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Braid groups and their applications

Kyoji SAITO = (RIMS)

written by Toshitake KOHNO (Nagoya Univ.)

INTRODUCTION. The purpose of this note is to present a brief
introduction on recent advances concerning Artin’'s braid groups
principally from a point of view of complex analytic geometry.

In Section 1, we reéall the definition and basic properties of

the braid groups. In Section 2, we study the operation of the
braid groups on free groups. As an application we focus on a
recent work of E. Brieskorn on the action of the braid groups

on basis of quadratic forms. In Section 3, we give an alternative
definition of the braid group as the fundamental‘group of the
configuration épace. Related topics such as the K@Ort,1) properties,
the lower éentral series etc. are reported. Section 4 is devoted
to introduce several appfoaches to construct linear representations
of the braid groups containing a method to investigate integrable
connections on the configuration space. We shall also explain an
algebraic method using Iwahori's Hecke algebra and discuss their
relations. in Section 5, we review recent works of V. Jones and
several authors on new invariants of links. A complete account on
these subjects is found in

"Artin’s braid groups” Proceeding of the conference held at

Santa Cruz, to appear as a volume of Cotemborary Math.



1. DEFINITION OF THE BRAID GROUP. Let us first recall the
geometric definition proposed by E. Artin in 1925 [A]. We fix

distinet n points a a in the Euclidean plane R? . We

10ty Ay
consider disjoint arcs €, = (f,(t), t) in RZ x 1 , 1<i<n ,

such that fi(l) = ao(i\ with some element ¢ of the symmetric
group Gn ., Their union § = @1 U... U @n is called a geomelric

braid (see Fig. 1). The arc Qi is called the i-th braid.
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Now we define an equivalence relation between geometric braids.
Let € and €' be geometric braids. We shall say that € and
€' are equivalent if there exists an isotopic deformation Ft of
R? x I which is the identity on R? x (0} and R? x (1} and
for each t € [0,1]1 , the image Ft(g) satisfies the properties :
(i) Ft(ﬁ) is a geometric braid.
(ii) FO(Q) = € and Fl(ﬁ) = g
We denote by Bn the ébove equivalence classes of the geometric

braids. The set Bn has a structure of a group by means of the

composition of geometric braids. We call Bn the Artimn’s braid



group with =n strings. Let 9, be the element of Bn represented

by the>following geometric braid (see Fig. 2).
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It was shown by E. Artin that Bn is generated by cr.l , 1£i<n~-1 ,

with relations

(1.1) oio. = ojoi if li-ji»

9191+1% T 71+1%1% 1
Since each geometric braid determines a permutation of the set
(al, ce ey an) by associating the end points to its initial
points we have a surjective homomorphism n : Bn e Gn
The kernel of n is called the pure braid group with n strings
which is denoted by Pn

The presentation 1.1 leads us to the following generalization
of the Artin's braid group (seé (Br1l). Let M = (mij) € M(m, N»
be a Coxeter matrix (see [Boul). We associate to M a group AM
with generators gl, ees, & and relations

m
(1.2} “ gigjgi ees = gjgigj
m.. times m.. times
1] 1]

We call Ay the Artin group associated with M. We observe that
Artin's braid group Bn can be considered as the Artin group

associated with the Coxeter matrix of type An



Several group theoretic problems such as the word problem,
the ¢onjugacy problem and the determination of the center for the
Artin's braid group are solved in [A]l] and [G], where the center

in an infinite cyclic group generated by

2 -
A< = o, -.. on—l)

Here A is called a fundamental element which represents a rotation
of 180° .of the Euclidean plane. The same problems for Artin

groups of finite type are solved in [BS] and [D].

