
$17b^{\backslash }$

A Variable Priority Queue and its Applications
可変優先キューとその応用

Hitoshi Suzuki, Takao Nishizeki and Nobuji Saito
鈴木均 西関隆夫 斎藤伸自

Department of Electrical Communications
Faculty ofEngineering, Tohoku University

Sendai 980, Japan

Abstract-This paper proposes a new data structure called a variable
priority queue. The queue supports, in addition to the ordinary queue
operations, an operation MIN to find an item of minimum key and
operations to change keys of items. Any sequence of these m operations
can be processed in $O(m)$ time. The variable priority queue is useful in
designing efficient algorithms for various network problems such as the
multicommodity flow and edge-disjoint path problems on planar graphs.

L NTRODUCTION
This paper proposes a new data structure called a variable priority queue,

which is a generalization of a queue. The variable priority queue supports, in
addition to the ordinary queue operations, an operation MIN to find an item of
minimum key together with two operations DECREASE and UPDATE to
change keys of items in the queue. The variable priority queue is suited for
efficient algorithms for network problems. These include the multicommodity
flow and edge-disjoint path problems of planar graphs. Using the variable

t

priority queue, we present a linear algorithm for finding multicommodity
flows in a cycle graph.

2. VARIABLE PRIORITY QUEUE
A variable priority queue Q is a sequence of items ordered from left to

right, and each item q in Q is associated with a real number key (q) called a
key. The following seven operations are.possible on the queue:
1) MAKEQUEUE(Q): make an empty queue Q ;
2) INJECT$(Q,q,key(q))$; insert a new item q with key(q) into Q as the rightmost

item;
3) POP(Q) ; delete the leftmost item in Q ;

1

数理解析研究所講究録
第 625巻 1987年 176-185

177

4) DECREASE(Q, q,D); given an item q in Q together with a nonnegative
number D , decrease by D all the keys of item q and those on $q’s$ right;

5) UPDATE(Qp) ;add some real number D to all the keys of items in Q ;and
6) $MIN(Q)$: return the minimum key of items in Q .
The following operation is permitted only if all the keys of items in Q are
nonnegative:
7) $DECREASE^{*}(Q,qD)$: given an item q in Q and a nonnegative number D ,

return $D’= \min$ {$D, \min\{key(q’)1q^{t}$ is q or on $q’s$ right}}, and execute
DECREASE(Q,q,$p’$).

The variable priority queue is a generalization of an ordinary queue but
not one of a priority queue, because in the variable priority queue an item can
be inserted only to the tail and deleted only from the head.

Clearly the variable priority queue is realized by a balanced tree such as a
2-3 tree [AHU,GMG]. However, in such a direct implementation of the queue
Q , the execution of each operation spends $O(\log n)$ time and a sequence of m

operations above consumes $O(m\log n)$ time if Q has n items. In the next
section, we present a sophisticated implementation of the queue using a
disjoint set union algorithm [GT], in which any sequence of m queue
operations above can be executed in $O(m)$ time.

A disjoint set union algorithm solves the problem of maintaining a
collection of disjoint sets under the following operations [GT,Tar]:

a) MAKESET(q): Create a new singleton set $S=tq$}, and return the name S .
b)UNITE(S,S’):Createa new set that is the union of two disjoint setsS and

S^{\dagger} . The old sets S and S^{I} are discarded, and the new set is named S .
c) FIND(Q) : Return the name of the set containing element q .

Consider a sequence of m operations consisting of the three operations
above. Let n be the number of elements in sets, that is, let n be the number of
MAKESET operations in the sequence. Then the sequence can be executed in
$O(m\alpha(m,n))$ time, where α is a functional inverse of Ackerman’s
function [Tar].

Gabow and Tarjan gave a linear algorithm for a special case of set union
in which the structure of the unions, as defined by a union tree T, is known in
advance. That is, the elements in sets correspond to the vertices of the tree T,

and the elements in each set must induce a subtree of T throughout the
execution of the algorithm. Then any sequence of m set union operations is

2

178

executed in $O(m)$ time with $O(n)$ preprocessing time [GT].

3. IMPLiEMENTATION of QUEUE Q

In this section we show how to realize a variable priority queue Q . The key
ideas are two-fold: first Q is partitioned into a collection of subsequences suited
for supporting the queue operations; and then the collection of disjoint sets
corresponding to the subsequences are maintained by a disjoint set union
algorithm. Let Q be partitioned into a collection of subsequences $S1,S2,\ldots,Sh$ for
some k , and let $q(St)$ be the rightmost item in S ; for each $i,$ $1\leq i\leq k$. Then the
following conditions (1), (2) and (3) must be satisfied.

