
Long Cycles through Specified Vertices
in a Graph

Akira Saito
(斉藤 明)

Department of Electrical Communications
Tohoku University
Sendai, Miyagi 980

JAPAN

ABSTRACT

In this paper, we consider the length of the longest cycle through specified vertices. We

show the following two results. (1) Let $G$ be a k-connected graph of order at least $2k$ and

circumference $l$ . Suppose $m<k$ . Then for any $m$ vertices of $G,$ $G$ has a cycle which
contains all of them and has length at least $\frac{k-m}{k}l+2m$ . (2) Let $G$ be a 3-connected planar

graph with circumference $l$ . Then for any three vertices of $G$, there exists a cycle which

contains all of them and has length at least $\iota_{l}4+3$ .

Here, we consider finite simple graphs. Let $G$ be a graph. By Dirac’s theorem[3] $G$ has a
cycle through specified $k$ vertices. In [2] Dirac also showed that a 2-connected graph of order
$n$ and minimum degree at least $d$ has a cycle of length at least $\min\{n, 2d\}$ . $Locke[4]$ and
Voss[7] generalized his result by showing that under the same conditions the graph has a cycle

of length at least $\min\{n, 2d\}$ . which contains specified two vertices.
These results lead us to the following question: Does a k-connected graph have a long

cycle through specified $m$ vertices $(m\leq k)$? In this paper we investigate this question.
For basic graph-theoretic terminology, we refer the reader to [1]. Let $G$ be a graph. The

circumference of $G$ , denoted by $cir(G)$ , is the length of the longest cycle of $G$ . We denote by
$w(G)$ the number of components of $G$ . For $k\geq 0$ and $S\subset V(G)$ , we call $S$ a k-cutset if
$w(G-S)\geq 2$ and $|S|=k$ . We often identify a subgraph $H$ of $G$ with its vertex set $V(H)$ .
Especially, when $x$ is a vertex of $H$ , we write $x\in H$ instead of $x\in V(H)$ . Furthermore,

we write $|H|$ instead of $|V(H)|$ . When we consider a cycle, we always give it an
orientation. Let $C^{+}$ be the orientation of a cycle $C$ and $C^{-}$ be its reverse orientation. Let
$C^{+}=x_{0},$ $x_{1},$ $\ldots$ , $x_{n-1},$ $x_{n}$ be a cycle. For $x_{i},$ $x_{j}\in C$, we define a subpaths $C^{+}[x_{i}, x_{j}]$ and
$C^{-}[x_{i}, x_{j}]$ of $C$ by

$C^{+}[x_{i}, x_{j}]=x_{i},$ $x_{i+1},$ $\ldots,$ $x_{j-1},$ $x_{j}$ ,
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and
$C^{-}[x_{i}, x_{j}]=x_{i},$ $x_{i-1},$ $\ldots x_{j+1},$ $x_{j}$ .

We also define $C^{+}(x;, x_{j})$ and $C^{-}(x_{i}, x_{j})$ by

$C^{+}(x_{i}, x_{j})=C^{+}[x_{i}, x_{j}]-\{x;, x_{j}\}$ ,

and
$C^{-}(x_{i}, x_{j})=C^{-}[x_{i}, x_{j}]-\{x_{i}, x_{j}\}$ .

Furthermore, $C^{+}[x_{i}, x_{j}$ ) $=C^{+}[x_{i}, x_{j}]-\{x_{j}\}$ . Subpaths $C^{-}[x_{i}, x_{j}$ ), $C^{+}(x_{i}, x_{j}$ ], $C^{-}(x_{i}, x_{j}$ ]

are defined similarly. Let $arrow x_{1},$ $x_{2},$ $\ldots$ , $x_{s}$ be a path. We denote by end $(P)$ the set of
endvertices of $P;$ end$(P)=\{x_{1}, x_{s}\}$ . Let $P=x_{1)}x_{2},$ $\ldots$ , $x_{s}$ and $Q=y_{1},$ $y_{2},$ $\ldots$ , $y_{t}$ be paths
such that $x_{s}=y_{1}$ . We denote by $P\cdot Q$ the walk $x_{1},$ $x_{2},$ $\ldots,$ $x_{s}=y_{1},$ $y_{2},$ $\ldots$ , $y_{t}$ .