2. OPERATION OF BRAID GROUPS ON FREE GROUPS. Let F
denote the free group generated by n letters Xl’ ceey X
We define a homomorphism p @ Bn -— Aut(Fn) by

;g j#i o, i+1
PO (X = { X, X.X;! j=i+l

i+17i%i+1

i1 y =i

This operation is visualized in the following way by identifying
Fn with the fundamental group nl(C - {al, .oy an}, ao) where

the letters xi are realized by the paths turning around ai once

positively without intersections except aO
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[t is known that the above homomorphiSm p is injective. Thé image
p(Bn) is characterized in the following way. An automorphism «

of Fj is an element of p(Bh) if and only if the following two
conditions are satisfied
(1) alxyx, ... X ) = X%, ... X

(ii) o leaves invariant the set {il, ..., X.} , where

n
ii denotes the image of xi in the abelianization Fﬁb =

n

Fn / [Fn, Fn]
Let D' denote the commutator subgroup [Fn, Fn] and let D"

denote the second commutator [D', D']1 . We see that D'/ D"

ab

n 1 Here Z[Fﬁb] stands for the

is a free module over ZI[F
group algebra of Fﬁb. Identifying this algebra with Z[t, t 1]
the above operation p -~induces a linear representation

B, — GL (Zlt, t*'1) defeined by

W(Oi) = t 1-t

This representation is called the Burau represetation. 1t is
known by Magnus and Peluso (see [Bl) fhat ¥ is injective if
n = 3, It is an open question to determine wheather ¢ is

faithful or not in the case n24

—{r



An application (d apres Brieskorn (Br2l et al) :@ operation

of Bn on basis of quadratic forms. Let us consider a proper

flat family n : X — A of complex varieties possibly with
boundary over a disc A (with some additional condition on the

boundary). Let {a an) Cc A be the set of critical values

10

of M and we assume that the fibre Xa over ai has a single
i

ordinary double point. By fixing a base point a, € A - (al,

an) and choosing paths x.l as before, we obtain generators of the

free group nl(A - (al, AN an}, aO). On the other hand inside
a fibre Xt , t € A, for t near to ai there exists a middle
homology class ei , which vanishes to the singular point of Xa
i
By transporting ei along the path xi to aO , we obtain a
cycle in Xa denoted by x?ei . Let us now consider a lattice
0
defined as a formal sum
n
L= o 7 x'e.
. 1 1
i=1
with the natural intersection form < , > : LxL — Z . We

obtain the monodromy representation

86 : m (A - {a

) 1’ . an), a.)> — Aut((L)

0
By the Picard-Lefschetz theorem the monodromy 0 is expressed as

5k
2 <u, X.e.>
1 1

G(Xi)(u) = uy t

for u € L . We put B = x¥e., xTe > . € M(n, 2)
171 j7iti,i=1, .., n

Now we consider the operation on an element b of Bn on

nl(A - (al, c ey an), aO) via p to get another basis x1 ,

*
x' (see Fig. 3). Thus we obtain the matrix B' = <(x)7 e, (xj)*ej>

d
k3



By means of this process we have an operation of Bn on  M(n, Z) ,
which can be written down explicitly (see [Br2l). We should
remark that this is not a linear representation.

For example in the case n=3 the spacé of the solutions of

2 X z
det X 2y =¢{ , x,v, 2z € 7%
z y 2
admits an action of B3 . The orbits of this action were studied

by Markov, Mordel, Brieskorn (see [Br2l), Naruki [N] and Saito

[s2].

3. CONFIGURATION SPACE. Let Hij , 1€£i<j<n , denote the
. n . - ‘ n . _
hyperplanes in C defined by Hij = {(21, c e zn) € C ; z, = zj ?
The symmetric group Gn acts freely on the complementary space

Cn - W H.. by the permutétion of the coordinates. The
1£i<j<n

configuration space of distinct n points in € 1is by definition
= n _
6n(C) = (C V) Hij) /8

Let p : ¢ - My Gn denote the natural projection. We may
identify Cn / Gn with Cn via elementary symmetric polynomials
oi , 1£i<n . The image of the union V) Hij by the projection »p

is called the discriminant which is a complex hypersurface

- on o, ) -
9n = {(01, C e on) € € ; A(ol, Ceey on) = 0}
where A(0,, ..., 0.) = MN... (z.- z.) is the discriminant
1 n i#]j 1 J
polynomial. Then p is an unramified covering outside 9n and

¢,(C) is also written as c" - 9 . The braid group B is

isomqrphic‘to the fundamental group nl(Cn - ﬁn, *) . It is



known by Fox and Neuwirth (see [Brl1l) that
ni(C“ -2, %) = 0 for ix2

This leads us to the isomorphisms

1"e

H* (B ) H«¢" - 9
n n

* N
H™ (L \V, Hij)

e

*
H (Pn)
An analogous statement for an arbitrary Artin group of finite type

was proved by Deligne [D].