(1) Si, $1\leq i\leq k$, is a consecutive nonempty subsequence of Q ;
(2) key$(q(Si))\ovalbox{\tt\small REJECT} ey(q)$ for every $q\in Si$; and
(3) key$(q(Si-1))\leq key(q(Si))$ for every $i,$ $2\leq i4$.

Clearly $q(S1)$ is the rightmost item having the minimum key among all the
items in Q , and $q(Si),$ $2\leq i\ovalbox{\tt\small REJECT}$, is the rightmost item having the minimum key
among those on $q(Si-1)’s$ right. We use four pointers pred, succ, right and left.
Each set s_{i} is accessed from $Si+1$ by pointer pred$(Si+1)$. The header of the list
representing queue Q is denoted by HQ, and S_{1} and s_{h} are accessed from HQ by
succ(HQ) and pred(HQ) , respectively. That is,

pred(Si)$=Si-1$ for each $i,$ $2\leq i\ovalbox{\tt\small REJECT}$;
pred$(S1)=HQ$;
pred$(HQ)=\downarrow Sh$; and
succ$(HQ)=S1$.

For each $q\in Q$, the element next to $q’ s$ right is accessed by right(q) . If q is the
rightmost element in Q , then right$(q)=HQ$ and left$(HQ)=q$. The leftmost
element in Q is accessed by right(HQ) . Instead of maintaining all the keys, we
maintain real numbers $d(Si)$ and $d(HQ)$. Number $d(Si)$ is associated with Si,
$1\leq i<A$, and $d(HQ)$ with HQ , and are defined as follows:

$d(S1)=key(q(S1))(= \min\{key(q)1q\in Q\})$;
$d(Si)=hey(q(lSi))-key(q(Si-1))$ for each $i,$ $2\leq i\leq k$; and
$d(HQ)=key(q(Sh))$.

Then clearly the condition (3) is equivalent with
(3) $d(S;)>0$ for every $i,$ $2\leq i\leq h$.
Operation $MIN(Q)$ is simply performed by returning $d(succ(HQ))$.

3

1 $7_{\backslash }’\cdot\{$

Furthermore operation UPDATE(Qp) is performed simply by executing two
substitutions: $d(HQ);=d(HQ)+D$ and $d(succ(HQ));=d(succ(HQ))+D$.

In order to show how to implement other operations, we first present a
procedure REFORM. Let Q be an incompletely structured queue, which is
partitioned into s_{1},s_{2},\ldots,s_{k} so that conditions (1), (2) and (3) are satisfied
except that there exists only one set Si having possibly nonpositive $d(Si)$. Then
the following procedure REFORM(Q,Si) using operation UNITE of the disjoint
set union algorithm makes Q to satisfy all the conditions (1), (2) and (3).

procedure REFORM(Q,S) ;
begin

while pred$(S)\neq HQ$ and $d(S)\leq 0$ do
begin

$S’:=pred(S);d(S);=d(S’)+d(S);pred(S);=pred(S^{t})$;
UNITE$(S,S’)$

end
end;

Using procedure REFORM together with set union operations MAKESET,
UNITE and FIND, we can implement the remaining queue operations
MAKEQUEUE, INJECT, POP, DECREASE and DECREASE* as follows.

procedure MAKEQUEUE(Q);
begin

succ$(HQ)=pred(HQ)=left(HQ)=right(HQ);=HQ$;
$d(HQ):=-$

end;

procedure INJECT(Q,q,hey) ;
begin

$S;=\ovalbox{\tt\small REJECT} SET(q)$;
S

’ $:=pred(HQ);q’:=left(HQ);pred(S);=S^{\dagger};pred(HQ):=S$;
right$(q):=HQ;right(q’);=q;left(HQ);=q$;
if $q’=HQ$ then $d(S);=hey$ else $d(S);=hey-d(HQ)$;
$d(HQ);=key$;
REFORM(Q,S)

end;

procedure POP(Q) ;
begin

if right$(HQ)\neq HQ$ then { Q has at least one item}
if right$(right(HQ))=HQ$ then { Q has exactly one item}

MAKEQUEUE(Q);

4

180

else {Q has at least two items}
$be_{q’=right(right(HQ))}gin.$;

