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QUADRATIC CONTROL OF LINEAR STOCHASTIC PERIODIC SYSTEMS
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1. INTRODUCTION

Recently periodic systems and optimal control problems of periodic
systems have been studied by several authors for example [3], [6], [9],
[15], [16].

In this paper we consider linear stochastic periodic systems and ob-
tain sufficient conditions for the existence of periodic solutions. We
then introduce control to our systems and consider average quadratic cost
control problems. Under the assumption of stochastic stabilizability and
detectability there exists a unique periodic solution to the Riccati equa-
tion associated with this problem. We show that the optimal control is a
periodic feedback control involving this pefiodic solution. The optimal
closed loop system has a unique periodic solution which is globally expo-
nentially asymptotically stable. As a corollary we obtain optimal statio-
nary controls for time invariant systems. An example is given to illus-

trate the theory.

2, - 'PERIODIC SOLUTIONS OF STOCHASTIC SYSTEMS

Let' Y be a real separable Hilbert space Y and let A(t) be a



possibly unbounded linear operator on Y with A(t+T)=A(t), teR. We as-
sumé that A generateé a strongly continuous evolution operator U(t,s),
t>s [17], [18]. We also assume that there exists a family of linear ope-
rators A, (t) generating evolution operators U,(t,s) such that U,(t,s)
is differentiable on Yy dense in Y and converges strongly in Y to
U(t,s) uniformly on 0<s<t<T.

Let (§,F,F.,P) be a stochastic basis. Consider

(2.1) dy = [A(t)y + £(t)]dt + G; (t)ydw; +G(t)dw, y(0) =yq

where f 1is T-periodic and is in L,(0,T;Y), G;, GeL(Y) are T—periodié

is
and strongly continuous, twi) is a k-dimensional Wiener process, w(t) 1is
a Wiener process in a real Hilbert space H, cov[w(t)]=tW, W nuclear,
w;, w are independent and the repeated 1 denotes the summation from

i=1 to k.v We assume that F, is rich enough that there exist Gaussian
random vectors [11] and Wiener processes in (Q,FO,P). For each _Fo-meas—
urable yp with E]y0}2<-+m we define the mild solution of (2.1) by the
unique solution in C([O,L];LZ(Q,Y))

t t

U(t,s)f(s>ds+J U(t,s)G1 (s)y(s)dwj (s)

(2.2)  y()=U(t,0)y, +J
( 0

0

t
+ J U(t,s)G(s)dw(s)
0 ;

The existence and uniqueness of a mild solution on arbitrary [0,L] is well-
known [4].
We recall that a stochastic process y(t) in Y is called T-periodic

if tﬁe joint distribution of y(t1+T); y(to+T), =++, y(t +T), for any



ty,°**, tp 1is independent of T [16]. y(t) is called weakly T-periodic
if it has T-periodic mean and covariance . Note that if y(t) 1is
Gaussian, then y(t) is T-periodic if and only if it is’weakly T-periodic.
We say that (2.1) has a T-periodic (weakly T-periodic) solution if
there exists a Yo such that the mild solution (2.2) is T-periodic (weak-

ly T-periodic).

First we consider the special case G;=0. Then (2.1) is now

(2.3) dy = [A(t)y+ f(t)]dt + G(t)dw

and its mild solution is given explicitly by

t t

(2.4) y(t) = U(t,O)yO-+J U(t,s)f(s)ds4-J U(t,s)G(s)dw(s).

0 0

Proposition 2.1, (1) The system (2.3) has a T-periodic solution if and

only if there exists Yo€Y and 0<Pgye L(Y) such that

7 ‘
a) [I-U(T,0)1yq = J U(T,s)f(s)ds
-0
(2.5)
. T
b) Pg = U(T,0)PyU (T,O]-+J U(T,s)G(s)WG* (s)U™(T,s)ds |
0

If there exist ¥, and P, satisfying (2.5), then we can choose Yy
Gaussian with mean Y, and covariance PO.
(i1) If U(t,s) 1is exponentially stable, then there exists a unique

