A NOTE ON BMO-MARTINGALES

By N.Kazamaki and T.Sekiguchi (風巻 紀彦 、関口 健) Toyama University (富山大・理)

Let $(\Omega, \mathfrak{F}, P; (\mathfrak{F}_{t}))$ be a probability system where the filtration (\mathfrak{F}_{t}) satisfies the usual conditions. We now consider two important subclasses of BMO, namely the class L^{∞} of all bounded martingales and the class H^{∞} of all martingales with bounded quadratic variation. There is not always an inclusion relation between these classes. In fact, if $B=(B_{t})$ is a one dimensional Brownian motion starting at 0, then $(B_{t\wedge 1})\in H^{\infty}\setminus L^{\infty}$ clearly. On the other hand, the process B stopped at τ , where $\tau=\min\{t:|B_{t}|=1\}$, belongs to $L^{\infty}\setminus H^{\infty}$ (see [2]).

Our aim is to prove the following.

THEOREM. Suppose the sample continuity of any martingale adapted to (\mathfrak{F}_{t}) . Then the following properties are equivalent:

- (a) $BMO=L^{\infty}$.
- (b) BMO=H[∞].
 - (c) $\mathfrak{F}_t = \mathfrak{F}_0$ for every t.

Furtheremore, excepting such a trivial case, $H^{\infty} \cup L^{\infty}$ is not dense in BMO.

Recall that BMO is the class of those uniformly integrable martingales M which satisfy $\|\mathbf{M}\|_{BMO} = \sup_{T} \|\mathbf{E}[(\mathbf{M}_{\infty} - \mathbf{M}_{T-})^2 \| \mathfrak{F}_{T}]^{1/2} \|_{\infty} < \infty$

where the supremum is taken over all stopping times T. It is well-known that BMO is Banach space with the norm $\|\mathbf{M}\|_{BMO}$.

PROOF. Firstly, we shall establish the implication (a) \rightarrow (c). In order to see (c), it suffices to prove that for any martingale M, almost all sample functions of M are constant, and by using the usual stopping argument we may assume M \in BMO. Suppose now BMO=L $^{\infty}$. Then the two norms $\|M\|_{BMO}$ and $\|M\|_{\infty}$ on BMO are equivalent by the Closed Graph Theorem. So there exists a constant C>O, depending only on M, such that $\|K \cdot M\|_{\infty} < C$ for any predictable process $K = (K_t, \mathfrak{F}_t)$ with $|K| \le 1$. Here $K \cdot M$ denotes the stochastic integral of K relative to M. We show below that the negation of (c) causes a contradiction. If we deny (c), then there exist t>O and a partition $\Delta: O = t(O) < t(1) < \cdots < t(n) = t$ of $\{0,t\}$ such that $\{0,t\} > 0$ where $\{0,t\} = \{0,t\} = \{0,t\} > 0$. Let now

$$B_{j,\epsilon(j)} = \begin{cases} \{M_{t(j)}^{-M} + (j-1)^{\geq 0}\} & \text{if } \epsilon(j) = 1, \\ \{M_{t(j)}^{-M} + (j-1)^{\leq 0}\} & \text{if } \epsilon(j) = -1 \end{cases}$$

for $j=1,2,\dots,n$. Since $A=\bigcup_{1\leq j\leq n},\epsilon(j)=\pm 1^{A\cap B}1,\epsilon(1)^{\bigcap_{n},\epsilon(n)}$, we have for some $\epsilon^*(j)(1\leq j\leq n)$

$$P(A\cap B_{1,8}^*(1)\cap\cdots\cap B_{n,8}^*(n))>0.$$

Then the process K defined by $K_s = \sum_{j=1}^n \epsilon^*(j) I_{]t(j-1), t(j)]}(s)$ is a predictable process with $|K| \le 1$, so that $\|K \circ M\|_{\infty} \le C$ must follow. On the contrary , we find

$$(K \circ M)_{t} = \sum_{j=1}^{n} |M_{t(j)} - M_{t(j-1)}| > 2C$$

on the set $A\cap B_{1,\epsilon}*(1)\cap\cdots\cap B_{n,\epsilon}*(n)$. Thus (a) implies (c). The implication $(c)\rightarrow(b)$ is trivial. Finally, to prove the implication $(b)\rightarrow(a)$, let us suppose $BMO\ne L^{\infty}$. Then by the result of Dellacherie, Meyer and Yor L^{∞} is not dense in BMO, and further Kazamaki and Shiota have recently shown in [2] that the BMO-closure of L^{∞} contains H^{∞} . Therefore, combining these results, we have $BMO\ne H^{\infty}$. That is, the contraposition of the implication $(b)\rightarrow(a)$ is established. The latter half of the theorem follows at the same time. This completes the proof.