Let $z\in V(G)$ and $S\subset V(G)-\{z\}$ . A subgraph $F$ of $G$ is called a $(z, S)$-fan if $F$ has
the following decomposition $F= \bigcup_{i=1}^{k}P_{i}$ , where
(1) each $P_{i}$ is a path between $z$ and $a_{i}\in S$, and
(2) $P_{i}\cap S=\{a_{i}\}$ , and $P_{i}\cap P_{j}=\{z\}$ if $i\neq j$ .
We call $k$ the size of the fan $F$ . The vertices $a_{1},$ $\ldots$ , $a_{k}$ are called endvenices of $F$ and the
set of its endvertices is denoted by end$(F)$ . Since $F$ is a tree, for any two vertices $x,$ $y\in F$

the path in $F$ which joins $x$ and $y$ is unique. We denote this path by $F[x, y]$ . We define
$F[x, y)$ by $F[x, y$) $=F[x, y]-\{y\}$ . Paths $F(x, y$] and $F(x, y)$ are defined similarly.

The following theorem is well-known, called the generalized Menger’s theorem.

THEOREM A ([1, Theorem 6.7]). Let $G$ be a k-connected graph, $z\in V(G)$ , and
$S\subset V(G)-\{z\}$ . Then $G$ has a $(z, S)$-fan of size $\min\{|S|)k\}$ . $\blacksquare$

The following theorem was proved by Perfect[5].

THEOREM $B$ (Perfect[5]). Let $G$ be a graph, $z\in V(G)$ , and $S\subset V(G)-\{z\}$ .
Suppose $G$ has two $(z, S)$-fans $F_{1}$ and $F_{2}$ of size $k_{1}$ and $k_{2}$ , respectively. If $k_{1}\leq k_{2}$ , then
$G$ has a $(z, S)$ -fan $F’$ of size $k_{2}$ such that end$(F_{1})\subset end(F’)$ . $\blacksquare$

We use these two theorems in the proofs our results.
First, we show that the existence of long cycles through specified $m$ vertices in a

k-connected graph is assured if $m<k$ . Note that a k-connected graph is hamiltonian if its
order is at most $2k$ , by Dirac’s theorem.
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THEOREM 1. Let $k\geq 2,0\leq m\leq k$ and $G$ be a k-connected graph of order at least
$2k$ . For any $m$ vertices $x_{1},$ $\ldots,$ $x_{m}$ of $G$ , there exists a cycle such that
(1) $x_{1},$ $\ldots,$

$x_{m}\in V(C)$ , and
(2) $|C| \geq\frac{k-m}{k}cir(G)+2m$ .

Recently, Seymour and Truemper sent me a proof which is simpler than the original one.
We show their proof.
Proof (due to Seymour and Truemper). The proof is by induction on $m$ . For $m=1$ , let
$x\in V(G)$ , and let $C$ be a longest cycle in $G$. Since $|C|\geq 2k$ ,

$\frac{k-1}{k}cir(G)+2=|C|-\frac{|C|}{k}+2\leq|C|$ .

So we may assume $x\not\in V(C)$ . Now $G$ has an $(x, C)$ -fan of size $k$ . The endvertices of $F$

divide $C$ into $k$ paths, and any shortest one $P$ of these paths, say $P=C^{+}[u, v]$ has length at

most $\iota_{cir(G)}k$ So $C^{+}[v, u]\cdot F[u, v]$ is a cycle which contains $x$ and has length at least

$|C|- \frac{cir(G)}{k}+2=\frac{k-1}{k}cir(G)+2$

as desired.
Suppose $m>1$ , and let $C$ be a longest cycle containing at least $m-1$ members of $S$.

By the induction hypothesis,

$|C| \geq\frac{k-m+1}{k}cir(G)+2(m-1)$

$= \frac{k-m}{k}cir(G)+2m+\frac{cir(G)}{k}-2$

$\geq\frac{k-m}{k}cir(G)+2m$ . $(*)$

So we may assume that exactly one member $x$ of $S$ does not lie on $C$. Since $cir(G)\geq 2k$ ,

$|C|\geq 2k$ . So $G$ has an $(x, C)$-fan of size $k$ . The endvertices of $F$ divide $C$ into $k$ paths. We
call such a path bad if it contains some member of $S$ intemally, and we call it goo$d$ if it is
not bad. Let $b$ represent the number of bad paths, and let $L$ be the sum of lengths of the bad
paths. Then some good path $P=C^{+}[u, v]$ has length at most