Gaussian T-periodic solution of (2.3). Moreover Yy, and Py are given



by
0
a) ?b = f U(0,s)f(s)ds
(2.6) .
, 0 :
b) Py = J U(0,s)G(s)WG*(s)U*(0,s)ds .
Proof. The first part follows from Morozen [16]. To prove (ii), we

need to show that (?b,PO) given by (2.6) is the solution of 62.5).
We shall only consider P. Note that (2.5b) is well defined since
U(t,s) 1is exponentially stable, Note also U(T,0)=U(nT,(n-1)T) for
any n=1,2,.¢., U(t,s)U(s,v)=U(t,v), t>s>v and U(T+t,T+s)=U(t,s),

t>s. Now

T
U(T,O)POU*(T,O)-+f U(T,s)G(s)WG* (s)U™(T,s)ds
0

T
U(T,S)G(S)WG*(S)U*(T,s)ds<+J U(T,s)G(s)WG™ (s)U™(T,s)ds
0

0

—00

-0

0
U(0,r)G(r)WG™ (r)U(0,r)dr

-0

T .
J U(T,s)G(s)WG™ (s)U™ (T,s)ds

Py .

Hence PO -satisfies (2.5b). Now we shall show that PO is the only
solution of (2.5b). Let P1 be anofher solution and set P= PO— Py.

Then



v
it

U(T,0)PU*(T,0) = U(2T,T)U(T,0)PU” (T,0)U" (2T, T)

U(2T,0)PU*(2T,0) = U(nT,0)PU*(nT,0)

for any positive integer n, Letting n + ® we get P=0 by exponential

stability of U(t,s).

Remark 2.1. If U(t,s) 1is exponentially stable, then

t ) t
(2.7) y(t) = j U(t,s)f(s)ds*-J U(t,s)G(s)dw(s)

-0 -0

is the unique T-periodic solution of (2.3), where w 1is now e#tended to
(-=,) keeping the covariance oberator W unchanged. (2.6) is obtained
from (2.7) by setting t=0.

From now on we assume that w; and w are defined on (-%,©), Now
we go back to our original system (2.1). To show the existence of a T-

periodic solution to (2.1) we assume that the homogeneous part of (2.1) is

exponentially stable. To be more precise consider

(2.8)  dy = A(t)ydt +G; (t)ydw;, y(s) =y, €Y.

Let V(t,s) be the stochastic fundamental solution [71, [15] of (2.8) so
that y(t,s;y0)=V(t,s)y0. We assume that
|2

(2.9 E[V(t,8)yyl? <My e Ely 1P s

for some MIELO, a>0. We shall say for simplicity that (A,G;) 1is ex-

ponentially stable,
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)

Theorem 2.1. ‘Suppose ‘that the homogeneous system (2.8) is exponential-
ly stable, namely, (2.9) holds. Then there exists a unique T-periodic

solution y to (2.1). It is given by

) t t
(2.10) y(t) = [ V(t,s)f(s)ds-ﬁj V(t,s)G(s)dw(s) .

00 -C0

Proof. Note first that V(t,s) and w(s) are independent and hence
the stochastic integral in (2.10) is well-defined. We first prove exis-
tence. Let y be given by (2.10), then we have

t t

V(t,s)f(s)ds + J V(t,s)G(s)dw(s) +V(t,0)y(0)

y(t) = J
0

0

so that y is a mild solution of (2.1) with y(0)=y0. This is proved
in Arnold [1] via Ito’s formula when Y is finite dimensional., The gene-
ral case then follows by taking approximating system with A(t) replaced
by A,(t) and passing to the limit as n-+«, Now as V(T+t,T+s) has
the same distribution as V(t,s) (by [15]) we can easily check that f is
T-periodic. It remains to prove uniqueness. Let y be a T-periodic
solution to (2.1). Then we have
t t

V(t,s)f(s)ds-hJ V(t,s)G(s)dw(s).

y(t) = V(t,b)y(b) + J
b

b

Letting b=>-=», we find (2.10).
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3. QUADRATIC CONTROL

Now we consider the optimal control problem :