$S:=succ(HQ);S’:=FIND(q’);right(HQ);=q’$;
if $S\neq S’$ then

begin
pred$(S’);=HQ;succ(HQ);=S’$;
$d(S’);=d(S)+d(S’)$

end
end

end;

procedure DECREASE(Q,qp);
begin

$d(HQ);=d(HQ)-D;S;=FIND(q);d(S);=d(S)-D$;
REFORM(Q,S)

end;

procedure $DECREASE^{*}(Q,qp)$;
begin

$S:=FIND(q)$;
$\{$

$k((s))_{=} \min\{()|key(q(S))^{=}\Sigma\{d(S^{t})SisS’orprecedesSinQ^{s}\}^{right\}}\}|$

$KQS;=d(S)$;
while $KQS<D$ and pred$(S)\neq HQ$ do

begin $S:=pred(S);KQS:=KQS+d(S)$ end;
$D^{t}:= \min\{D,KQS\}$;
DECREASE(Q, $q_{i}D’$);
retum D^{t}

end;

(If there would exist negative keys, D ’ could be negative, so DECREASE* could
work like ”INCREASE“. In this case a sequence of $O(m)$ queue operations

could solve the sorting of m items, and consequently requires $O(m\log m)$ time.
By this reason we do not allow DECREASE* when there is a negative key.)

One can easily verify the correctness of the algorithms above: if queue Q

satisfies the conditions (1), (2) and (3), then the queue modified by any of
operations above also satisfies the conditions.

We now analyse the execution time. Clearly each of MAKEQUEUE,
UPDATE and MIN is executed in $O(1)$ time. INJECT is done in $O(1)$ time plus
the time required for executing MAKESET and REFORM once. POP is done in
$O(1)$ time plus the time required for executing FIND once. On the other hand
DECREASE is done in $O(1)$ time plus the time required for executing FIND
and REFORM once. Furthermore the execution time of DECREASE* is

5

18 i

dominated by the time required for executing DECREASE called in
DECREASE*, and is consequently dominated by the time for executing FIND
and REFORM called in the DECREASE. The execution time of REFORM is
dominated by the time required for executing UNITE operations called in it.
Thus the execution time of all the queue operations are dominated by the time
required for executing the operations of disjoint set union.

Suppose that a sequence of m queue operations including n INJECTs is
executed. Then MAKESET is executed n times, and consequently UNITE is
executed at most $n-1$ times in total during the execution of the sequence.
FIND is executed at mo st m times. Clearly the structure of the unions is
represented by a union tree which is simply a path in our case. Thus we can
conclude:

Theorem 1. A sequence of m queue operations containing n INJECTs can
be executed in $O(m\alpha(m,n))$ time if the ordinary disjoint set union
algorithm [Tar] is used. Moreover the sequence is executed in $O(m)$ time with
$O(n)$ preprocessing time if the special case disjoint set union algorithm [GT] is
used. \blacksquare

4. APPLICATIONS
In this section we present several applications of the variable priority

queue to planar multicommodity flow problems.
A planar network $N=(G,P,c)$ is a triplet satisfying (1), (2) and (3) below.

(1) $G=(V,E)$ is a finite undirected simple connected planar graph with vertex
set V and edge set E .
(2) P is a set of source-sink pairs (si,ti), where source Si and sink ti are distinct
vertices. Both source and sink are often called terminals.
(3) $c:Earrow R^{+}$ is the capacity function. ($R(orR^{+})$ denotes the set of (nonnegative)

real numbers.)

In what follows, we assume that G has n vertices and P contains k

source-sink pairs, i.e. I $V|=n$ and I $P|=k$. Each source-sink pair (si, ti) of N is
associated with a positive demand dt . Although G is undirected, we orient the
edges ofG arbitrarily so that the sign ofa value ofa flow function can indicate
the real direction of the flow through an edge. A set of functions $\psi 1f2,\ldots,f\dot{h}$}

with each $fi:Earrow R$ is k-commodity flows of demands $d1,d2,\ldots,dh$ if it satisfies (a)

6

182

and (b) below.
(a) For each $e\in E$

$\Sigma\{|fi(e)|;1\leq i\ovalbox{\tt\small REJECT}\}\ovalbox{\tt\small REJECT}(e)$

(b) Each $f\dot{i}$ satisfies
$IN\wp i,v)=OUT\wp_{l},v)$

for each $v\in V-\{Si,ti\}$, and
O $U\tau\wp_{i,Si)-IN(fi,Si)=IN\wp_{\iota ti\succ- OUT\wp_{i,ti)=di}}},$,

where $IN\wp i,v$) is the total amout of flow fi of commodity i entering v , and
OUT(fi,U) is the total amount of flow fi emanating from v .