$\frac{|C|-L}{k-b}$

(, where $|C|\geq 2k$ and $k\geq m-1$). Keeping $|C|$ and $k$ fixed, and under the conditions $L\geq 2b$

and $b\leq m-1$ , this is maximized when $L=2b$ and $b=m-1$ . Hence,

$|P| \leq\frac{|C|-2(m-1)}{k-m+1}$
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A cycle $C^{+}[v, u]\cdot F[u, v]$ contains $S$ , and Rom(*) it has length at least

$|C|- \frac{|C|-2(m-1)}{k-m+1}+2\geq\frac{k-m}{k}cir(G)+2m$

as desired. $\blacksquare$

Theorem 1 is sharp. Let, $k\geq 2$ , $s\geq 1$ , and $0\leq m\leq k$ . Let
$H_{0},$ $H_{1},$

$\ldots,$
$H_{k}$ and $H_{0}’$ be graphs such that $H_{1}\simeq\cdots\simeq H_{k}\simeq K_{s}$ , $H_{0}\simeq\overline{K_{m}}$ and

$H_{0}’\simeq\overline{K_{k}}$. Suppose vertex sets $V(H_{0}),$
$\ldots,$

$V(H_{k})$ and $V(H_{0}’)$ are disjoint. Defme
$G(k, m, s)$ by $G(k, m, s)=(H_{1}\cup\cdots\cup H_{k}\cup H_{0})+H_{0}’$ . Then $G(k, m, s)$ is k-connected,

$|G(k, m, s)|=ks+k+m\geq 2k$ , and $cir(G(k, m, s))=ks+k$ . On the other hand, the length
of the longest cycle through $V(H_{0})$ is $(k-m)s+k+m$. The above example shows that
large circumference does not assure the existence of long cycles through specified $kve$rtices
in k-connected graphs.

Next, we confine ourselves to planar graphs. Even if we consider only planar graphs,
the length of the longest cycle through specified two vertices in a 2-connected graph is
independent of its circumference. Let $C=x_{0)}x_{1},$

$\ldots,$ $x_{m}=x_{0}$ be a cycle of length $m$

$(m\geq 4)$ . Add a new vertex $y$ and join $yx_{1}$ and $yx_{m-1}$ . Then this graph has circumference
$m$ , but the unique cycle through $y$ and $x_{0}$ has length four. On the other hand, by
Tutte’s theorem[6] 4-connected planar graphs are hamiltonian, and hence the length of the
longest cycle through four specified vertices in a 4-connected planar graph is equal to its
circumference. On a planar graph of connectivity three, we show the following theorem.

THEOREM 2. Let $G$ be a 3-connected planar graph. Then any three vertices of $Glie$

on a cycle of length at least $\iota cir(G)4+3$ .

The proof of Theorem 2 is given by the following two lemmas.

LEMMA 1. Let $G$ be a 3-connected planar graph. Then for any two vertices $x,$ $y$ ,

there exists a cycle $C$ such that
(1) $x,$ $y\in V(C)$ .
(2) $|C| \geq\frac{1}{2}cir(G)+2$ .

LEMMA 2. Let $G$ be a 3-connected planar graph, $x,$ $y,$ $z\in V(G)$ and $C$ be a cycle of
$G$ such that $x,$ $y\in V(C)$ . Then there exists a cycle $C’$ such that
(1) $x,$ $y,$ $z\in V(C’)$ .
(2) $|C’|\geq\iota_{|C|+2}2$

4



5

Proof of Lemma 1. If $G$ is hamiltonian, then the lemma clearly holds. So we may
assume that $G$ is not hamiltonian, which implies $|G|\geq 7$ and $cir(G)\geq 6$ . Let $C$ be a longest

cycle of $G$. We consider three cases.

Case 1. $\{x, y\}\subset V(C)$ .
This case is trivial.

Case 2. I $\{x, y\}\cap V(C)|=1$ .
We may assume that $x\in V(C)$ and $y\not\in V(C)$ . Consider a $(y, C)$ -fan $F$ of size

three. Let end$(F)=\{y_{1}, y_{2}, y_{3}\}$ . If $x\in\{y_{1}, y_{2}, y_{3}\}$ , say $x=y_{1}$ , then we have two

cycles $C^{+}[x, y_{2}]\cdot F[y_{2}, x]$ and $C^{-}[x, y_{2}]\cdot F[y_{2}, x]$ , one of which has length at least
$12|C|+2=\perp 2^{C}ir(G)+2$ and contains both $x$ and $y$ . Next, assume $x\not\in\{y_{1}, y_{2}, y_{3}\}$ . We
may assume $x\in C^{+}(y_{3}, y_{1})$ . Then one of the two cycles $C^{+}[y_{3}, y_{2}]\cdot F[y_{2}, y_{3}]$ and
$C^{-}[y_{1}, y_{2}]\cdot F[y_{2}, y_{1}]$ has the desired properties.