(3.1) dy = [A(t)y +B(t)u+ £(t)]dt + G; (t)ydw; + G(t)dw, y(0)=vyy »
— 1 L 2

(3.2) J(u) = 1lim fth [IM(t)y|® +<N(t)u,u>] dt,
Lo 0

where u 1is a control in a real separable Hilbert space U, BeL(U,Y), NeL(U),
Me L(Y) are T-periodiec and strongly continuous and N(t)>cI for some

c>0. We wish to minimize (3.2) over

L
(3.3) U = {u:u is F¢-measurable, TTEIE-E |u(t)|2dt < o
ad L
[0 0

such that sup E'ly(t)]2 < o} ,
>0

To make our problem non trivial we need some assumptions. Let D: [0,®) -

L(Y) be strongly continuous.

Following [8] we say that

(1) (A,B;Gi) is stabilizable if there exists K: [0,») > L(Y,U) bounded,
strongly continuous such that (A-BK,Gj) 1is exponentially stable,
i.e., the stochastic evolution operator generated by (A-BK,G;j) 1is
exponentially stable,

(i1) (A,D;Gy) is detectable if there exists J: [0,®) -+ L(Y,U) bounded,

strongly continuous such that (AQJD,Gi) is exponentially stable.



The feedback control

(3.4) u = -K(t)y + h(t)

is admissible if K, h are T-periodic and strongly continuous and if
(A-BK,Gj) is exponentially stable.

In order to solve our control problem we consider the Riccati equa-

tion
(3.5) Q' + A% (£)Q+ QA(t) + M* (£)M(t) + GF (£)QG; (£) - QB(tIN™ (£)B*(t)Q=0,
Theorem 3.1, (1) Suppose that (A,B;G;) is stabilizable. Then there

exists a T-periodic nonnegative solution to (3.5).
(ii) 1f (A,M;G;) 1is detectable, then there exists at most one solution
to (3.5) which is T-periodic and nonnegative.

Moreover, if Q 1is the solution of (3.5), then (A—BN-lB*Q,Gi) is stable,

Proof. The proof of (i) is very similar to the deterministic case [6].
In fact we consider (3,5) with terminal condition Q(n)=0; the solution
Q, is monotone increasing in n and is uniformly bounded in t and n
since (A,B;G;) 1is stabilizable. Then there exists a limit Q(t) =

lim Q,(t) 1in the strong sense and it is the required periodic solution.
n—>ce

The second part can be shown as in [8, Theorem 4,1].

Now our control problem can be solved as in the deterministic case,

Theorem 3.2, Suppose that (A,B;G;) 1is stabilizable and (A,M;Gy)

detectable. Then the feedback law

(3.6) T = N 1B*(Qy+r)
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is optimal and

T .
J [2<r,f>-< BN_lB*r,r> + tr GWG*Q] dt

0

(3.7) Jw) =

=3[

where Q 1is the T-periodic solution of (3.5) and T 1is the unique T-

periodic solution of

(3.8) '+ (A*- QBN IB¥)r + Qf = 0
given by
r(t) = J UX(s,t)Q(s)£(s)ds,
¢ Q

U is the evolution operator generated by A-BN-IB*Q and tr denotes

Q

the trace of nuclear operators.

Proof, Let us:Ua and let y be its reponse. We note that the

d
formal application of Ito’s formula to <Qy,y>+2<r,f> can be justified
by using approximating systems involving ‘An(t) (see [2], [5], [6]).

Thus we have

1/2

d[<Qy,y>+2<r,y>] = {INY2[u+ N1B* (Qy+r) 1|2 - |My|?

1

- <Nu,u>+ 2<1,f> - <BN_ "B r,r> + tT GWG*Q} dt

+ 2<Qy+r ,Giydwi>-+2<Qy+r,de> .

Integrating this from 0 to L and taking expectations, we have
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E[<Q(L)y (L),y(L)> + 2<r(L),y (L)> - <Q(0)yq,y o> - 2<1(0),y4>]

L 2
+‘EJ []My] .+ <Nu,u>]dt
0

L
= EJ |N1/2[u+N‘lB*(Qy+r)]|2dt
0 _ '

L : '
+ [ [2<r,f>-<BN_1B*r,r>-+tx'GWG*Q] dt .
O .