The structure of H*((En - \}Hij) was studied by Arnold [Ar]

(see [Bri1] and [0S] for a more extensive treatment). It is known
% n d(zi— z.)
. j ..
that H «(C" - UH..) is generated by o.. = , 1<i<j<n
1] 1] 21 - Zj

with fundamental relations

mijA mjk + wjkA wik + wikA mij =0 |, 1<i< j<k<n

The Poincare polynomial Epzo rank Hp(<En - k}Hij).tp is given as
(1+t)(1+2¢) ... (1+(n-1>1t)

Let us remark here that the numbers {1, 2, ..., n-1} appearing in

the above formula are the Coxeter exponents of type An (see [Bri11l).
Let us look at several properties relevant to these numbers. Let

@84€n (log 9n)0 denote the set of germs of the holomorphic vector

fields at 0 tangent to 9n . Then 964€n (log @n)o is a free
OCn 0 -module generated by homogeneous vector fields Xi , 1<i<n-1 ,
such that deg Xi = i (see [S]). This relation between the Poincare

polynomial and the logarithmic vector fields was investigated by
Terao [Tel in a more general situation. Another property which

we want to describe here is a relation with the lower central series.



of P, . Let"r1 o F2 > ... D rij .+. be the lower central

series of Pn defined inductively by F1= Pn and Fj+1= trl, Fj]

We put '¢j = rank ( Fj / Fj+1 ) . Then we have

"n-1 © : (€]
Ta-jt)= T (-1t P in ZI[[t1]
j:]_ p:l :
(see [K] and [KO]1).
4. LINEAR REPRESENTATIONS. By the Riemann—-Hilbert

correspondence, we know philosophically that the study of finite
dimensional linegr representations of Bn is "equivalent" to
the study of systems of linear differential equations with regular
singularities along the discriminant Qn . ‘But at this stage

we do not have a sufficient understandihg of either of them. We
list up several approaches in this direction.

(i) hypergeometric differential equations : Appell, Picard,
Terada [Tel and Deligne-Mostow [DM]. Linear representations of
the braid groups appear as the monodromy of the intégrals of
Pochhammer type.

(ii) total differential equatlions with logarithmic
singularities : vBy means of solutions of classical Yang-Baxter
equations we have a method to construct an integrable connection
over the configuration space associated with any finite dimensional
irreducible representation of a complex Simple Lie algebra (see
Kohno's note in this volume). Another approach using the integrals

of difference products is due to Aomoto [Ao].
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(iii) Gauss—-Manin connections : K. Saito, Anbai ... . The
reader may refer to Anbai's note in this volume.

(iv) conformal field theory on P! : Belavin-Polyakov~-
Zamolodchikov [BPZ1l, Knizhnik-Zamolodchikov [KZ] and Tsuchiya-
Kanie [TK] ... . Linear repreresentations of Bn appear
as the monodromy of n-point functions. These functions satisfy
the total differential equations mentioned in (ii).

(v) Jwahori’ s Hecke algebra representations (von Neumann
algebra representations) : Jones [Jol, Ocneanu [O]
These representations were used effectively to define new invariants

of links (see the next Section).

(vi) algebra with two parametlers : Birman-Wenzl [BW1],
J. Murakami [M1] ... . This new algebra was introduced motivated
by Kauffman polynomial. It is an extension of Iwahqri’s Hecke
algebra.

Let us recall here the definition of Iwahori's Hecke algebra

H(n,q) of the symmetric group. Let us define H(n,q) as the

algebra over ZI[q, q '] generated by 1, Ty eee s To_y With
relations
T.T. = T.T. if fi-jlI>1
1 ] J 1
TiTiaT = TinTiTing
(Ti+1)(Ti_ q) = 0 , i=1, 2, ..., n-1
We observe that H(n,q) is a free Z[q, g '] - module of rank n !
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and that H{n,1)} is identified with the group algebra of the

gymmetric groﬁp‘ Gnh. We have a natﬁral homomorphism 7 : Z[Bn]

— H(n,q) defined by n(oi) = Ti . A linear representation of

Bn factoring through n is called a Hecke algebra representation.
The above approches (i) - (vi) are closely intricated.