Case 3. $\{x, y\}\cap V(C)=\emptyset$ .
First, we show the following claims.

Claim 1. Suppose there exists a path $P$ in $G$ such that
(1) $P$ joins two distinct vertices of $C$ and $P$ intersects $C$ only at $its$ endvertices.
(2) $x,$ $y\in V(P)$ .
Then the $Lem$ma follows.
Proof. Let $a$ and $b$ be endvertices of $P$ . Then one of the two cycles
$P[a, b]\cdot C^{+}[b, a]$ and $P[a, b]\cdot C^{-}[b, a]$ satisfies the desired properties.

Claim 2. Suppose there exist two paths $P$ and $Q$ such that
(1) $V(P)\cap V(Q)=\emptyset$ .
(2) Both $P$ and $Q$ join two vertices of $C$ .
(3) $V(P)\cap V(C)=end(P)$ and $V(Q)\cap V(C)=end(Q)$ .
(4) Vertices of end $(P)$ and vertices of end $(Q)$ appear $al$ternately around $C^{+}$ .
(5) $x\in V(P)$ and $y\in V(Q)$ .
Then th$e$ lemma follows.
Proof. Let end$(P)=\{x_{1}, x_{2}\}$ and end$(Q)=\{y_{1}, y_{2}\}$ . We may assume $x_{1},$ $y_{1},$ $x_{2}$

and $y_{2}$ appear in this order around $C^{+}$ . Then one of the two cycles

$C^{+}[x_{1}, y_{1}]\cdot Q[y_{1}, y_{2}]\cdot C^{-}[y_{2}, x_{2}]\cdot P[x_{2}, x_{1}]$

and
$C^{-}[x_{1}, y_{2}]\cdot Q[y_{2}, y_{1}]\cdot C^{+}[y_{1}, x_{2}]\cdot P[x_{2}, x_{1}]$
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has the desired properti$es$ .
Let end $(F_{1})=\{x_{1}, x_{2}, x_{3}\}$ . We may assume that $x_{1},$ $x_{2},$ $x_{3}$ appear in this order around

$C^{+}$ . If $y\in V(F_{1})$ , then the theorem follows by Claim 1. Suppose $y\not\in V(F_{1})$ . Let
$D=C\cup F_{1}$ . Let $F_{2}$ be a $(y, D)$-fan of size three. Let end$(F_{2})=\{y_{1}, y_{2}, y_{3}\}$ . If
end $(F_{2})\cap(F_{1}-\{x_{1}, x_{2}, x_{3}\})\neq\emptyset$ , then the lemma follows by Claim 1. So we may assume
end $(F_{2})\subset V(C)$ .

Claim 3. If $\{y_{1}, y_{2}, y_{3}\}\subset C^{+}[x;, x_{i+1}]$ (If $i=3$ , we consider $x_{4}=x_{1}$), then the
lemma follows.

Proof. We may assume $y_{1},$ $y_{2}$ , $y_{3}\in C^{+}[x_{1}, x_{2}]$ and $y_{1},$ $y_{2}$ and $y_{3}$ appear in
this order around $C^{+}$ . Then

$C^{+}[x_{3}, y_{1}]\cdot F_{2}[y_{1}, y_{2}]\cdot C^{+}[y_{2}, x_{2}]\cdot F_{1}[x_{2}, x_{3}]$

or
$C^{+}[x_{1}, y_{2}]\cdot F_{2}[y_{2}, y_{3}]\cdot C^{+}[y_{3}, x_{3}]\cdot F_{1}[x_{3}, x_{1}]$

has the desired properties.