Now dividing this by L and taking limit supremum as L->«, we obtain

L
G.9) 3t = T 4| N/t e o) e
Lo 0 .

T
+ %J [2<r,£> - <BN'lB*r,r> +tr GWG™Q] dt .
0

The optimality of (3.6) and (3.7) follows immediately.

The closed loop system corresponding to the optimal control u is

1

(3.10)  dy = [(A-BN 'B*Q)y + £- BN 1B*r]dt + G; (t)ydw; + G(t)dw.

Since (A—BN—lB*Q,Gi) is exponentially stable, (3.10) has a unique T-

periodic solution by Theorem 3.1. More precisely we have :
Theorem 3.3. Under the hypotheses of Theorem 3.2, there exists a

unique T-periodic solution to (3.10) given by :

t t

(3.11) Yp(t) = J VQ(t,S) [£(s)-B(s)N"! (s)B* (s)r(s) ]ds + J VQ(t,S)G(S)dW(S) >

10



where VQ(t,s) is the fundamental solution of the homogeneous system
obtained from (3.10).

Moreover yp is exponentially asymptotically stable in mean square.

Proof, Note that yp, given by (3.11), is the unique T-periodic solu-

tion to (3.10). The last assertion of the theorem follows from the identity:
t,y ) -y (t) = V. (t,0 +y (0
Y(tyg) =, (8) = Vo(£,0) (g + v, (0)

where y(t,yo) is the mild solution of (3.10) with y(0)==y0 .

Suppose now G; =0. Then the Riccati equation (3.5) is equal to the
deterministic one. Thus if (A,B) is stabilizable and (A,M) detectable

19, then

(3.12)  dy = [(A-BN"1B*Q)y + £ - BN"IB*r]dt + G(t)dw

has a unique Gaussian T-periodic solution yp. In fact by Theorem 3.1 we

have :

Corollary 3.1. Assume G; =0 and that (A,B) is stabilizable and

(A,M) detectable. Then the system (3.12) has a unique Gaussian T-periodic

solutions given by

t

) t
yp(t) = f UQ(t,s)[f(s)-Bcs)N'l(s)B*(s)rcs)1ds-+J UQ(£,5)G(s)dw(s)

where UQ(t,s) is the evolution operator generated by A—BN—lB*Q.

11
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Moreover

0
Eyp(O) = J UQ(O,s)[f(s)-B(s)N'l(s)B*(s)r(s)]ds

(3.13)
0

COQ[yP(O)]V= J UQ(o,s)G(s)wc*(s)U

*

Q(O,s)ds .

Now we consider special cases. First we take a class of T-periodic

admissible controls

(3.14) U = {u:u is Ft-measurable » (3.1) has a T-periodic solution

pad

for some y,,Fj-measurable }
and calculate the cost along periodic solutions. Thus we take

T
(3.15) Jp(u) = %»EJ [|My|24-<Nu,u>]dt,
0

Under the assumptions of Theorem 3.2 Upad

optimal cost in (3.7) does not depend on yg. Thus we have :

is not empty. Note that the

Corollary 3.2. The feedback control (3.6) is optimal for the periodic

control problem (3.1), (3.15) and Jp({a =J(u). Moreover u(t) is also

T-periodic.

Now we consider time-invariant case. The Riccati equation (3.5)

becomes an algebraic equation

(3.16) A*Q + QA + M™ + GjQG; - QBN 1B*q = 0.

12



The stabilizability of (A,B;G;) and the detectability of (A,M 3 G3)

are the same as in [8].

Corollary 3.3.  Let the operators in (3.1), (3.2) and f are all con-

stant. Suppose that (A,B;G;) 1is stabilizable and (A,M; G;) detect-

able. Then the feedback control

(3.17) T= -N1B*(Qy+1)

is optimal and

1

(3.18) J(@) = 2<r,f>-<BN "B*r,r>+ tr GWG*Q ,

where Q is‘the unique nonnegative solution of (3.16) and r is the

unique solution of the algebraic equation

(3.19)  (A*-QBN 'B*)r + Qf = 0

giveﬁ by

* -1,%
(3.20) 1 = -(A*-QeN"B*)hof = r (SO (A - BN "B e g
t

Moreover the closed loop system corresponding to the feedback control
(3.17) has a unique stationary solution (i.e., T-periodic solution for

arbitrary T).

