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Abstract

The direct sum of two term rewriting systems is the union of systems
having disjoint sets of function symbols. It is shown that the direct sum of
two term rewriting systems is not terminating, even if these systems are both
terminating.
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Introduction
A term rewriting system $R$ is a set of rewriting rules $Marrow N$ , where $M$ and $N$

are terms [1,3,5]. The direct sum system $R_{1}\oplus R_{2}$ is defined as the union of two
term rewriting systems with disjoint function symbols [8]. It was proved [8] that
for any term rewriting systems $R_{1}$ and $R_{2}$ ,

$R_{1}\oplus R_{2}$ is confluent iff $R_{1}$ and $R_{2}$ are confluent.

By replacing confluent with terminating in the above proposition, the analogous
conjecture for the terminating property has the form:

$R_{1}\oplus R_{2}$ is terminating iff $R_{1}$ and $R_{2}$ are terminating.

However, the answer to this conjecture is negative against our expectation. We
show the counterexamples to this conjecture and its modffications.
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Counterexamples
A counterexample to the above conjecture is obtained by $R_{1}$ and $R_{2}$ having the
following rewriting rules [8]:

$R_{1}$ $\{F(0,1, x)arrow F(x, x,x)$

$R_{2}$ $\{G(x,y)G(x,y)arrow xarrow y$

It is trivial that $R_{1}$ and $R_{2}$ are terminating. However, $R_{1}\oplus R_{2}$ is not termi-
nating, because $R_{1}\oplus R_{2}$ has the infinite reduction sequence:

$F(G(O, 1),$ $G(O, 1),$ $G(O, 1))arrow F(O, G(O, 1), G(O, 1))arrow F(O, 1, G(O, 1))$

$arrow F(G(O, 1),$ $G(O, 1),$ $G(O, 1))arrow\cdots$ .

This counterexample also provides a negative answer to the same question for
the direct sum of recursive program schemes suggested by Klop [6].

Dershowitz showed the following theorem [1,2,3] for terminating of the union
system:

Theorem (Dershowitz 1981). Let $R_{1}$ and $R_{2}$ be two term rewriting
systems. Suppose that $R_{1}$ is left linear, and $R_{2}$ is right linear, and
there is no overlap between the lefl-hand sides of $R_{1}$ and the right-
hand sides of $R_{2}$ . Then, the union of the two systems is terminating
iff both $R_{1}$ and $R_{2}$ are terminating.

However, Dershowitz’s Theorem $[2,3]$ is not correct, because the above coun-
terexample refutes his theorem1.

In this counterexample, note that $R_{2}$ is not confluent. Hence, Toyama conjec-
tured that under the assumption of confluence for $R_{1}$ and $R_{2},$ $R_{1}\oplus R_{2}$ is terminat-
ing iff $R_{1}$ and $R_{2}$ are terminating [8]. Since the direct sum of two term rewriting

1The version of Dershowitz‘s Theorem in [1] is correct since the definition of overlap in [1] is
different from it in $[2,3]$ . However, the examples in [1] are wrong, since the definition of overlap
is in $[2,3]$ . This remark is the basis of the letters from Leo Bachmair (on October 24, 1986) and
from Nachum Dershowitz (on November 11, 1986).
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systems always preserves their confluence, this conjecture can be stated by the
form:

$R_{1}\oplus R_{2}$ is canonical iff $R_{1}$ and $R_{2}$ are canonical,

where canonical means confluent and terminating.
However, this conjecture is also not true. Klop and Barendregt showed a

counterexample [7] by extending Toyama’s counterexample. Consider $R_{1}$ and $R_{2}$

having the following rewriting rules:

$R_{1}$

$R_{2}$ $\{G(y,x,x)G(x,y,x)G(x,x,y)arrow xarrow xarrow x$

Then, $R_{1}$ is confluent, because any term can be reduced into 7. $R_{1}$ is also
terminating; no term can be reduced into 4, 5, and 6, hence, the first rule cannot
be applied infinitely. Thus, $R_{1}$ is canonical. Clearly, $R_{2}$ is canonical.

However, $R_{1}\oplus R_{2}$ is not canonical, since $F(t,t, t, t)$ with $t\equiv G(1,2,3)$ reduces
to itself:

$F(t,t,t,t)arrow\cdotsarrow F(G(4,4,3), G(5,2,5), G(1,6,6),t)arrow\cdots$

$arrow F(4,5,6,t)arrow F(t,t,t,t)arrow\cdots\ovalbox{\tt\small REJECT}$
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We say $R$ is irreducible if for any rule $Marrow N$ in $R,$ $M$ and $N$ are normal forms
in $R-\{Marrow N\}$ . In Klop and Barendregt’s counterexample, $R_{1}$ is not irreducible,
since the left-hand side $F(4,5,6, x)$ and the right-hand side $F(x, x, x, x)$ of the first
rule can be reduced by using other rules. Hence, Hsiang conjectured [4] that for
irreducible term rewriting systems $R_{1}$ and $R_{2},$ $R_{1}\oplus R_{2}$ is canonical iff $R_{1}$ and
$R_{2}$ are canonical. Clearly, the direct sum of two systems always preserves their
irreduciblility. Hence, Hsiang’s conjecture can be shown in the form:

$R_{1}\oplus R_{2}$ is canonical and irreducible iff $R_{1}$ and $R_{2}$ are canonical and
irreducible.

However, Hsiang’s conjecture is also not true. We can find the following coun-
terexample to his conjecture by extending Klop and Barendregt’s counterexample.
Let $R_{1}$ and $R_{2}$ have the following rewriting rules:

$R_{1}$ $\{\begin{array}{l}F(f_{4}(x,x),f_{5}(x,x),f_{6}(x,x),y,x)arrow F(y,y,y,y,x)F(x,y,z,u,0)arrow 1f_{1}(0,x)arrow f_{4}(0,x)f_{1}(x,0)arrow f_{5}(x,0)f_{2}(0,x)arrow f_{4}(0,x)f_{2}(x,0\rangle\cdotarrow f_{6}(x,0)f_{3}(0,x)arrow f_{5}(0,x)f_{3}(x,0)arrow f_{6}(x,0)f_{4}(0,0)arrow lf_{5}(0,0)arrow 1f_{6}(0,0)arrow l\end{array}$

$R_{2}$ $\{G(x,x,y)G(x,y,x)G(y,x,x)arrow xarrow xarrow x$

Then, we can show that $R_{1}$ and $R_{2}$ are canonical and irreducible. However,
$R_{1}\oplus R_{2}$ is not canonical, since $F(t, t,t, t, 0)$ with $t\equiv G(f_{1}(0,0),$ $f_{2}(0,0),$ $f_{3}(0,0))$

reduces to itself:

$F(t,t,t,t, 0)arrow\cdotsarrow$

$F(G(f_{4}(0,0),$ $f_{4}(0,0),f_{3}(0,0)),$ $G(f_{5}(0,0),f_{2}(0,0),$ $f_{5}(0,0))$ ,
$G(f_{1}(0,0),f_{6}(0,0),f_{6}(0,0)),t,$ $0$ ) $arrow\cdots$
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$arrow F(f_{4}(0,0),$ $f_{5}(0,0),$ $f_{6}(0,0),t,$ $O$ ) $arrow F(t,t,t,t, 0)arrow\cdots$ .
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