., Programming with Equations, ACM

Trans. on Prog. Lang. and Systems, 4: 83-112 (1982).

6. Hogger, C. J., Derivation ofLogic Programs, J. $ACM,$ 28:372-392 (1981).

7. Huet, G., Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems, J. $ACM,$ 27:797-821 (1980).

8. Huet, G. and Oppen, D. C., Equations and Rewrite Rules, in Formal Language
Theory, Academic Press, 349-405 (1980).

9. Lloyd, J. W., Foundation ofLogic Programming, Springer-Verlag, 1984.
10. Manna, Z. and Waldinger, R., A Deductive Approach to Program Synthesis,

ACM Trans. on Programming Language and Systems, 2, pp.90-121, 1980.
11. Murray, N.V., Completely Non-Clausal Theorem Proving, Artificial

Intelligence, 18, pp.67-85, 1982.
12. O’Donnell, M. J., Computing in Systems described by Equations, Lec. Notes

in Computer Science, No. 58, 1977.
13. Reddy, U. S., On the Relationship between Logic and Functional Languages,

in DeGroot, D. and Lindstrom, G. (eds.), Logic Programming, Functions,
Relations and Equations, Prentice-Hall, 3-36 (1985).

14. Tamaki, H. and Sato, T., Compatibility of Replacement Rules with $Unfold/$

Fold Transformation, draft paper, 1986.

15.

11