By Claims 1, 2, 3, the only possible case in which the lemma would not hold is
$\{x_{1}, x_{2}, x_{3}\}=\{y_{1}, y_{2}, y_{3}\}$ . We may assume $x_{i}=y_{i}(i=1,2,3)$ . Let $D’=D\cup F_{2}$ . Since $C$

is a longest cycle, $C^{+}(x_{1}, x_{2})\neq\emptyset$ . Since $G$ is 3-connected, there exists a path $P$ joining
$C^{+}(x_{1}, x_{2})$ and $D’-C^{+}[x_{1}, x_{2}]$ in $G-\{x_{1}, x_{2}\}$ . Let end$(P)=\{u, v\},$ $u\in C^{+}(x_{1}, x_{2})$ and
$v\in D’-C^{+}[x_{1}, x_{2}]$ . If $v\in V(F_{1})\cup V(F_{2})$ , then the lemma follows by Claim 2. So we may
assume $v\in C^{+}(x_{2}, x_{3}$]. Then $F_{1},$ $F_{2},$ $C^{+}[x_{1)}x_{2}]$ and $P[u, v]\cdot C^{+}[v, x_{3}]$ form a subdivision
of $K_{3,3}$ . This contradicts the planarity of $G$. Therefore, the lemma follows. $\blacksquare$

Proof of Lemma 2. Let $C_{0}$ be a longest cycle which contains $x$ and $y$ . Then $|C_{0}|\geq|C|$ .
If $G$ is hamiltonian, then $C_{0}$ is a hamiltonian cycle, and $|C_{0}|\geq 4$ . Hence the result
follows. Threfore, we may assume $G$ is not hamiltonian, and $|G|\geq 7$. By Lemma 1,
$|C_{0}|\geq\iota 27+2\geq 5$ . So $|C_{0}|\geq\iota_{|C_{0}|}2+2\geq\iota_{|C|}2+2$. Hence we may assume $z\not\in C_{0}$ .
Consider a $(z, C_{0})$-fan $F_{1}$ . Let end$(F_{1})=\{z_{1}, z_{2}, z_{3}\}$ . We may assume that $z_{1},$ $z_{2},$ $z_{3}$ appear
in this order around $C^{+}$ . We consider three cases.

Cas$e1$ . $end(F_{1})\subset C_{0}^{+}[x, y]$ or end $(F_{1})\subset C_{0}^{+}[y, x]$ .

We may assume $\{z_{1}, z_{2}, z_{3}\}\subset C_{0}^{+}[x, y]$ . Then one of the two cycles
$C_{0}^{+}[z_{2}, z_{1}]\cdot F_{1}[z_{1}, z_{2}]$ and $C_{0}^{+}[z_{3}, z_{2}]\cdot F_{1}[z_{2}, z_{3}]$ has the desired properties.
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Case 2. On$e$ of end$(F_{1})$ lies on $C_{0}^{+}(y)x)$ and th$e$ other two lie on $C_{0}^{+}(x, y)$ .
We may assume $z_{1},$ $z_{2}\in C_{0}^{+}(x, y)$ and $z_{3}\in C_{0}^{+}(y, x)$ . Let $C_{1}=C_{0}^{+}[z_{2}, z_{1}]\cdot F_{1}[z_{1}, z_{2}]$ .

Then $C_{0}-C_{1}=C_{0}^{+}(z_{1}, z_{2})$ . Let $D=C_{0}\cup F_{1}$ . By Theorem $B$ , there exists

an $(x, D-C_{0}^{+}(z_{3}, z_{1}))$ -fan $F_{2}$ of size three, such that $z_{1}$ , $z_{3}\in end(F_{2})$ . Let

end $(F_{2})=\{z_{1}, z_{3}, a\}$ . If $a\in F_{1}[z, z_{1}$ ) or $a\in F_{1}[z, z_{2}$), let

$C_{2}=C_{0}^{+}[z_{1}, z_{3}]\cdot F_{1}[z_{3}, a]\cdot F_{2}[a, z_{1}]$ .

If $a\in F_{1}[z, z_{3}$ ), let
$C_{2}=C_{0}^{+}[z_{1}, z_{3}]\cdot F_{2}[z_{3}, a]\cdot F_{1}[a, z_{1}]$ .

If $a\in C_{0}^{+}(z_{2}, y$], let

$C_{2}=C_{0}^{+}[a, z_{3}]\cdot F_{1}[z_{3}, z_{2}]\cdot C_{0}^{-}[z_{2)}z_{1}]\cdot F_{2}[z_{1}, a]$ .

If $a\in C_{0}^{+}(y)z_{3})$ , let
$C_{2}=C_{0}^{-}[a, z_{1}]\cdot F_{1}[z_{1}, z_{3}]\cdot F_{2}[z_{3}, a]$ .