We now exemplify that H^{∞} as well as L^{∞} is not always closed in BMO under the same assumption as in the theorem. For that, consider the identity mapping S of R_{\perp} onto R_{\perp} . Let μ be the probability measure on R₊ defined by $\mu(S \in dx) = \sqrt{2/\pi}e^{-x^2/2}dx$ and G_+ be the $\mu\text{-completion}$ of the Borel field generated by SAt. Then $(R_{\downarrow}, G, \mu: (G_{t}))$, where $G = G_{t}$, is a probability system. Clearly, S is a stopping time over (\mathfrak{G}_t) . We next consider in the usual way a probability system (Ω , \Re ,P:(\Re_t)) by taking the product of the system $(R_+, \mathfrak{G}, \mu; (\mathfrak{G}_{t}))$ with another system $(\Omega', \mathfrak{F}', P'; (\mathfrak{F}_{t}'))$ which carries a one dimensional Brownian motion $B=(B_t)$ starting at 0. Then the filtration $(\mathfrak{F}_{_{\boldsymbol{+}}})$ satisfies the usual conditions and S is also a stopping time over this filtration. Let M denote the process B stopped at S. It is a continuous martingale over (\mathfrak{F}_+) such that $\langle M \rangle_+ = t \wedge S$ where $\langle M \rangle$ denotes the continuous increasing process associated with M. We first verfy M∈BMO. Since $\{S>t\}$ is an \mathfrak{F}_+ -atom, we have

$$\begin{split} \mathbb{E} [< \mathsf{M} >_{\infty} - < \mathsf{M} >_{\mathsf{t}} | \mathfrak{F}_{\mathsf{t}}] = & \mathbb{E} [\mathsf{S} - \mathsf{t} | \mathfrak{F}_{\mathsf{t}}] \mathbb{I}_{ \{ \mathsf{t} < \mathsf{S} \} } \\ \leq & (\int_{\mathsf{t}}^{\infty} \mathrm{e}^{-\mathsf{x}^2/2} \mathrm{d} \mathsf{x})^{-1} (\int_{\mathsf{t}}^{\infty} (\mathsf{x} - \mathsf{t}) \, \mathrm{e}^{-\mathsf{x}^2/2} \mathrm{d} \mathsf{x}) \, , \end{split}$$

which converges to 0 as $t\to\infty$. That is, there is a constant C>0 such that $E[\langle M \rangle_{\infty} - \langle M \rangle_t | \mathfrak{F}_t] \leq C$ for every t. In our setting, this yields that $E[\langle M \rangle_{\infty} - \langle M \rangle_T | \mathfrak{F}_T] \leq C$ for every stopping time T. Thus MEBMO. As a matter of course, we have MEH $^{\infty}$. Secondly, let $M^{(n)} = B^{n \wedge S}$ $(n=1,2,\cdots)$. Then $M^{(n)} \in H^{\infty}$. Since $\langle M^{(n)} - M \rangle_t = t \wedge S - t \wedge n \wedge S$, we find

$$E[\langle M^{(n)} - M \rangle_{\infty} - \langle M^{(n)} - M \rangle_{t} | \mathfrak{F}_{t}]$$

$$\leq (\int_{t \vee n}^{\infty} e^{-x^2/2} dx)^{-1} (\int_{t \vee n}^{\infty} (x - t \vee n) e^{-x^2/2} dx),$$

from which $M^{(n)}$ converges in BMO to M as $n\to\infty$. Consequently, $M\in \overline{H}^\infty\backslash H^\infty$.

REFERENCES

- [1] Dellacherie, C., Meyer, P.A. and Yor, M. (1978). Sur certaines propriétés des espces de Banach H ¹et BMO, Sém. de Prob. XII, Lecture Notes in Math. 649 98-11
- [2] Kazamaki, K. and Shiota, Y. (1985). Remarks on the class of continuous martingales with bounded quadratic variation,

 Tohoku Math. J., 37 101-106