We now define several classes of planar networks $N=(G,P,c)$.
(0) Class Co : ‘Graph G is a cycle.
(1) Class Ci: One face boundary B_{1} of G is specified, and all the source-sink
pairs are located on $B1$.
(2) Class $C12$; Two face boundaries B_{1} and $B2$ of G are specified, and each of the
source-sink pairs lies on $B1$ or $B2$. That is, the set P is partitioned into p_{1} and
$P2$ so that

if $($si, $ti)_{\in}P1$ then $Si,ti\in B1$; and

if $($si, $ti)_{\in}P2$ then $Si,ti\in B2$.
(3) Class Col: One face boundary B_{1} together with a vertex Vc on B_{1} are
specified, and some of the source-sink pairs are located on B_{1} , while the sinks
of all the other pairs must lie on Vc but their sources can lie anywhere in G .
That is, the set P is partitioned into Po and P_{1} so that

if $($si,$ti)_{\in}Po$ then $ti=Uc$; and

if $($si, $ti)_{\in}P1$ then si,$ti\in B1$.
Polynomial algorithms have been obtained for the multicommodity flow

problem for these classes of planar networks. Matsumoto, Nishizeki and Saito
gave an algorithm which finds multicommodity flows in a network belonging
to class $C1$ in $O(kn+nT(n))$ time [MNS], where $T(n)$ denotes the time required
for finding the single-source shortest paths in a planar graph which has n

vertices and nonnegative edge weights. Since $C1\supset Co$, the algorithm can find

multicommodity flows in a network $N\in Co$. In this case, the planar graph for
which we must solve the single-source shortest path probrem is indeed a star,

and consequently $T(n)=O(n)$. Therefore the algorithm runs in $O(kn+n^{2})$ time

7

1 $8_{\mathfrak{l}}’i$

for $N\in Co$. On the other hand we gave algorithms which find multicommodity
flows in networks in classes $C12$ and Col, and run in $O(n(k+ \min\{b1,b2\}T(n)))$

time and $o(n(b^{2_{1}}+T(n)))$ time, respectively [SNS]. Where $b1=1B_{1}$ I and $b2=IB21$.
Using the variable priority queue, we can improve the time complexity of

the algorithms above. For a network $N\in Co$ we can obtain a representation of
multicommodity flows in $O(k+n)$ time as shown later. Furthermore for a
network NE $C1$, we can find values $fl(e)$ for a single fixed edge $e\in B_{1}$ and all
$(s\iota,t\iota)_{\in}P$ in $O(k+T(n))$ time. For a network $N\in C_{12\cup}Co1$ we can implement the
algorithms in [SNSI to run in $O(kn+nT(n))$ time.

In the remaining of this section, we present algorithms for class Co . First
we implement an algorithm to test the feasibility, that is, to decide whether a
given network $N=(G,P,c)_{\in}Co$ has multicommodity flows. For each $ei,ej\in E,$ $e;\neq ej$,

define
$m(ei,ej)=c(e;)+c(ej)- \sum${$d\iota|s\iota$ and $t\iota$ lie in distinct components of $G-\{ei,ej\}$ }.

The following theorem is an immediate consequence of a result in [OS].

Theorem 2. Network NE Co has multicommodity flows if and only if
$m(ei,ej)\geq 0$ for all $ei,ej\in E,$ $e;\neq ej$. \blacksquare

Clearly values $m(et,ej)$ can be $Com\mathfrak{H}uted$ in $O(h+n)$ time for a fixed edge
$e;\in E$ and all edges $ej\in E$. Therefore a straightforward method which computes
all $m(ei,ej)$ spends $O(hn+n^{2})$ time to test the feasibility. However, using the
variable priority queue we can test the feasibility in $O(k+n)$ time as follows. Let
$vo,v1,\ldots,vn-1$ be the sequence of vertices appearing on cycle G in clockwise
order, and let $ei=(vi,vi+1),$ $i=0,1,\ldots,n-1$, where conventionally $Vn=V$ o. The

following procedure MARGIN computes values $m(ei)=MIN\{m(e;,ej)|ej\in E-ei\}$

for all $ei\in E$ total in $O(k+n)$ time. The key idea to note is that values $m(ei,ej)$ can
be efficiently updated from values $m(ei-1,ej)$ if the variable priority queue is
used.