The stochastic version of a stationary problem may be the following.

13
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We define
(3.21) Usad = {uru is F¢-measurable and stationary with E]u(O)I2<-+m,
there exists a stationary solution y of (3.1) with
2 .
Ely(0)|“<+w }.
We take

(3.22)  Jg(u) = E[|My(0)]? + <Nu(0),u(0)>]
and minimize Jg over Ugggq. Then we have :

Corollary 3.4. Assume the condition in Corollary 3.3. Then the feed-

back control (3.17) is optimal and Jg(u) =J(u) given by (3.18).

Similar results to Corollaries 3.3 and 3.4 can be found in [13] and
[147.
Filtering problem and optimal control under partial observation can

be found in [10]. Tracking problems can be also considered.

4, AN EXAMPLE

Consider the stochastic wave equation

d(dy/dt) = [-20y/0t + 32y/ox>]dt + sint sinxdw, 0<x<T ,

(4.1)

y(t,0) = y(t,m) =0 .

We take Y=H(1)(o,1T)xL2(0,Tr) and

14 -



0 I )
A= » D(A) = D(Ag) xH;(0,m
-Ay 21

2,2
Ag = -d“/dx” D(Ag)

(4.2)

i

H%0,m q H(l)(O,Tr) )

Then A generates a Cp-semigroup

cos/AO-—l t+ /Ao—l—lsim/AO—l t ,VAO—I—lsim/AO—l t
t .

(4.3) S(t) =e”

-(/Ao—l"l +/Ay-T)sin/Ag-Tt , cosVAy-1t - /Ao-l‘lsin/AO-l t

(e o]
where cosVAO—lty = Z (2/m)cosVnZ-1t <y,sinnx>sinnx and sim/AO-lt
n=1

is defined in a similar manner with exception /nz-lnlsim/nz-l t] = t.
' n=1

The unique 2>Tr—periodic solution of (4.1) is

y(t) t 0
(4.4) = J S(t-s) dw(s) .
ay(t)/at -0 sins sinx

Now consider the controlled system

d(3y/ot) = [0%y/3x%+u+sint sinx ]dt + (3y/3t)dw
(4.5)
y(t,0) = y(t,m) =0
1t 2 2 2
(4.6) J(u)=Tffﬁ——EJ [2]ay/at]s + |u|51dt, zZ=L"(0,m) .
L Z Z
Loo 0

We take Y as before but A 1is replaced by

15.
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A = , D) =D(A) .

2 0 0 0
We choose U=L(Omj,Bu=[u], N=1 and G=My= .
0 I

Then M*M=:2M0, BB*==M0 and A*=-A, Thus the algebraic Riccati equation

(3.16) is
-AQ + QA - QMyQ + 2My + MgQMg = 0 |

whose nonnegative solution is Q= 2I. Hence the generator of the optimal

closed system is

R - BNIB*Q =K - 2My = A .

Note that

. ¢ | cosVAp-Tt+ VAO—l_lsin/AO—l't, ABIVAO—l—lsin/AO-lt
S (t)=e *

"'Ao(V/Ao"l_l + V/Ao—l)SiTIVAO-]. t, COSVAO-]. t - vAo~l_lSinvA0—1 t

The optimal control is

- % y T
u=-B"{Q o+ } =-293y/3t- 1y,
EY/Bt rs
where
r{(t) o 0
r(t) = = J $*(s-t) ds |
T,(t) | t sins sinx

16



Hence

T, (t) J e-s(l-s)sin(s+t)sin><ds
0

—;— (sint - cos t)sinx .

The minimal cost is

_ 21 0 2
@ - % | 2ex(s) | s |rys)|Ads
sins sinXx

1 (7 2 2
= — (3sin"s -~ cos s - 2sins coss) ds
16 0

|3
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