Hecke algebra representaions appear as the monodromy of the

connection associatéd with the vector representation of sl(m,O

(see [K21). In [TK] it was shown that as the monodromy of n-point

function in two dimensional conformal field theory with gauge

symmetry of type Ail’ we obtain unitarizable representations
of Bn factoring through the Jones algebra. The study of the

monodromy of n-point functions with other types of symmetry

is in progress. The monodromy of the connection associated with
the vector representation of the other types of non-exceptional
simple Lie algebras is related withvsolutions of quantum Yang-
Baxter equation obtained by Jimbo [J1]1 and [J2] (see [K21).

They commute w}th the diagonal action of the g-analogue of the
corresponding Lie algebra and factor through the algebra with

two parameters due to Birman-Wenzl.
5. APPLICATION TO LINK POLYNOMIALS. Given a geometric

braid b we obtain an oriented link b~ by means of the closing

Process illustrated in Fig.4.

’/
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Figure 4

Let £ denote the set of the isotopy classes of oriented links.

We ontroduce an equivalence relation in El Bn generated by
n=
the following Markov equivalence
(MDD for b, c € Bn , b~ c if b and ¢ are conjugate
in ‘Bn

1
(MID) for b € Bn" b~ b %

It is known by Alexander and Yamada that the natural map

o«

o B/ «~ — £

n

n=1
obtained by the closing of braids is surjective. Yamada's
argument gives us a stronger statement. Namely he asserts that
the minimal number of strings of the geometric braid to obtain
an oriented link L is equal to the minimal number of the
Seifert circles of L (see [Y] for a precise statement).
Moreover we Kknow by Markov (see [B] for a proof) that the above
natural map is bijective.

Let us now proceed to review known link polynomials.

The Alexander polynomial AL(t) may be defined in the following

way from a point of view of the braid group. Let ¢ : Bn —

/<
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GL_(ZIt, t"11) be the Burau representation. Then the Alexander
n } , ‘ X

polynomial of L =b , b?e B, ‘is given by

n-1.-1

A () = (1+t+ ... +t"H T getcwmy - 1)

L
After the definition of the Jomes polynomial VL(t> it was

generalized to the two variable polynomial X;(q,1) independently
py Freyd-Yetter, Lickorish-Millet, Ocneanu and Hoste. Let us
recall the definition. We know by Ocneanu [0] that there exists
a linear map tr : H(e,q) — @(/a, z) uniquely defined by

(i) tr(ab) = tr(ba)

(ii) tr(1) = 1

(iiid tr(xTn) = z tr(x) for x € H(q,n)
Here we denote by H(x,q) the inductive limit of H{(n,q) with

respect to the natural inciusion H{(n,q) ¢ H(n+l,q) . Putting

A = (gqz) '(1-q+z) , we define X (a,x) by

- _ 1-2q n-1_,-.e
X (g, C Kaso? (V27 trua))

where o € Bn is any braid with o =L , e denotes the exponent
sum of o as a word on oi's "and n is a natural homomorphism

to H(n,q) defined in the previous section. By means of Markov's
theorem and the properties of tr we verify that XL(q,A) is an
invariant of the isotopy type of L . We put t = /Xa , X = /q -
(V)" ! and P (t,x) = X, (a,x) . Then P (t,x) satisfies the

following "skein rule”. If L_, L_ and Ly are links which
have projections idenfical, except in one crossing where they are

as in Fig.5

'3
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) x N

L_ L+ Lo
Then we have t-lp - tP, =xP . The two variable
_ L+ L_ Lo
polynomial PL is characterized by the above skein rule together
with the property that P,= 1 for a trivial knot L

L

Both the Alexander polynomial and the Jones polynomial are

obtained as the following specializations.

-1 - ) "_ -
X (t, t7h) = Py (1, Jt 1//1)

X (t,t) = PL(it‘l, -i (/T - 1//t))

AL(t)

VL(t)

They also satisfy the skein rules

+ (Jt - J/JE)ALO= 0 (Conway)

- _1 n - T -
t vL t vL + (Jt 1//t) vLO 0

+ -
Several results have been obtained for the meaning of special
values of VL(t). The reader may refer to [M2] and [Jo] for

works in this direction.
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