Then in either case, $C_{0}^{+}(z_{1}, z_{2})\subset C_{2}$ and either $C_{1}$ and $C_{2}$ satisfies the desired properties. So

the only remaining case is $a\in C_{0}^{+}(z_{1}, z_{2}$]. Let $D’=D\cup F_{2}$ .
Next, consider a $(y, D’-C_{0}^{+}(z_{2}, z_{3}))$-fan $F_{3}$ such that $\{z_{2}, z_{3}\}\subset end(F_{3})$ . Let

end $(F_{3})=\{z_{2}, z_{3}, b\}$ . If $b\in(F_{1}-end(F_{1}))\cup C_{0}^{+}(z_{3}, z_{1})$, then the lemma follows by the
same argument. If $b\in F_{2}(x, a)\cup F_{2}(x, z_{1})$ , let

$C_{3}=F_{3}[b, z_{2}]\cdot C_{0}^{-}[z_{2}, z_{1}]\cdot F_{1}[z_{1}, z_{3}]\cdot F_{2}[z_{3}, b]$ .

If $b\in F_{2}(x, z_{3})$ , let

$C_{3}=F_{3}[b, z_{3}]\cdot F_{1}[z_{3}, z_{2}]\cdot C_{0^{-}}[z_{2}, z_{1}]\cdot F_{2}[z_{1}, b]$ .

Then in either case $C_{0}^{+}(z_{1}, z_{2})\subset C_{3}$ and hence either $C_{1}$ or $C_{3}$ satisfies the desired
properties. So the lemma follows unless $b\in C_{0}^{+}[z_{1}, z_{2}$ ). (Possibly $a=b.$)

Now we consider the case $a\in C_{0}^{+}(z_{1}, z_{2})$ and $b\in C_{0}^{+}(z_{1}, z_{2})$ . If $z_{1},$ $b,$ $a,$ $z_{2}$ appear in
this order around $C_{0}^{+}$ , let

$C_{4}=F_{3}[z_{3}, b]\cdot C_{0}^{+}[b, z_{2}]\cdot F_{1}[z_{2}, z_{1}]\cdot C_{0}^{-}[z_{1}, z_{3}]$

and
$C_{5}=F_{2}[z_{3}, a]\cdot C_{0^{-}}[a, z_{1}]\cdot F_{1}[z_{1}, z_{2}]\cdot C_{0}^{+}[z_{2}, z_{3}]$.
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If $z_{1},$ $a,$ $b,$ $z_{2}$ appear in this order around $C^{+}$ , let

$C_{4}=F_{3}[z_{2}, b]\cdot C_{0^{-}}[b, z_{3}]\cdot F_{1}[z_{3}, z_{2}]$

and
$C_{5}=F_{2}[z_{1}, a]\cdot C_{0}^{+}[a, z_{3}]\cdot F_{1}[z_{3}, z_{1}]$ .

Then in either case we have $\{x, y, z\}\subset C_{4}\cap C_{5},$ $C_{0}\subset C_{4}\cup C_{5}$ , and hence $|C_{4}|\geq\iota_{|C_{0}|}2+2$

or $|C_{5}|\geq\iota 2|C_{0}|+2$ . So the lemma follows.
Now, we may assume that $a=z_{2}$ or $b=z_{1}$ . If $a=z_{2}$ , then $F_{1},$ $F_{2},$ $F_{3}$ and $C_{0}^{-}[b_{3}z_{1}]$

form a subdivision of $K_{3,3}$ . If $b=z_{1}$ , then $F_{1},$ $F_{2},$ $F_{3}$ and $C_{0}^{+}[a, z_{2}]$ forn a subdivision of
$K_{3,3}$ . Hence both contradicts the planarity of $G$ . Therefore, the proof in this case is complete.

Case 3. I $\{x, y\}\cap end(F_{1})\}|=|C_{0}^{+}(x, y)\cap end(F_{1})|=|C_{0}^{+}(y, x)\cap end(F_{1})|=1$ .
We may assume $z_{1}=x,$ $z_{2}\in C_{0}^{+}(x, y)$ and $z_{3}\in C_{0}^{+}(y, x)$ . Then either

$C_{6}=F_{1}[z_{1}, z_{2}]\cdot C_{0}^{+}[z_{2}, z_{1}]$, or
$C_{7}=F_{1}[z_{1}, z_{3}]\cdot C_{0}^{-}[z_{3}, z_{1}]$

satisfies th$e$ desired properties.

Therefore, in each case, $G$ has a cycle through $x,$ $y$ and $z$ of length at least - $|C_{0}|+2$ .
$\blacksquare$
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