procedure MARGIN;
begin

MAKEQUEUE(Q) ;
for each edge $ej,j=1,2,\ldots,n-1$ do INJECT$(Q,ej,m(eo,ej))$;
{each edge ej in Q has key $m(eo,ej)$ }
$m(eo);=MIN(Q)$;

8

184

for each edge $ei,$ $i=1,2,\ldots,n-1$ do
begin

{$Q=eiei+1\ldots ei-2$, and currently each edge ej in Q has key $m(ei-1,ej)$.
Keys are now updated to give $m(ei,ej)$}

POP(Q) ; {delete ei from Q }
INJECT$(Q,ei-1,2c(ei-1))$;
UPDATE$(Q,c(ei)-c(et-1)+ \sum${$dl1s\iota$ or $t\iota$ is vi});
for each terminal $s\iota$ (not necessarily source) on v ; do

begin
let ej be the edge joining tl and the dockwise next vertex;
DECREASE(Q,ej,$2dl$)

end;
{each edge ej in Q has key $m(et,ej)$}
$m(ei);=MIN(Q)$

end
end;

During one execution of MARGIN the queue operations are executed
$O(k+n)$ times in total, and consune $O(h+n)$ time by Theorem 1. Clearly the
other task can be done in $O(h+n)$ time. Thus we can conclude:

Theorem 3. The feasibility of a network in Co can be tested in $O(k+n)$

time. \blacksquare

Next we give an algorithm for computing $f\dot{l}(eo)$ for a single edge eo and all
$(sl,tl)_{\in}P$. Let network NE Co satisfy $m(ei,ej)\geq 0$ for all $ei,ej\in E,$ $ei\neq ej$. We may
assume that, for every source-sink pair (Sl,tl) , first the source sl and then the
sink tl appear on the cycle G clockwise starting from vo , that is, if $sl=vt$ and $tl=vj$

then $i<j$.

p rocedure MFLOW;
begin

MAKEQUEUE(Q);
for each edge $ei,$ $i=1,2,\ldots,n-1$ do $INJ\dot{E}CT(Q,ei,m(eo,ei))$;
$D:=MIN(Q)$;
$c(eo):=c(eo)-D$;
{reduce the residual capacity of eo}
UPDATE$(Q,-D)$; {update keys due to the reduction}
INJECT$(Q,eo,2c(eo))$;
for each vertex $vi,$ $t=1,2,\ldots,n-1$ do

for each source Sl on vi do
begin

let ej be the edge joining τl and the clockwise next vertex;
$fi(eo):=DECREASE^{*}(Q,ej,2dl)/2$

end
end;

9

185

During one execution of MFLOW the queue operations are executed
$O(k+n)$ times in total, and consume $O(h+n)$ time. Clearly the other task in

MFLOW can be done in $O(k+n)$ time. Thus the flow values $fl(eo)$ can be

computed in $O(k+n)$ time for a single edge eo and all $(s\iota,t\iota)_{\in}P$. Furthermore,

from these values, one can easily find flow values for all other edges since a
cycle graph has exactly two paths between Sl and tl , the clockwise path and

counterclockwise one. Therefore we can conclude:

Theorem 4. A representation of multicommodity flows in a network $N\in Co$

can be obtained in $O(k+n)$ time. \blacksquare

References
[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, RM, 1974.
[GT] H. N. Gabow and R. E. Tarjan, A linear time algorithm for a special case

of disjoint set union, Jour. Comput. Syst. Sci., 30, pp.209-221, 1985.
[GMG] Z. Galil, S. Micali and H. Gabow, An O(EVlogV) algorithm for finding

a maximul weighted matching in general graphs, SIAM J. Comput., 15,

1, pp.120-130, 1986.
[MNS] K. Matsumoto, T. Nishizeki and N. Saito, An efficient algorithms for

finding multicommodity flows in planar networks, SIAM J. on Comput.,
14, 2, pp.289-302, 1985.

[OS] H. Okamura and P. D. Seymour, Multicommodity flows in planar

graphs, Journal of Combinatorial Theory, $B,$ 31 , pp.75-81, 1981.
[SNS] H. Suzuki, T. Nishizeki and N. Saito, Multicommodity flows in planar

undircted graphs and shortest paths, Proc. 17th Annual ACM Symp. on
Theory of Computing, pp.195-204, 1985.

[Tar] R. E. Tarjan, Data Structures and Network Algorithms, SIAM,

Philadelphia, PA, 1983.

10

